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Аннотация. В работе рассматривается задача для эллиптического уравнения, опи-
сывающая стационарное распределение температуры в неоднородной полуплоскости с
конечной трещиной, подходящей к границе полуплоскости. Доказана корректность рас-
сматриваемой задачи, построена формула представления решения задачи.
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ABOUT THE STATIONARY HEAT DISTRIBUTION IN A
HETEROGENEOUS HALF-PLANE WITH A FINITE CRACK

E. A. Loginova, A. S. Ryabenko, A. S. Chernikova

Abstract. A problem for an elliptic equation is examined which describes a steady-
state temperature distribution in a non-uniform half-plane with a finite crack approaching
the boundary of the half-plane. The correctness of the problem is proven. The formula of
representing the solution is designed.

Keywords: temperature, crack, steady-state heat conduction equation, boundary value
problem.

ВВЕДЕНИЕ

Изучение математических моделей, описывающих различные процессы, происходящие в
материалах с дефектами, не теряет свою актуальность на протяжении нескольких десяти-
летий (см. [1]–[10]). Одним из направлений в исследовании подобных задач является анализ
тепловых процессов в материалах с трещинами (см. [4]–[10]).

Рассматриваемая в работе задача моделирует стационарное распределение тепла в неодно-
родной полуплоскости с прямолинейной трещиной, подходящей под острым углом к границе
полуплоскости. Отметим, что аналогичная задача для случая однородной полуплоскости бы-
ла рассмотрена в работе [10].

1. ПОСТАНОВКА ЗАДАЧИ

Пусть px1,x2q P R
2. Через ∆ будем обозначать оператор Лапласа в R

2, B
Bm — производную

по направлению вектора m “ pm1,m2q, а через R
2
` и R

2
´ — соответственно множества точек 

x P R
2|x1 P R, x2 ą 0

(
,
 
x P R

2|x1 P R, x2 ă 0
(
.

Пусть α P
`
, π
2

˘
— фиксированный угол, n— вектор с координатами p´ sinα, cosαq, l` “ 

x P R
2|x1 “ t cosα, x2t “ sinα, t P p0; |l|q

(
— интервал, подходящий к границе полуплоскости

R
2
`, l` — соответствующий l` отрезок.
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Рассмотрим задачу:

∆upxq ` k cosβ
Bupxq
Bx1

` k sin β
Bupxq
Bx2

“ 0, x P R
2

`zl`, (1)

u px1,0q “ rψ px1q , x1 P Rz t0u , (2)

u px` 0 ¨ n̄q ´ u px´ 0 ¨ n̄q “ rq0 pxq , x P l`, (3)

Bupx`0¨n̄q
Bn ´ Bupx´0¨n̄q

Bn ´
´k

2
psin pα ´ βqq pu px ` 0 ¨ n̄q ´ u px´ 0 ¨ n̄qq “ rq1 pxq ,x P l`.

(4)

Задача (1)–(4) описывает стационарное распределение тепла в верхней полуплоскости с
разрезом по отрезку l`, подходящему к границе полуплоскости под углом α, если вектор на-
правления неоднородности материала направлен под углом β P

`
0; π

2

‰
к оси абсцисс. Отрезок

l` моделирует наличие трещины. Уравнение (1) получено из уравнения стационарного рас-
пределения тепла в твердом теле без тепловых источников div pkpx1, x2q grad upx1, x2qq, где
k px1,x2q “ ekpx1 cos β`x2 sinβq — коэффициент внутренней теплопроводности (k ” const ą 0q.
Искомая функция u pxq — значение температуры в точке x. Условие (2) задает температуру
на границе полуплоскости, а условия (3) и (4) — скачки температуры и теплового потока на
трещине l` соответственно.

Замечание 1. Условия (3) и (4) понимаются в смысле главного значения:

u px` 0 ¨ n̄q ´ u px´ 0 ¨ n̄q “ lim
εÑ`0

pu px` ε ¨ n̄q ´ u px´ ε ¨ n̄qq ,

Bupx`0¨n̄q
Bn̄ ´ Bupx´0¨n̄q

Bn̄ ´ k
2

psin pα´ βqq pu px` 0 ¨ n̄q ´ u px´ 0 ¨ n̄qq “
“ lim

εÑ`0

´
Bupx`ε¨n̄q

Bn̄ ´ Bupx´ε¨n̄q
Bn̄ ´ k

2
psin pα ´ βqq pu px` ε ¨ n̄q ´ u px´ ε ¨ n̄qq

¯
.

Замечание 2. Пусть A— некоторое множество в R или R2. Через C pAq и Cp pAq будем
обозначать соответственно множество функций, непрерывных и p раз непрерывно дифферен-

цируемых на множестве A. Через
gpxqdlş

l

будем обозначать криволинейный интеграл первого

рода от функции g pxq по кривой l.
В дальнейшем будем предполагать, что rq0 pxq ,rq1 pxq P C pq, а функция rψ px1q из C pRq и

ограничена на R.
Определение. Решением задачи (1)–(4) назовем функцию u pxq из C2

`
R
2
`zl`

˘
, которая

является классическим решением уравнения (1) и для которой выполнены условия (2)–(4).

2. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ЗАДАЧИ. СВЕДЕНИЕ К
ОБОБЩЕННОМУ УРАВНЕНИЮ

Будем искать решение задачи (1)–(4) в виде

u px1,x2q “ e´ k
2

px1 cos β`x2 sinβqv px1,x2q . (5)

Тогда из равенств

Bu pxq
Bx1

“ e´ k
2

px1 cos β`x2 sinβq
ˆ

´k

2
pcos βq v pxq ` Bv pxq

Bx1

˙
,

Bu pxq
Bx2

“ e´ k
2

px1 cos β`x2 sinβq
ˆ

´k

2
psin βq v pxq ` Bv pxq

Bx2

˙
,
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∆u pxq “ e´ k
2

px1 cos β`x2 sinβq
ˆ
∆v pxq ´ k

ˆ
pcos βq Bv pxq

Bx1
` psinβq Bv pxq

Bx2

˙
` k2

4
v pxq

˙

получаем, что функция v pxq должна быть решением задачи:

∆vpxq ´ k2

4
vpxq “ 0, x P R

2

`zl`, (6)

v px1,0q “ ψ px1q , x1 P Rz t0u , (7)

v px` 0 ¨ n̄q ´ v px´ 0 ¨ n̄q “ q0 pxq , x P l`, (8)

Bv px` 0 ¨ n̄q
Bn̄ ´ Bv px´ 0 ¨ n̄q

Bn̄ “ q1 pxq , x P l`, (9)

где ψ px1q “ e
k
2
x1 cos β rψ px1q, qj pxq “ e

k
2

px1 cos β`x2 sinβqrqj pxq, j “ 0; 1.
Определение решения задачи (6)–(9) аналогично определению решения задачи (1)–(4).
Пусть l´ “

 
x P2 |x1 “ t cosα, x2 “ ´t sinα, t P p0; |l|q

(
— интервал, подходящий к границе

полуплоскости R
`
´, l´ — соответствующий l´ отрезок.

Рассмотрим функции:

pv pxq “
"

v pxq ,x2 ą 0,

´v px1,´x2q ,x2 ă 0,
(10)

pqj pxq “
"

qj pxq ,x2 ą 0,

´qj px1,´x2q ,x2 ă 0,
(11)

где j “ 0; 1, а v pxq и qj pxq из задачи (6)–(9).
Из (6)–(11) получаем, что функция pv pxq удовлетворяет соотношениям:

∆pv pxq ´ k2

4
pv pxq “ 0, x P

`
R2

`zl`
˘

Y
`
R
2

´zl´
˘
, (12)

pv px` 0 ¨ n̄2q ´ pv px´ 0 ¨ n̄2q “ pq0 pxq , x P l` Y l´, (13)

Bpv px` 0 ¨ n̄2q
Bn̄2

´ Bpv px´ 0 ¨ n̄2q
Bn̄2

“ pq1 pxq , x P l` Y l´, (14)

где n̄2 “
"

n̄ “ p´ sinα, cosαq ,x P l`,
n̄1 “ p´ sinα,´ cosαq ,x P l´.

Замечание 3. Пространства бесконечно дифференцируемых и финитных функций в R
2

и множество линейных и непрерывных функционалов над этим пространством будем соот-
ветственно обозначать D

`
R
2
˘

и D1 `
R
2
˘

(см. [11]).
Замечание 4. Пусть l – отрезок в R

2, q pxq P C plq, m̄ “ pm1,m2q. Через q pxq δl pxq и
Bqpxqδlpxq

Bm̄ будем обозначать функции из D1 `
R
2
˘
, действующие по следующему правилу: для

любой функции ϕ pxq P D
`
R
2
˘

pq pxq δl pxq ,ϕ pxqq “
ż

l

q pxqϕ pxq dl,
ˆBq pxq δl pxq

Bm̄ ,ϕ pxq
˙

“ ´
ż

l

q pxq Bϕ pxq
Bm̄ dl.

Из определения решения задачи (6)–(9) следует, что функция pv pxq локально интегрируема,
и, следовательно, она порождает регулярный функционал в пространстве D1 `

R
2
˘
, который

также будем обозначать pv pxq.
Сформулируем и докажем теорему.
Теорема 1. Если у задачи (6)–(9) существует решение, то функция pv pxq, заданная ра-

венством (10), является решением следующего обобщенного уравнения в D1 `
R
2
˘
:

∆pvpxq ´ k2

4
pv pxq “
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“ 2ψ px1q δ1 px2q ` q1 pxq δl` pxq ` B
`
q0 pxq δl` pxq

˘

Bn̄ ` pq1 pxq δl´ pxq ` B
`
pq0 pxq δl´ pxq

˘

Bn̄1
, (15)

где n̄ “ p´ sinα, cosαq , n̄1 “ p´ sinα,´ cosαq , δ px2q – функция Дирака (см. [11]).

Доказательство. Пусть ε ą 0. Введем контуры (рис. 1):

Γ˘
1,ε “

"
px1,x2q|x1 “ t,x2 “ ˘ε

cosα
,t P p´8; 0s

*
,

Γ˘
2,ε “

"
px1,x2q|x1 “ t cosα,x2 “ ˘ε

cosα
˘ t sinα,t P

„
0; |l| ´ ε sinα

cosα

*
,

Γ˘
3,ε — отрезок, соединяющий точки D˘ pl cosα¯ ε sinα;˘l sinα ˘ ε cosαq

и E˘ pl cosα ` ε sinα;˘l sinα ¯ ε cosαq,

Γ˘
4,ε “

#
px1,x2q|x1 “ 2ε

sinα
` t cosα,x2 “ ˘ε

cosα
˘ t sinα,t P

«
0; |l| ´ ε

`
1 ` cos2 α

˘

cosα sinα

ff+
,

Γ˘
5,ε “

"
px1,x2q|x1 “ 2ε

sinα
` t,x2 “ ˘ε

cosα
,t P r0;`8q

*
.

Рис. 1. Контур интегрирования

Пусть D`
ε – часть R

2
`, находящаяся выше контура Γ`

1,ε Y Γ`
2,ε Y Γ`

3,ε Y Γ`
4,ε Y Γ`

5,ε; D
´
ε –

часть R
2
´, находящаяся ниже контура Γ´

1,ε Y Γ´
2,ε Y Γ´

3,ε Y Γ´
4,ε Y Γ´

5,ε; BD`
ε — граница области

D`
ε ; BD´

ε — граница области D´
ε ; k` “

`
k`
1
,k`

2

˘
— единичный вектор внешней нормали к BD`

ε ;
k´ “

`
k´
1
,k´

2

˘
– единичный вектор внешней нормали к BD´

ε .

Вычисляя обобщенные производные второго порядка от функции pv pxq по переменным ,x1,
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x2 и учитывая соотношения (12), (13), (14), получим:

ˆ
∆pv ´ k2

4
pv,ϕ pxq

˙
“ lim

εÑ0

¨
˚̋

ż

D`
ε

ˆ
∆pv ´ k2

4
pv
˙
ϕ pxq dx´

ż

BD`
ε

Bpv
Bx1

ϕ pxq k`
1
dl`

`
ż

BD`
ε

pvBϕ pxq
Bx1

k`
1
dl ´

ż

BD`
ε

Bpv
Bx2

ϕ pxq k`
2
dl `

ż

BD`
ε

pvBϕ pxq
Bx2

k`
2
dl`

`
ż

D´
ε

ˆ
∆pv ´ k2

4
pv
˙
ϕ pxq dx´

ż

BD´
ε

Bpv
Bx1

ϕ pxq k´
1
dl `

ż

BD´
ε

pvBϕ pxq
Bx1

k´
1
dl´

´
ż

BD´
ε

Bpv
Bx2

ϕ pxq k´
2
dl `

ż

BD´
ε

pvBϕ pxq
Bx2

k´
2
dl

˛
‹‚“ ´

ż

l`

q0pxqBϕ pxq
Bn̄ dl`

`
ż

l`

q1pxqϕ pxq dl ´ 2

`8ż

´8

ψ px1q Bϕ px1,0q
Bx2

dx1 ´
ż

l´

pq0pxqBϕ pxq
Bn̄1

dl `
ż

l´

pq1pxqϕ pxq dl. (16)

Из определения обобщенных функций q pxq δl pxq, Bqpxqδlpxq
Bm̄ и обобщенной производной сле-

дует, что
ż

l`

q1 pxqϕ pxq dl “
`
q1 pxq δl` pxq ,ϕ pxq

˘
,

ż

l´

pq1 pxqϕ pxq dl “
`
pq1 pxq δl´ pxq ,ϕ pxq

˘
,

´
ż

l`

q0 pxq Bϕ pxq
Bn̄ dl “

ˆBq0 pxq δl` pxq
Bn̄ ,ϕ pxq

˙
,

´
ż

l´

pq0 pxq Bϕ pxq
Bn̄1

dl “
ˆBpq0 pxq δl´ pxq

Bn̄1
,ϕ pxq

˙
,

´2

`8ż

´8

ψ px1q Bϕ px1,0q
Bx2

dx1 “
`
2ψ px1q δ1 px2q ,ϕ pxq

˘
.

Из (16) и последних равенств получаем, что в D1 `
R
2
˘

функция pv pxq является решением
уравнения (15).

Теорема доказана.

3. ПОСТРОЕНИЕ РЕШЕНИЯ ОБОБЩЕННОГО УРАВНЕНИЯ

В R
2 фундаментальным решением оператора ∆ ´ k2

4
является функция E pxq “

´ 1

2π
K0

`
k
2

|x|
˘

(см. [12]), где K0 pxq — функция Макдональда нулевого порядка.
Докажем вспомогательную лемму.
Лемма 1. В D1 `

R
2
˘

существуют свертки функции ´ 1

2π
K0

`
k
2

|x|
˘

с функциями

q pxq δl pxq, Bpqpxqδlpxqq
Bn̄ , 2ψ px1q δ1 px2q, где n̄ “ pn1,n2q , δ px2q — функция Дирака, и справедли-

вы формулы:

pq pxq δl pxqq ˚
ˆ

´ 1

2π
K0

ˆ
k

2
|x|

˙˙
“ ´ 1

2π

ż

l

q pzqK0

ˆ
k

2
|x ´ z|

˙
dlz, (17)
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ˆB pq pxq δl pxqq
Bn̄

˙
˚
ˆ

´ 1

2π
K0

ˆ
k

2
|x|

˙˙
“ ´ 1

2π

ż

l

q pzq BK0

`
k
2

|x´ z|
˘

Bn̄x
dlz ,

`
2ψ px1q δ1 px2q

˘
˚
ˆ

´ 1

2π
K0

ˆ
k

2
|x|

˙˙
“ kx2

2π

8ż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1,

где K1 pzq — функция Макдональда первого порядка.
Доказательство. Докажем существование свертки pq pxq δl pxqq ˚

`
´ 1

2π
K0

`
k
2

|x|
˘˘

и спра-
ведливость представления (17).

Так как sup p pq pxq δl pxqq Ă l, то в D1 `
R
2
˘

существует свертка pq pxq δl pxqq˚
`
´ 1

2π
K0

`
k
2

|x|
˘˘

(см. [11]). Для любой основной функции ϕ pxq P D
`
R
2
˘

ˆ
pq pxq δl pxqq ˚

ˆ
´ 1

2π
K0

ˆ
k

2
|x|

˙˙
,ϕ pxq

˙
“
ˆ
q pxq δl pxq ¨

ˆ
´ 1

2π
K0

ˆ
k

2
|y|

˙˙
,η pxqϕ px` yq

˙
,

где η pxq — произвольная функция из D
`
R
2
˘
, такая что η pxq ” 1 в окрестности трещины l.

Из определения прямого произведения обобщенных функций с учетом замены переменной
x` y “ z получаем, что

ˆ
pq pxq δl pxqq ˚

ˆ
´ 1

2π
K0

ˆ
k

2
|x|

˙˙
,ϕ pxq

˙
“

“ ´ 1

2π

ż

l

q pxq
żż

R2

η pxqK0

ˆ
k

2
|y|

˙
ϕ px` yq dydlx “´ 1

2π

ż

l

q pxq
żż

R2

K0

ˆ
k

2
|z ´ x|

˙
ϕ pzq dzdlx “

“
żż

R2

´ 1

2π

ż

l

q pxqK0

ˆ
k

2
|z ´ x|

˙
dlxϕ pzq dz “

¨
˝´ 1

2π

ż

l

q pxqK0

ˆ
k

2
|z ´ x|

˙
dlx,ϕ pzq

˛
‚“

“

¨
˝´ 1

2π

ż

l

q pzqK0

ˆ
k

2
|x´ z|

˙
dlz,ϕ pxq

˛
‚.

Таким образом, формула (17) доказана. Остальные утверждения леммы доказываются
аналогично.

Лемма доказана.
Из леммы 1 следует, что существует свёртка фундаментального решения оператора ∆´ k2

4
с

правой частью уравнения (15). Тогда решением уравнения (15) будет свёртка фундаменталь-
ного решения оператора ∆´ k2

4
с правой частью уравнения (15) (см. [11]). Воспользовавшись

соотношениями из леммы 1, получаем следующую теорему.
Теорема 2.В D1 `

R
2
˘

уравнение (15) имеет решение:

pv pxq “ kx2

2π

8ż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1´

´ 1

2π

ż

l`

q1 pyqK0

ˆ
k

2
|x´ y|

˙
dly ´ 1

2π

ż

l`

q0 pyqBK0

`
k
2

|x´ y|
˘

Bn̄x
dly´

´ 1

2π

ż

l´

pq1 pyqK0

ˆ
k

2
|x´ y|

˙
dly ´ 1

2π

ż

l´

pq0 pyqBK0

`
k
2

|x´ y|
˘

Bn̄1x
dly,
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где n̄ “ p´ sinα, cosαq , n̄1 “ p´ sinα,´ cosαq , y “ py1,y2q .
С учетом вида l`, l´ и (11) функцию pv pxq из теоремы 2 можно представить в виде:

pv pxq “ kx2

2π

8ż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1´

´ 1

2π

ż

l`

q1 pyq
ˆ
K0

ˆ
k

2
|x´ y|

˙
´K0

ˆ
k

2
|x´ py|

˙˙
dly´

´ 1

2π

ż

l`

q0 pyq
˜

BK0

`
k
2

|x´ y|
˘

Bn̄x
´ BK0

`
k
2

|x ´ py|
˘

Bn̄1x

¸
dly, (18)

где py “ py1,´y2q.

4. ДОКАЗАТЕЛЬСТВО КОРРЕКТНОСТИ ПОСТАВЛЕННОЙ ЗАДАЧИ

Покажем, что решением задачи (6)–(9) будет функция

v pxq “ pv pxq , (19)

где функция pv pxq задана равенством (18).
Сформулируем вспомогательную лемму, доказанную в [9] (лемма 13).
Лемма 2. Пусть функция f pxq непрерывна на R за исключением, быть может, ко-

нечного числа точек, в которых она имеет разрыв первого рода, тогда для любого δ ą 0

выполнено

lim
εÑ0

kε

2π

x1`δż

x1´δ

K1

ˆ
k
2

b
px1 ´ y1q2 ` ε2

˙

b
px1 ´ y1q2 ` ε2

f py1q dy1 “ f px1 ´ 0q ` f px1 ` 0q
2

,

где k ą 0— постоянная, K1 pzq — функция Макдональда.
Замечание 5. В лемме 2 через f px1 ˘ 0q обозначаются односторонние пределы функции

f pxq в точке x “ x1.
Справедлива лемма.
Лемма 3. Функция v pxq, заданная равенством (19), является решением задачи (6)–(9).
Доказательство. Непосредственно из вида функции v pxq следует, что v pxq P C2

`
R
2
`zl`

˘
,

из способа ее построения получаем, что она удовлетворяет уравнению (6) в R
2
`zl`.

Перейдем к доказательству выполнения условий (7)–(9). Введем обозначения:

I1 pxq “ kx2

2π

8ż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1,

I2 pxq “ ´ 1

2π

ż

l`

q1pyq
ˆ
K0

ˆ
k

2
|x´ y|

˙
´K0

ˆ
k

2
|x´ py|

˙˙
dly,

I3 pxq “ ´ 1

2π

ż

l`

q0pyq
˜

BK0

`
k
2

|x´ y|
˘

Bn̄x
´ BK0

`
k
2

|x´ py|
˘

Bn̄1x

¸
dly.
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Тогда представление (19) примет вид

v pxq “ I1 pxq ` I2 pxq ` I3 pxq .

Очевидно, что при x1 P Rz t0u

v px1,0q “ lim
x2Ñ0

I1 pxq ` lim
x2Ñ0

I2 pxq ` lim
x2Ñ0

I3 pxq . (20)

Рассмотрим каждый из пределов в (20). Первый предел в равенстве (20) можно записать
в виде:

lim
x2Ñ0

I1pxq “ k

2π
lim
x2Ñ0

¨
˚̊
˝x2

x1´δż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚`

` k

2π
lim
x2Ñ0

¨
˚̊
˝x2

x1`δż

x1´δ

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚`

` k

2π
lim
x2Ñ0

¨
˚̊
˝x2

`8ż

x1`δ

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚, (21)

где δ— произвольное фиксированное положительное число.
Из ограниченности функции rψ px1q и свойства функции Макдональда K1 pzq (K1 pzq ă

Ce´z?
z

при z ą 1 (см. [13])) следует справедливость оценок

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x1´δż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ď c

x1´δż

´8

ˇ̌
ˇ̌K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙ˇ̌
ˇ̌

b
py1 ´ x1q2 ` x2

2

|ψ py1q| dy1 ď

ď c1

x1´δż

´8

e´ k
2

?
py1´x1q2`x2

2 ¨ ek
2
y1 cos β

4

c´
py1 ´ x1q2 ` x2

2

¯
3

dy1 ď c2,

где c, c1, c2 — некоторые положительные числа.

Аналогично доказывается ограниченность
`8ş
x1`δ

K1

´
k
2

?
py1´x1q2`x2

2

¯

?
py1´x1q2`x2

2

ψ py1q dy1. Следователь-

но, справедливы равенства

k

2π
lim
x2Ñ0

¨
˚̊
˝x2

x1´δż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚“

“ k

2π
lim
x2Ñ0

¨
˚̊
˝x2

`8ż

x1`δ

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚“ 0. (22)
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С учетом леммы 2 получим, что

k

2π
lim
x2Ñ0

¨
˚̊
˝x2

x1`δż

x1´δ

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

ψ py1q dy1

˛
‹‹‚“ ψ px1 ´ 0q ` ψ px1 ` 0q

2
“ ψ px1q .

(23)
Из равенств (21)–(23), получаем, что при x1 P Rz t0u

lim
x2Ñ0

I1 pxq “ ψ px1q . (24)

С учетом непрерывности функций K0 pzq, K 1
0

pzq при z ą 0 (см. [14]) получаем:

lim
x2Ñ0

I2 pxq “ ´ 1

2π

ż

l`

q1 pyq lim
x2Ñ0

ˆ
K0

ˆ
k

2
|x ´ y|

˙
´K0

ˆ
k

2
|x´ py|

˙˙
dly “ 0, (25)

lim
x2Ñ0

I3 pxq “ ´ 1

2π

ż

l`

q0 pyq lim
x2Ñ0

˜
BK0

`
k
2

|x´ y|
˘

Bn̄x
´ BK0

`
k
2

|x ´ py|
˘

Bn̄1x

¸
dly “ 0. (26)

Таким образом, из (20), (24)–(26) следует, что функция v pxq, заданная равенством (19),
удовлетворяет условию (7).

Докажем справедливость (8). Пусть x P l`, тогда x “ pt1 cosα, t1 sinαq, где t1 P p0; |l|q.
Тогда

I1 px˘ ε ¨ n̄q “ k pt1 sinα˘ ε cosαq
2π

ˆ

ˆ
8ż

´8

K1

ˆ
k
2

b
pt1 cosα ¯ ε sinα ´ y1q2 ` pt1 sinα ˘ ε cosαq2

˙

b
pt1 cosα ¯ ε sinα ´ y1q2 ` pt1 sinα ˘ ε cosαq2

ψ py1q dy1,

следовательно, при x P l`

lim
εÑ0

pI1 px` ε ¨ n̄q ´ I1 px´ ε ¨ n̄qq “ 0. (27)

Несложно показать, что при x P l`

lim
εÑ0

pI2 px` ε ¨ n̄q ´ I2 px´ ε ¨ n̄qq “

“ ´ 1

2π
lim
εÑ0

¨
˚̋
ż

l`

q1 pyq
ˆ
K0

ˆ
k

2
|x` ε ¨ n̄´ y|

˙
´K0

ˆ
k

2
|x´ ε ¨ n̄´ y|

˙˙
dly

˛
‹‚`

` 1

2π
lim
εÑ0

¨
˚̋
ż

l`

q1 pyq
ˆ
K0

ˆ
k

2
|x ` ε ¨ n̄´ py|

˙
´K0

ˆ
k

2
|x´ ε ¨ n̄´ py|

˙˙
dly

˛
‹‚“ 0. (28)

Из введенных выше обозначений следует, что

I3 pxq “ I3,1 pxq ` I3,2 pxq ,

где I3,1 pxq “ ´ 1

2π

ż

l`

q0 pyqBK0

`
k
2

|x´ y|
˘

Bn̄x
dly, I3,2 pxq “ 1

2π

ş
l`

q0 pyqBK0pk
2

|x´py|q
Bn̄1x

dly.
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Тогда

lim
εÑ0

pI3 px` ε ¨ n̄q ´ I3 px´ ε ¨ n̄qq “

“ lim
εÑ0

pI3,1 px` ε ¨ n̄q ´ I3,1 px´ ε ¨ n̄qq ` lim
εÑ0

pI3,2 px` ε ¨ n̄q ´ I3,2 px´ ε ¨ n̄qq . (29)

Как известно (см. [14]), при z ą 0 для функций Макдональда справедливы соотношения
Kν´1 pzq ` Kν`1 pzq “ ´2K 1

ν pzq, Kν pzq “ K´ν pzq, где ν – любое действительное число. Сле-
довательно, при z ą 0 K 1

0
pzq “ ´K1 pzq. С учётом последнего равенства получаем, что при

x P l`

I3,1 px˘ ε ¨ n̄q “ ˘ k

4π

|l|ż

0

q0 pt cosα,t sinαqˆ

ˆ
K1

ˆ
k
2

b
pt1 cosα¯ ε sinα´ t cosαq2 ` pt1 sinα ˘ ε cosα ´ t sinαq2

˙

b
pt1 cosα¯ ε sinα ´ t cosαq2 ` pt1 sinα˘ ε cosα´ t sinαq2

ˆ

ˆ pp´ sinαq pt1 cosα ¯ ε sinα ´ t cosαq ` pcosαq pt1 sinα ˘ ε cosα ´ t sinαqq dt “

“ ˘ kε

4π

|l|ż

0

q0 pt cosα,t sinαq
K1

ˆ
k
2

b
pt1 ´ tq2 ` ε2

˙

b
pt1 ´ tq2 ` ε2

dt.

Воспользовавшись леммой 2, получаем, что при x P l`

lim
εÑ0

pI3,1 px` ε ¨ n̄q ´ I3,1 px´ ε ¨ n̄qq “ kε

2π

|l|ż

0

q0 pt cosα,t sinαq
K1

ˆ
k
2

b
pt1 ´ tq2 ` ε2

˙

b
pt1 ´ tq2 ` ε2

dt “

“ q0 pt1 cosα,t1 sinαq “ q0 pxq . (30)

Из гладкости функций Макдональда (см. [14]) следует, что при x P l`

lim
εÑ0

pI3,2 px` ε ¨ n̄q ´ I3,2 px´ ε ¨ n̄qq “ 0. (31)

С учётом (30) и (31) из (29) находим, что при x P l`

lim
εÑ0

pI3 px ` ε ¨ n̄q ´ I3 px ´ ε ¨ n̄qq “ q0 pxq . (32)

Воспользовавшись представлением функции v pxq, а также равенствами (27), (28) и (32)
получаем, что функция v pxq, заданная равенством (19), удовлетворяет условию (8). Доказа-
тельство выполнения условия (9) проводится аналогично.

Лемма доказана.

Вернемся к задаче (1)–(4). С учетом представления (5), леммы 3 а также вида функций
ψ px1q, qj pxq, где j “ 0; 1, получаем теорему 3 о представлении решения задачи (1)–(4).
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Теорема 3. Функция

u pxq “ e´ k
2

px1 cos β`x2 sinβq

¨
˚̊
˝
kx2

2π

8ż

´8

K1

ˆ
k
2

b
py1 ´ x1q2 ` x2

2

˙

b
py1 ´ x1q2 ` x2

2

e
k
2
y1 cos β rψ py1q dy1 ´

´ 1

2π

ż

l`

e
k
2

py1 cos β`y2 sinβqrq1 pyq
ˆ
K0

ˆ
k

2
|x ´ y|

˙
´K0

ˆ
k

2
|x´ py|

˙˙
dly´

´ 1

2π

ż

l`

e
k
2

py1 cos β`y2 sinβqrq0 pyq
˜

BK0

`
k
2

|x´ y|
˘

Bn̄x
´ BK0

`
k
2

|x´ py|
˘

Bn̄1x

¸
dly

˛
‹‚

является решением задачи (1)–(4).
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