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Аннотация. В настоящей работе рассмотрен метод весового решета, содержащий ре-
шето Бруна в сочетании с последними весами Бухштаба и приведено полное решение
задачи по применению этого метода весового решета для получения оценки снизу числа
почти простых чисел в конечной последовательности значений неприводимого полинома
от натурального аргумента. Проблема выбора оптимальных весов в методе весового ре-
шета является очень трудной. Последние веса Бухштаба (1985 г.) позволяют получить
преимущества при выборе параметров в методе весового решета в сравнении с более ран-
ними весами Бухштаба (1967 г.) и их непрерывной формой, полученной Лабордэ (1979 г.),
частным случаем которых являются веса Рихерта (1969 г.).

Для весовой функции в методе весового решета, содержащего решето Бруна в соче-
тании с последними весами Бухштаба, получена оценка сверху (теорема 1).

Доказана теорема 3, в которой получена оценка снизу числа почти простых чисел в
конечной последовательности значений неприводимого полинома от натурального аргу-
мента. Ранее Х.–Э. Рихерт получил оценку снизу с помощью метода решета Сельберга с
весами Рихерта для случая, когда выполнено условие на параметры: αa ď 4, это суще-
ственно ограничивает возможности в выборе параметров a и c в методе весового решета.
Отметим, что применение метода весового решета, содержащего решето Бруна в сочета-
нии с последними весами Бухштаба, является технически сложным, так как сам метод
решета Бруна в чистом виде, то есть без весов, имеет комбинаторную природу и является
технически сложным.
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ON THE WEIGHT SIEVE METHOD CONTAINING THE
BRUN SIEVE IN COMBINATION WITH THE BUCHSTAB

WEIGHT
E. V. Vakhitova, S. R. Vakhitova

Abstract. In the present work, we consider the method of a weighing sieve containing a
sieve Brun in combination with the last weights of Bukhshtab and a complete solution of the
problem is given by applying this weighting method to obtain an estimate from the bottom of
the number p almost prime numbers in finite sequence of values of the non-reducible polynomial
from the natural argument a. The problem of choosing the optimal weights in the weight sieve
method is very difficult. The last weights of Bukhstab (1985) makes it possible to obtain
advantages in choosing of parameters in the weighting method in comparison with the more
early Bukhstab weights (1967) and their continuous form obtained by Laborde (1979), private
case which is the weights of Richert (1969).

For the weight function in the weight method containing a Brun sieve in combinations with
the last weights of Bukhshtab, an estimate from above is obtained (Theorem 1).

We proved Theorem 3, in which we obtain a lower bound for the number of almost prime
numbers l in the final sequence of the values of the non-reducible polynomial from the natural
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argument. Earlier Richert obtained a lower bound was obtained using the Selberg sieve method
with Richert weights for the case when the condition on the parameters is satisfied: αa ď 4, this
significantly limits the possibilities in the choice parameters a and c in the weighting method.
We note that the application of the method of a weights containing a weights of Brun and
in combination with the last weights of Bukhshtab, which is technically complex, so just the
Brun sieve method in its purest form, without weights, it have a combinatorial nature and is
technically complex.

Keywords: sequence, number, sieve, polynomial, estimation.

ВВЕДЕНИЕ

Метод решета в теории чисел разрабатывался с целью решить бинарную проблему Гольд-
баха о представлении четных натуральных чисел, больших 2, суммой двух простых чисел.
Бинарная проблема Гольдбаха до сих пор считается нерешенной. Различные методы решета
успешно применимы для решения ослабленных задач, в которых простые числа заменяются
числами с ограниченным количеством простых делителей. Такие числа называются почти
простыми числами. Современный метод решета внес весомый вклад в теорию чисел. Древ-
нейшим из известных методов решета является метод решета Эратосфена ( 3 век до н.э.) В
дальнейшем метод решета усовершенствовали В. Брун (1918 г.), А. А. Бухштаб (1938 г.) [1],
[2], В. А. Тартаковский (1939 г.) [3], Ю. В. Линник (1941 г.) [4], А. Сельберг (1949 г.) [5], Б.
В. Левин (1963 г.) [6]. Это были методы решета в чистом виде, то есть без применения весов
(коэффициентов).

А. А. Бухштаб разработал комбинаторное весовое решето (1967 г.) [7], [8]. Свой метод ве-
сового решета построил Х. – Э. Рихерт (1967 г.) [9], а М. Лабордэ упростил веса Бухштаба
(1979 г.) [10]. М. Лабордэ получил непрерывную форму весов и показал, что веса Рихерта
являются частным случаем этих весов и заведомо хуже. А. Л. Чекин исследовал метод дву-
мерного весового решета (1987 г.) [11], а Е. В. Вахитова – метод одномерного весового решета
[12].

Позже А. А. Бухштаб разработал еще один метод весового решета и анонсировал новый
тип для частного случая (1985 г.) [13]. Общий вид весов он сообщил в устной форме Е. В.
Вахитовой (1986 г.). В дальнейшем веса Бухштаба (1985 г.) и их приложения были исследо-
ваны в работах Е. В. Вахитовой (до 2010 г.; а с 2011 г. в соавторстве с С. Р. Вахитовой) [14]
– [30]. Отметим, что по методам решета изданы монографии [28]–[34].

Цель данной работы – рассмотреть метод весового решета, содержащий решето Бруна в
сочетании с весами Бухштаба (1985 г.) и представить полное решение задачи по применению
этого метода весового решета для получения оценки снизу числа почти простых чисел в
конечной последовательности значений неприводимого полинома от натурального аргумента.

ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Введем условие для некоторой мультипликативной функции ωpnq, где n P N и ωpnq “ Op1q:
существуют постоянная C 1

2
ě 1 и параметр L ě 1, такие, что

´L ď
ÿ

uďpăv

ωppq
p

ln p´ ln
v

u
ď C 1

2, p1q

где L не зависит от u и v p2 ď u ď vq.
Условие (1) говорит о том, что ωppq, где p – простое число, по крайней мере в среднем

по p, равно 1, иначе, будем рассматривать только те последовательности A, при просеивании
которых возникает задача одномерного решета.
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Лемма 1. Пусть ωpnq – мультипликативная функция, удовлетворяющая условию (1),
p – простое число, ωppq ă p для всех p, z ě 2. Тогда имеет место оценка:

ÿ

păz

ωppq
p

“ ln ln z `B `O

ˆ
L

ln z

˙
,

где B – некоторая постоянная.

Следствие 1.
ÿ

zăpďzh

ωppq
p

“ lnh `O

ˆ
L

ln z

˙
,

ź

zăpďzh

ˆ
1 ´ ωppq

p

˙
“ C

h

ˆ
1 `O

ˆ
L

ln z

˙˙
,

где h ą 1, C – постоянная.
Следствие 2.

ÿ

pďz
p ­ |q

ωppq
p

“ ln ln z `B `O

ˆ
L

ln z

˙
,

ÿ

zăpďzh

p ­ |q

ωppq
p

“ lnh`O

ˆ
L

ln z

˙
,

ź

zăpďzh

p ­ |q

ˆ
1 ´ ωppq

p

˙
“ C1

h

ˆ
1 `O

ˆ
L

ln z

˙˙
,

где h ą 1, q ă z, B, C1 – постоянные.
Следствие 3. При 2 ď u ď v

ÿ

uďpăv

ωppq
p

ď ln
ln v

lnu
` C”2

lnu
.

Доказательство леммы 1 и следствий 1–3 приведено в книге [29] (гл. 1).
Лемма 2. ź

pďz

ˆ
1 ´ 1

p

˙
“ e´γ

ln z

ˆ
1 `O

ˆ
1

ln z

˙˙
,

где z ě 2, γ – постоянная Эйлера, p –простое число.

Доказательство. Введем обозначение: Y :“ ś
pďz

ˆ
1 ´ 1

p

˙
. Применяя основное логариф-

мическое тождество и свойства логарифмов, получим для Y :

Y “ elnY “ exp

ˆ
ln
ź

pďz

ˆ
1 ´ 1

p

˙˙
“ exp

ˆÿ

pďz

ˆ
ln

ˆ
1 ´ 1

p

˙˙˙
.

Преобразуем теперь показатель, разложив lnp1 ´ 1{pq по формуле:

ln p1 ´ xq “ ´x´ x2

2
´ x3

3
´ ..., x ă 1.

При x “ 1{p получим, что

ln

ˆ
1 ´ 1

p

˙
“ ´1

p
´ 1

p2
´ 1

p3
´ ....
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Поэтому будем иметь:

ÿ

pďz

ˆ
ln

ˆ
1 ´ 1

p

˙˙
“

ÿ

pďz

ˆ
´1

p
´ 1

p2
´ 1

p3
´ ...

˙
“ ´

ˆÿ

pďz

1

p
`

ÿ

pďz

ˆ
1

p2
` 1

p3
` ...

˙˙
“

“ ´
ˆÿ

pďz

1

p
`
ÿ

p

ˆ
1

p2
` 1

p3
` ...

˙
´

ÿ

pąz

ˆ
1

p2
` 1

p3
` ...

˙˙
.

Учитывая теперь, что

ÿ

pąz

ˆ
1

p2
` 1

p3
` ...

˙
“ O

ˆÿ

pąz

1

p2

˙
“ O

ˆÿ

nąz

1

n2

˙
“ O

ˆ
1

z

˙
,

получим:
ÿ

pďz

ˆ
ln

ˆ
1 ´ 1

p

˙˙
“ ´

ˆÿ

pďz

1

p
`
ÿ

p

ˆ
1

p2
` 1

p3
` ...

˙˙
`O

ˆ
1

z

˙
.

Применим теперь оценку из леммы 1:

ÿ

pďz

1

p
“ ln ln z `B `O

ˆ
1

z

˙
.

Учитывая, что

O

ˆ
1

z

˙
`O

ˆ
1

ln z

˙
“ O

ˆ
1

ln z

˙
,

получим:

ÿ

pďz

ˆ
ln

ˆ
1 ´ 1

p

˙˙
“ ´

ˆ
ln ln z `B `

ÿ

p

ˆ
1

p2
` 1

p3
` ...

˙˙
`O

ˆ
1

ln z

˙
.

Следовательно,

Y “ exp

ˆÿ

pďz

ˆ
ln

ˆ
1 ´ 1

p

˙˙˙
“ exp p´ ln ln zqˆ

ˆ exp

ˆ
´
ˆ
B `

ÿ

p

ˆ
1

p2
` 1

p3
` ...

˙˙˙
¨ exp

ˆ
O

ˆ
1

ln z

˙˙
.

Но

exp p´ ln ln zq “ exp plnpln zq´1q “ pln zq´1 “ 1

ln z
.

Далее, запись вида f “ Opgq означает, что существует постоянная C ą 0, такая, что p|f | ď
C |g|q. Кроме того, имеет место разложение:

ex “ 1 ` x

1 !
` x2

2 !
` ...,

отсюда при x “ 1{ ln z получим разложение:

e
1

z “ 1 ` 1

ln z
` 1

2 ! ln2 z
` ... “ 1 ` 1

ln z
`O

ˆ
1

ln z

˙
“ 1 `O

ˆ
1

ln z

˙
,

поэтому

exp

ˆ
O

ˆ
1

ln z

˙˙
“ 1 `O

ˆ
1

ln z

˙
.
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Заметим еще, что постоянная B оценки из леммы 1 и постоянная Эйлера γ связаны между
собой следующим равенством ([35], с. 35):

B “ γ `
ÿ

p

ˆ
ln

ˆ
1 ´ 1

p

˙
` 1

p

˙
,

а отсюда получим, что

γ “ B ´
ÿ

p

ˆ
ln

ˆ
1 ´ 1

p

˙
` 1

p

˙
“ B `

ÿ

p

ˆ
1

p2
` 1

p3
` ...

˙
.

Таким образом, получим окончательно для Y :

Y “ 1

ln z
¨ e´γ ¨

ˆ
1 `O

ˆ
1

ln z

˙˙
.

Лемма 2 доказана.
Определим последовательность A следующим образом:

A :“ tΦpnq| n ď xu, p2q

где x P R, x ą 1, Φpnq – неприводимый полином натуральной степени g с целыми коэффици-
ентами,

Ad :“ tΦpnq| Φpnq P A, Φpnq ” 0 pmod dqu, p3q

где d – свободно от квадратов, то есть µpdq ‰ 0 (µpnq – функция Мебиуса, n P N),

µpnq “

$
’&
’%

1, если n “ 1,

p´1qs, если n “ p1p2...ps,

0, если n
...p2,

d,s P N, p1,p2,...,ps – попарно различные положительные простые числа, p – положительное
простое число.
Число элементов последовательности Ad обозначим через |Ad|. При d “ 1 получим, что |A1| “
|A|. Число элементов последовательности Ad, не имеющих простых делителей, меньших z,

обозначим через SpAd; zq :

SpAd; zq :“
ˇ̌
ˇ̌tΦpnq P Ad| pn ě zu

ˇ̌
ˇ̌, p4q

где pn – наименьший простой делитель Φpnq.
Приведем оценки снизу и сверху величины SpAd; zq. Оценки такого типа ранее были полу-
чены А. А. Бухштабом в работе [7] (теоремы В, Г) для случая, когда последовательность
представляет собой последовательность чисел вида p` 2 (p – простое число, p ‰ 2). Исполь-
зуя метод решета Бруна, рассмотренный в работе [36], получим для рассматриваемой нами
последовательности A теоремы, которые являются аналогами и будут затем применены для
получения оценки снизу числа почти простых чисел в полиномиальной последовательности.

Обозначим через ρpdq число различных по модулю d решений сравнения Φpnq ” 0pmod dq.
Относительно функции ρ известно, что она мультипликативна, поэтому ρpdq “ ś

p|d ρppq, где
µpdq ‰ 0. Кроме того, по теореме Лагранжа ρpdq ď g или ρppq “ p. Предположим, что Φpnq
не имеет фиксированных простых делителей, то есть ρppq ă p для всех p. Пусть, далее, X –
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приближение к |A|, ωpdq
d
X – приближение к |Ad|, где ωpdq – некоторая мультипликативная

функция, |RpX,dq| :“ | |Ad| ´ ωpdq
d
X|. Тогда

|Ad| “
ÿ

1ďnďx
Φpnq”0 pmod dq

1 “
ÿ

1ďmďd
Φpmq”0 pmod dq

ÿ

1ďnďx
n”m pmod dq

1 “

“
ÿ

1ďmďd
Φpmq”0 pmod dq

´x
d

` θ
¯

“ ρpdq
´x
d

` θ
¯
, |θ| ď 1.

Следовательно, выберем X “ x, ωpdq “ ρpdq. Поэтому |RpX,dq| “ |θρpdq| “ |θ|ρpdq ď ωpdq.
Теорема A.

S

˜
Aq;

ˆ
xνg

q

˙1{α1
¸

ą ρpqq
q
Kλpα1q x

lnxνg ´ ln q
´ x1´ε,

где

K :“ ē γ

2

ź

p ă
´
xνg

q

¯
1{α1

1 ´ pρppq{pq
1 ´ p1{pq

ź

p|q

ˆ
1 ` 1

p´ 1

˙
, p5q

λpα1q “ α1t1 ´ lnh0 ´ 5

24
h0 ln

4 h0 ´ e2pe2 ´ 5qh2
0
ln6 h0

8p4 ´ e2h0 ln
2 h0q

u,

0 ă ν ă 1, 1 ă h ă h0 ă e, α1 “ h ` 1

h ´ 1
ě 3, q ă xνg; ε ą 0; νg “ 1 ´ ε.

Следствие. ÿ

nďx

pněx1{α1

1 ą K0λpα1q x

ln x
´ x1´ε,

где

K0 :“
e´γ

2

ź

păx1{α1

1 ´ ρppq
p

1 ´ 1

p

. p6q

Теорема B.

S

˜
Aq;

ˆ
xνg

q

˙1{α1
¸

ă ρpqq
q
KΛpα1q x

lnxνg ´ ln q
` x1´ε,

где K определено равенством (5),

Λpα1q :“ α1
"
1 ` lnh0 ` 5

24
h0 ln

4 h0 ` e2pe2 ´ 5qh2
0
ln6 h0

8p4 ´ e2h0 ln
2 h0q

*
,

0 ă ν ă 1, 1 ă h ă h0 ă e, α1 “ h ` 1

h ´ 1
ě 3, q ă xνg, ε ą 0, νg ď 1 ´ ε.

Теорема C. Пусть 1 ă µ ď β ď δ, 0 ă ν ă 1, K0 определено равенством (6). Тогда

Y1 :“
ÿ

xνg{β ď p ă xνg{µ
S
´
Ap;x

νg{δ
¯

ď K0δ

νg

x

lnx

δp1´1{βqż

δp1´1{µq

Λpzqdz
zpδ ´ zq `O

ˆ
x

ln3{2 x

˙
.
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Следствие. Пусть 1 ă µ ď β ď δ, K0 определено равенством (6). Тогда

ÿ

x1{β ď p ă x1{µ
S

ˆ
Ap;x

1{δ
˙

ď K0

δx

lnx

δp1´ 1

β
qż

δp1´ 1

µ
q

Λpzq
zpδ ´ zqdz `O

ˆ
x

ln3{2 x

˙
.

Теорема D. Пусть 1 ă µ ď β, 0 ă ν ă 1,K0 определено равенством (6) Тогда

Y2 :“
ÿ

xνg{β ď p ă xνg{µ
SpAp; pq ď K0

x

νg lnx

β´1ż

µ´1

Λpzqdz
z

`O

ˆ
x

ln3{2 x

˙
.

Следствие. Пусть 1 ă µ ď β, K0 определено равенством (6). Тогда

ÿ

x1{β ď p ă x1{µ
SpAp; pq ď K0

x

lnx

β´1ż

µ´1

Λpzqdz
z

`O

ˆ
x

ln3{2 x

˙
.

Теорема E. Пусть 1 ă µ ď δ, 0 ă ν ă 1,K0 определено равенством (6) Тогда

Y3 :“
ÿ

xνg{β ď p ă xνg{µ
S

ˆ
Ap;

ˆ
xνg

p

˙
1{δ˙

ď K0Λpδq x

νg lnx

β´1ż

µ´1

dz

z
`O

ˆ
x

ln3{2 x

˙
.

Следствие. Пусть 1 ă µ ď β ď δ, K0 определено равенством (6). Тогда

ÿ

x1{βďpăx1{µ

S

˜
Ap;

ˆ
x

p

˙ 1

δ

¸
ď K0Λpδq x

ln x

β´1ż

µ´1

dz

z
`O

ˆ
x

ln3{2 x

˙
.

Доказательство теорем A, B, C, D, E приведено в книге [29] (гл. 6).

ОЦЕНКА СВЕРХУ ДЛЯ ВЕСОВОЙ ФУНКЦИИ

Рассмотрим разность T0pXq :

T0pXq :“ S
´
A;X

1

a

¯
´ T pXq,

где a P R,

S
´
A;X

1

a

¯
:“

ˇ̌
ˇ̌tan P A| pn ě X

1

a u
ˇ̌
ˇ̌, T pXq “

ˇ̌
ˇ̌tan P A| νpanq ą ru

ˇ̌
ˇ̌,

νpanq – число простых делителей числа an. Если T0pXq ą 0, то последовательность A со-
держит числа, имеющие самое большее r простых делителей (r P N, r ě 2q. Выберем веса
Бухштаба (1985 г.), весовая функция T pXq определена равенством:

T pXq :“ 1

2

ÿ

X
1
a ďpăX

1

g1 p1´ 1
a q

S
´
Ap;X

1

a

¯
` 1

2c ´ b´ 1

"
pc ´ bq

ÿ

X
1

g1 p1´ 1
a q

ďpăX1´
g1
a

S
´
Ap;X

1

a

¯
`

`
ÿ

X1´ g1
a ďpăX

c
a

ˆ
c´ a

ln p

lnX

˙
S
´
Ap;X

1

a

¯
` a

pg1´1qa`1

ag12ż

1

a

ˆ ÿ

X
1

g1 p1´ 1
a qďpăX1´g1z

S pAp;X
zq
˙
dz`
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`
ÿ

X
1
a ďpăX

1

g1 p1´ 1
a q

ˆ
b` 1

2
´ a

ln p

lnX

˙
S

˜
Ap;

ˆ
X

p

˙ 1

g1

¸
`

` 1

g1
ÿ

X
1

g1 p1´ 1
a qďpăX1´

g1
a

ˆ
g1b´ a ` g1 ´ pg1 ´ 1qa ln p

lnX

˙
ˆ S

˜
Ap;

ˆ
X

p

˙ 1

g1

¸*
, p7q

a,b,c,g1 P R, 1 ď b ď c ď a, 2c ´ b ´ 1 ą 0, 1 ď g1 ď a´ 1,

Получим оценку сверху для T pXq. Для этого введем несколько условий, которым должны
удовлетворять величины, непосредственно связанные с последовательностью A.

1. Существует постоянная M, такая, что для всех элементов an из последовательности A

|an| ď XM . p8q

2. Существует постоянная C 1
1

ě 1, такая, что

1 ď
ˆ
1 ´ ωppq

p

˙´1

ď C 1
1 p9q

для любого простого числа p, где ωppq – такое, что pωpdq{dqX является приближением |Ad|,
µpdq ‰ 0.

3. Существуют постоянная C 1
2

ě 1 и параметр L, такие, что

´L ď
ÿ

vďpăw

ωppq
p

ln p´ ln
w

v
ď C 1

2 p10q

где L ě 1 и не зависит от v и w p2 ď v ď wq.
4. Существуют постоянные α p0 ă α ď 1q, C 1

3
ě 1, C0 ě 1, такие, что

ÿ

d ă Xα

ln
C0 X

µ2pdq3νpdq|RpX,dq| ď C 1
3

X

lnC X
, p11q

где X ě 2, C 1
3

“ C 1
3
pCq, νpdq – число различных простых делителей числа d,

RpX,dq :“ |Ad| ´ ωpdq
d

X.

5. Существуют постоянная C 1
4

ě 1, такая, что

ÿ

zďpăy

ÿ

anPA
an”0 pmod p2q

1 ď C 1
4

ˆ
X lnX

z
` y

˙
, p12q

если 2 ď z ď y ď X.

Теорема 1. Пусть T pXq определено равенством (7). Тогда

T pXq ď aK0Hpα,a,b,c,g1q X

lnX

при X ě X0, где K0 определено равенством (6), Hpα,a,b,c,g1q – равенством:

Hpα,a,b,c,g1q :“ 1

2

αa´1ż

pg1´1qαa`1

g1

Λpzqdz
zpαa ´ zq ` 1

2c ´ b ´ 1

"
pc ´ bq

pg1´1qαa`1

g1ż

g1

Λpzqdz
zpαa ´ zq`
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`
αaż

g12αa
pg1´1qαa`1

dv

v

pg1´1qαa`1

g1αa
vż

g1

Λpzqdz
zpv ´ zq `

g1ż

αa´c

Λpzqc ´ αa` z

zpαa ´ zq dz`

` 1

2αa

αa´1ż

pg1´1qαa`1

αa´1

Λpg1qpb ` 1qz ´ ppg1 ´ 1qαa ´ b´ 1q
zp1 ` zq dz`

` 1

αa

pg1´1qαa`1

αa´1ż

g1

αa´g1

Λpg1q
pb ` 1 ´ αa

g1 qz ` b` 1 ´ αa

zp1 ` zq dz

*
. p13q

Доказательство. Преобразуем отдельно слагаемые суммы T pXq, определенной равен-
ством (7), применяя следствия из теорем C, D, E.

1q S1pXq :“ 1

2

ÿ

X
1
a ďpăX

1

g1 p1´ 1
a q

S
´
Ap;X

1

a

¯
ď 1

2
K0a

X

lnX

a
´
1´ 1

a

¯

ż

a
´
1´ a´1

g1a

¯

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
“

“ 1

2
K0

aX

lnX

a´1ż

pg1´1qa`1

g1

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
ď K0

a

2

X

lnX

αa´1ż

pg1´1qαa`1

g1

Λpzqdz
zpαa ´ zq `O

ˆ
X

ln3{2X

˙
,

p0 ă α ď 1q ùñ αa ´ 1 ď a´ 1, pg1 ´ 1qαa ` 1 ď 2a ` 1.

Таким образом,

S1pXq ď K0

a

2

X

lnX

αa´1ż

pg1´1qαa`1

g1

Λpzqdz
zpαa ´ zq `O

ˆ
X

ln3{2X

˙
. p14q

2q S2pXq :“ pc ´ bq
ÿ

X
1

g1 p1´ 1
a qďpăX1´

g1
a

S
´
Ap;X

1

a

¯
ď

ď apc ´ bqK0

X

lnX

a
´
1´ a´1

g1a

¯

ż

a

ˆ
1´1` g1

a

˙

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
“

“ K0pc ´ bqa X

lnX

pg1´1qa`1

g1ż

g1

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
ď

ď apc´ bqK0

X

lnX

pg1´1qαa`1

g1ż

g1

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
.
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Следовательно,

S2pXq ď apc ´ bqK0

X

lnX

pg1´1qαa`1

g1ż

g1

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
. p15q

3q S3pXq :“ a

pg1´1qa`1

g12aż

1

a

ˆ ÿ

X
1

g1 p1´ 1
a q

ďpăX1´g1z

S pAp;X
zq
˙
dz ď

ď a

pg1´1qa`1

g12aż

1

a

"
K0

1

z

X

lnX

1

z

´
1 ´ a´1

g1a

¯

ż

1

z
p1 ´ 1 ` g1zq

Λpsqds
sp1

z
´ sq `O

ˆ
X

ln3{2X

˙*
dz “

ď a

pg1´1qa`1

g12aż

1

a

"
K0

1

z

X

lnX

1

z
pg1´1qa`1

g1aż

g1

Λpsqds
sp1

z
´ sq

*
dz `

pg1´1qa`1

g12aż

1

a

O

ˆ
X

ln3{2X

˙
dz “

“ aK0

X

lnX

pg1´1qa`1

g12aż

1

a

dz

z

pg1´1qa`1

g1azż

g1

Λpsdsq
sp1

z
´ sq

`O

ˆ
pg1´1qa`1

g12aż

1

a

Xdz

ln3{2X

˙
.

Поэтому после замены 1{z “ v, s “ z получим

S3pXq ď aK0

X

lnX

αaż

g12αa
pg1´1qαa`1

dv

v

pg1´1qαa`1

g1αa
vż

g1

Λpzqdz
zpv ´ zq `O

ˆ
X

ln3{2X

˙
. p16q

4q S4pXq :“
ÿ

X1´
g1
a ďpăX

c
a

ˆ
c´ a

ln p

lnX

˙
S
´
Ap;X

1

a

¯
ď

ď
ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯ ÿ

X
s
ak ďpăX

s`1

ak

S
´
Ap;X

1

a

¯
ď

ď
ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯"
K0a

X

lnX

ap1´ s
ak qż

a
´
1´ s`1

ak

¯

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙*
“

“
ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯
K0

aX

lnX

a´ s
kż

a´ s`1

k

Λpzqdz
zpa ´ zq `

ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯
O

ˆ
X

ln3{2X

˙
“
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“ K0a
X

lnX

ÿ

a´g1ď s
k

ăc

´
c ´ s

k

¯ a´ s
kż

a´ s`1

k

Λpzqdz
zpa ´ zq `O

˜
X

ln3{2X

ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯¸
“

“ K0a
X

lnX

ÿ

a´g1ď s
k

ăc

´
c´ s

k

¯ a´ s
kż

a´ s
k

´ 1

k

Λpzqdz
zpa ´ zq `O

ˆ
X

ln3{2X

˙
ď

ď K0

aX

lnX

ÿ

a´g1ď s
k

ăc

´
c ´ s

k

¯
¨ Λ

´
a ´ s

k

¯ 1 ¨ 1

k`
a´ s

k
´ 1

k

˘ `
s
k

` 1

k

˘ `O

ˆ
X

ln3{2X

˙
ď

ď K0

aX

lnX

" cż

a´g1

pc ´ vqΛpa ´ vq dv

vpa ´ vq ` ε1

5

*
`O

ˆ
X

ln3{2X

˙
“

“ K0

aX

lnX

"a´cż

g1

pc ´ a` zqΛpzq ´dz
pa ´ zqz ` ε1

5

*
`O

ˆ
X

ln3{2X

˙
,

где ε1 “ pε{2aqp2c ´ b´ 1q.
Таким образом,

S4pXq ď K0

aX

lnX

" g1ż

αa´c

Λpzqc ´ αa ` z

zpαa ´ zq dz ` ε1

5

*
`O

ˆ
X

ln3{2X

˙
. p17q

5q S5pXq :“
ÿ

X
1
a ďpăX

1

g1 p1´ 1
a q

ˆ
b` 1

2
´ a

ln p

lnX

˙
S

˜
Ap;

ˆ
X

p

˙ 1

g1

¸
ď

ď
ÿ

1ď s
k

ď 1

g1 p1´ 1

a
qa

ˆ
b` 1

2
´ 1

k

˙ ÿ

X
1

ka ďpăX
s`1

ka

S

˜
Ap;

ˆ
X

p

˙ 1

g1

¸
ď

ď
ÿ

1ď s
k

ď 1

g1 p1´ 1

a
qa

ˆ
b ` 1

2
´ s

k

˙
ˆ
#
K0Λpg1q X

lnX

ka
s

´1ż

ka
s`1

´1

dz

z
`O

ˆ
X

ln3{2X

˙+
“

“
ÿ

1ď s
k

ď 1

g1 p1´ 1

a
qa

ˆ
b ` 1

2
´ s

k

˙
ˆ
#
K0Λpg1q X

lnX

a
s
k

´1

ż

a
s
k

` 1

k

´1

dz

z
`O

ˆ
X

ln3{2X

˙+
ď

ď K0Λpg1q X

lnX

ÿ

1ď s
k

ď 1

g1 p1´ 1

a
qa

ˆ
b` 1

2
´ s

k

˙
ˆ

ˆ 1
a

s
k

` 1

k

´ 1
¨

a

k
s

k

ˆ
s

k
` 1

k

˙ `O

ˆ
X

ln3{2X

˙
ď K0Λpg1q X

lnX
ˆ
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ˆ
# 1

3
p1 ´ 1

a
qaż

1

a

ˆ
b ` 1

2
´ v

˙
1

a
v

´ 1

dv

v2
` aε1

5

+
`O

ˆ
X

ln3{2X

˙
.

Пусть
a

v
´ 1 “ z, dz “ ´ a

v2
dv, dv “ ´v2

a
dz, v “ a

z ` 1
,

b` 1

2
´ v “ b` 1

2
´ a

z ` 1
“ pb ` 1q z ` b` 1 ´ 2a

2 pz ` 1q “

“ ppb ` 1q{2q z ´ pa ´ pb ` 1q{2q
z ` 1

,

S5pXq ď K0

Λpg1qX
lnX

# 3
a

a´1
´1ż

a´1

a
z b`1

2
´
`
a´ b`1

2

˘

z ` 1

1

z

´v2dz
av2

` aε1

5

+
`O

ˆ
X

ln3{2X

˙
“

“ K0

X

lnX

#
1

2

a´1ż

pg1´1qa`1

a´1

pb` 1qz ´ p2a ´ b´ 1q
zp1 ` zq dz ` aε1

5

+
`O

ˆ
X

ln3{2X

˙
.

Следовательно,

S5pXq ď K0

X

lnX

#
1

2

αa´1ż

pg1´1qαa`1

αa´1

pb ` 1qz ´ p2αa ´ b´ 1q
zp1 ` zq dz ` aε1

5

+
`O

ˆ
X

ln3{2X

˙
. p18q

6q S6pXq :“
ÿ

X
1

g1 p1´ 1
a q

ďpăX1´
g1
a

1

g1

ˆ
g1b´ a` g1 ´ pg1 ´ 1qa ln p

lnX

˙
ˆ

ˆS
˜
Ap;

ˆ
X

p

˙ 1

g1

¸
ď 1

g1
ÿ

1

g1 p1´ 1

a
qaď s

k
ďp1´ g1

a
qa

´
g1b´ a` g1 ´ pg1 ´ 1q s

k

¯
ˆ

ˆ
ÿ

X
s
ka ďpăX

s`1

ka

S

˜
Ap;

ˆ
X

p

˙ 1

g1

¸
ď 1

g1
ÿ

1

g1 pa´1qď s
k

ďpa´g1q

´
g1b´ a ` g1 ´ pg1 ´ 1q s

k

¯
ˆ

ˆ
#
K0Λpg1q X

lnX

ka
s

´1ż

ka
s`1

´1

dz

z
`O

ˆ
X

ln3{2X

˙+
“

“ 1

g1
ÿ

1

g1 pa´1qď s
k

ďpa´g1q

´
g1b´ a` g1 ´ pg1 ´ 1q s

k

¯
ˆ

ˆ
#
K0Λpg1q X

lnX

a
s
k

´1

ż

a
s
k

` 1

k

´1

dz

z
`O

ˆ
X

ln3{2X

˙+
ď
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ď 1

g1K0Λpg1q X

lnX

ÿ

a´1

g1 ď s
k

ďa´g1

´
g1b´ a` g1 ´ pg1 ´ 1q s

k

¯
ˆ

ˆ 1
a

s
k

` 1

k

´ 1

a

k
s

k

ˆ
s

k
` 1

k

˙ `O

ˆ
X

ln3{2X

˙
ď

ď 1

g1K0Λpg1q X

lnX

# a´g1ż

a´1

g1

apg1b´ a` g1 ´ pg1 ´ 1qvq 1
a
v

´ 1

dv

v2
` aε1

5

+
`O

ˆ
X

ln3{2X

˙
“

“ K0Λpg1q X

g1 lnX

# a
a´g1 ´1ż

g1a
a´1

´1

a

ˆ
g1b ´ a ` g1 ´ 2a

z ` 1

˙
1

z

´v2dz
av2

` aε1

5

+
`O

ˆ
X

ln3{2X

˙
“

“ K0Λpg1q X

g1 lnX

#
g1

pg1´1qa`1

a´1ż

g1

a´g1

´
b` 1 ´ a

g1

¯
z ` b` 1 ´ a

zp1 ` zq dz ` aε1

5

+
`O

ˆ
X

ln3{2X

˙
.

Таким образом,

S6pXq ď K0Λpg1q X

lnX

# pg1´1qαa`1

αa´1ż

g1

αa´g1

´
pb` 1q ´ αa

g1

¯
z ` b ` 1 ´ αa

zp1 ` zq dz` aε1

5

+
`O

ˆ
X

ln3{2X

˙
. p19q

Следовательно, получим из (14) – (19) для T pXq :

T pXq ď 1

2
K0

aX

lnX

αa´1ż

pg1´1qαa`1

g1

Λpzqdz
zpαa ´ zq `O

ˆ
X

ln3{2X

˙
`

` 1

2c ´ b´ 1

#
apc ´ bqK0

X

lnX

pg1´1qαa`1

g1ż

g1

Λpzqdz
zpαa ´ zq `O

ˆ
X

ln3{2X

˙
`

`aK0

X

lnX

αaż

g12αa
pg1´1qαa`1

dv

v

pg1´1qαa`1

g1αa
vż

g1

Λpzqdz
zpv ´ zq `O

ˆ
X

ln3{2X

˙
`

`aK0

X

lnX

" g1ż

αa´c

Λpzqc ´ αa ` z

zpαa ´ zq dz ` ε1

5

*
`O

ˆ
X

ln3{2X

˙
`
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`aK0

X

lnX

#
1

2αa

αa´1ż

pg1´1qαa`1

αa´1

Λpg1qpb ` 1qz ´ p2αa ´ b´ 1q
zp1 ` zq dz ` ε1

5

+
`O

ˆ
X

ln3{2X

˙
`

`aK0

X

lnX

#
1

αa

pg1´1qαa`1

αa´1ż

g1

αa´g1

Λpg1q

´
pb` 1q ´ αa

g1

¯
z ´ pαa ´ b ´ 1q

zp1 ` zq dz`

`aε1

5

+
`O

ˆ
X

ln3{2X

˙+
“ K0

aX

lnX
ˆ

ˆ
#
1

2

αa´1ż

pg1´1qαa`1

g1

Λpzqdz
zpαa ´ zq ` 1

2c ´ b ´ 1

"
pc ´ bq

2αa`1

g1ż

g1

Λpzqdz
zpαa ´ zq`

`
αaż

g12αa
pg1´1qαa`1

dv

v

pg1´1qαa`1

g1αa
vż

g1

Λpzqdz
zpv ´ zq `

g1ż

αa´c

Λpzqc ´ αa` z

zpαa ´ zq dz`

` 1

2αa

αa´1ż

pg1´1qαa`1

αa´1

Λpg1qpb ` 1qz ´ p2αa ´ b´ 1q
zp1 ` zq dz`

` 1

αa

pg1´1qαa`1

αa´1ż

g1

αa´g1

Λpg1q

´
pb` 1q ´ αa

g1

¯
z ´ pαa ´ b´ 1q

zp1 ` zq dz

*+
`

`K0 a
X

lnX

1

2c ´ b´ 1

3ε1

5
`O

ˆ
X

ln3{2X

˙
.

Учитывая теперь равенство (13), получим:

K0 a
X

lnX

ˆ
Hpα,a,b,c,g1q ` 3ε

10a
´ ε

˙
`O

ˆ
X

ln3{2X

˙
ď

ď aK0

X

lnX
Hpα,a,b,c,g1q при X ě X0.

Теорема 1 доказана.

ОЦЕНКА СНИЗУ ЧИСЛА ПОЧТИ ПРОСТЫХ ЧИСЕЛ
В ПОЛИНОМИАЛЬНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Теорема 2. Пусть T pXq определено равенством (7), T0pXq – равенством: T0pXq :“
SpA;X1{aq ´ T pXq. Тогда

T0pXq ě aK0

ˆ
λpαaq
αa

´Hpα,a,b,c,g1q
˙

X

lnX
p20q
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при X ě X0, где K0 определено равенством (6), Hpα,a,b,c,g1q – равенством (13).

Доказательство. Применим для T0pXq оценку снизу из следствия теоремы A и теорему 1
при α1 “ αa:

T0pXq “ S
´
A;X

1

a

¯
´ T pXq ě K0λpαaq X

lnX
´X1´ε´

´aK0Hpα,a,b,c,g1q X

lnX
“ K0

X

lnX

`
λpαaq ´ aHpα,a,b,c,g1q

˘
´X1´ε.

Следовательно, при X ě X0

T0pXq ě aK0

ˆ
λpαaq
αa

´Hpα,a,b,c,g1q
˙

X

lnX
.

Теорема 2 доказана.
Теорема 3. Пусть последовательность A определена условием (2), выполнены условия

(8) – (12) и пусть a, b, c – действительные числа, причем, 1 ď b ă c ă αa, g1 ` 1 ď αa ď
2g1 ` 2, αa´ c ď g1, pr ` 1qc´Ma “ 2c´ b´ 1, 2c´ b´ 1 ą 0. Тогда при x ě x0 имеет место
оценка:

ÿ

prPA
1 ě aK0

ˆ
λpαaq
αa

´Hpα,a, b,c,g1q
˙

x

lnx
, p21q

где Hpα,a, b,c,g1q определено равенством (13), K0 – равенством (6).

Доказательство. Применим неравенство (20) из теоремы 2, получим

ÿ

prPA
1 ě T0pXq ´R ě aK0

ˆ
λpαaq
αa

´Hpα,a,b,c,g1q
˙

X

lnX
´R,

где R – число элементов последовательности A, делящихся на квадрат простого числа из
интервала rX1{a,Xc{aq.

Оценим R, учитывая условие (12):

R ď
ÿ

X1{aďpăXc{a

ÿ

anPA
an”0 pmod p2q

1 ď A4

ˆ
X lnX

X1{a `Xc{a
˙

ď K0X
C 1

lnX
.

Таким образом, при X “ x, x ě x0, x0 “ x0pΦq получим оценку снизу (21).
Теорема 3 доказана.

ЗАКЛЮЧЕНИЕ

В данной работе рассмотрен метод весового решета, содержащий решето Бруна в соче-
тании с весами Бухштаба и приведено полное решение задачи по применению этого метода
весового решета для получения оценки снизу числа почти простых чисел в конечной после-
довательности значений неприводимого полинома от натурального аргумента.

Получена оценка сверху для весовой функции в методе весового решета с последними
весами Бухштаба (теорема 1). Доказана теорема 3, дающая оценку снизу числа почти простых
чисел в конечной последовательности значений неприводимого полинома от натурального
аргумента.

В работе [31] (теорема 9.1) получена оценка снизу с помощью метода решета Сельберга
с весами Рихерта для случая, когда выполнено условие на параметры: αa ď 4, это суще-
ственно ограничивает возможности в выборе параметров a и c в методе весового решета. В
работе [7] получена оценка снизу с помощью метода решета Бруна с весами Бухштаба (1967
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г.). Проблема выбора оптимальных весов в методе весового решета является очень трудной
проблемой.

Веса Бухштаба (1985 г.) позволяют получить преимущества при выборе параметров в ме-
тоде весового решета в сравнении с более ранними весами Бухштаба (1967 г.), их непрерывной
формой, полученной Лабордэ, частным случаем которых являются веса Рихерта. Отметим,
что применение метода весового решета, содержащего решето Бруна в сочетании с послед-
ними весами Бухштаба является технически сложным, так как сам метод решета Бруна в
чистом виде, то есть без весов, имеет комбинаторную природу и является технически слож-
ным.
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