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Аннотация. В статье рассматривается краевая задача для одного нелинейного обык-
новенного дифференциального уравнения четвертого порядка с симметричными гранич-
ными условиями. С помощью функции Грина краевая задача редуцируется к эквивалент-
ному интегральному уравнению. Далее, опираясь на соответствующие свойства функции
Грина, используя теорему Красносельского о растяжении (сжатии) конуса в полуупоря-
доченных пространствах, доказывается существование хотя бы одного положительного
решения рассматриваемой задачи. Единственность положительного решения установле-
на в частном случае.

Ключевые слова: краевая задача, положительное решение, функция Грина, сжатие
и растяжение конуса.

ON THE EXISTENCE AND UNIQUENESS OF A POSITIVE
SOLUTION TO A BOUNDARY VALUE PROBLEM FOR ONE
FOURTH ORDER NONLINEAR ORDINARY DIFFERENTIAL

EQUATION WITH SYMMETRICAL BOUNDARY
CONDITIONS

G. E. Abduragimov

Abstract. The article considers a boundary value problem for a nonlinear ordinary
differential equation of the fourth order with symmetric boundary conditions. Using the Green
function, the boundary value problem is reduced to an equivalent integral equation. Further,
relying on the corresponding properties of the Green function, using Krasnosel’skii’s theorem
on the expansion (compression) of a cone in semi-ordered spaces, the existence of at least one
positive solution to the problem under consideration is proved. The uniqueness of a positive
solution is established in a particular case.
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ВВЕДЕНИЕ

Краевые задачи для нелинейных обыкновенных дифференциальных уравнений (ОДУ)
четвертого порядка возникают в математических моделях многих реальных процессов. В
строительной механике уравнения четвертого порядка встречаются, например, в задачах об
изгибе балки на упругом основании, колебании балок постоянного и переменного сечения, а
также в теории цилиндрических оболочек. Граничные задачи для нелинейных ОДУ четвер-
того поряка в различных постановках изучались многие десятилетия и актуальны по насто-
ящее время. Из актуальных работ, посвященных положительным решениям краевых задач
для нелинейных ОДУ четвертого порядка и близких к тематике данной статьи, отметим
публикации [1-4].

В предлагаемой статье получены достаточные условия существования и единственности
положительного решения двухточечной краевой задачи для одного нелинейного ОДУ чет-
вертого порядка с симметричными граничными условиями. Доказательство существования
положительного решения основано на теореме Красносельского о растяжении (сжатии) ко-
нуса в полуупорядоченных пространствах. Единственность же такого решения установлена
только в подлинейном частном случае.

Для удобства чтения текст работы после введения разбит на три части: вначале приводят-
ся необходимые обозначения, определения и вспомогательные устверждения, далее – теоремы
существования и единственности и в заключении предложены примеры, иллюстрирующие
полученные результаты.

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ И ОБОЗНАЧЕНИЯ

Приведем некоторые определения, предложения и утверждения, используемые в работе.
Определение 1. [5, с.256] Замкнутое выпуклое множество K банахова пространства E

назовем конусом, если из x P K и x ‰ 0 следует, что αx P K при α ě 0 и αxPK при α ă 0.

Каждый конус K определяет в банаховом пространстве E полуупорядоченность: пишут
x ď y или y ď x, если y ´ x P K.

Определение 2. [5, с.256] Нелинейный оператор A : E Ñ E называется положительным
на множестве M банахова пространства E, если AM Ă K, где K – конус в E.

Пусть заданы множества: Kp0,r1q “ tx P K : }x} ď r1u и Kpr2,8q “ tx P K : }x} ě r2u,
где r1 и r2 – положительные числа. Рассмотрим теперь положительный вполне непрерывный
оператор A, определенный на всем конусе K (кроме, может быть, нулевой точки).

Определение 3. [5, с.362] Пусть существуют такие положительные числа r1 и r2, что
Ax č x при x P Kp0,r1q px ‰ 0q и Ax ć x при x P Kpr2,8q, тогда будем называть оператор
A растяжением конуса K. Аналогично, A является сжатием конуса K, если Ax ć x при
x P Kp0,r1q px ‰ 0q и Ax č x при x P Kpr2,8q.

Теорема 1. [5, с.362] Пусть положительный и вполне непрерывный оператор A вляет-
ся растяжением или сжатием конуса K. Тогда A имеет в конусе по крайней мере одну
ненулевую неподвижную точку.

ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Рассмотрим краевую задачу

xp4qptq “ aptqxptq ` fpt,xptqq, 0 ă t ă 1, (1)

xp0q “ xp1q “ 0, (2)

x2p0q “ x2p1q “ 0, (3)
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где функции aptq и fpt,uq предполагаются неотрицательными и непрерывными соответствен-
но на r0,1s и r0,1s ˆ r0,8q, причем fp¨, 0q ” 0.

Определение 1. Под положительным решением задачи (1)–(3) будем подразумевать
функцию x P C4

r0,1s положительную в интервале p0,1q, удовлетворяющую на указанном ин-

тервале уравнению (1) и граничным условиям (2), (3).
Нетрудно показать, что

Gpt,sq “ 1

6

#
ps´ 1qt3 `

“
ps´ 1q3 ´ ps ´ 1q

‰
t, 0 ď t ď s,

pt´ 1qs3 `
“
pt´ 1q3 ´ pt´ 1q

‰
s, s ď t ď 1,

является функцией Грина оператора
d4

dt4
с краевыми условиями (2), (3), которая, как неслож-

но видеть, положительна в области p0,1q ˆ p0,1q, а на границе Gp0,sq “ Gp1,sq “ 0. Кроме
того, несложно убедиться, что для функции Грина справедливы оценки

1

6
ψpsqψptq ď Gpt,sq ď 1

6
ψptq, pt,sq P r0,1s ˆ r0,1s, (4)

где ψptq “ t´ t2.
Рассмотрим эквивалентное задаче (1)–(3) интегральное уравнение

xptq “
ż

1

0

Gpt,sqrapsqxpsq ` fps,xpsqqs ds, 0 ď t ď 1. (5)

Дважды продифференцировав (5), получим

d2x

dt2
“
ż

1

0

B2Gpt,sq
Bt2 rapsqxpsq ` fps,xpsqqs ds, 0 ď t ď 1, (6)

где
B2Gpt,sq

Bt2 “
#

ps ´ 1qt, 0 ď t ď s,

pt ´ 1qs, s ď t ď 1.

Очевидно, что функция B2Gpt,sq
Bt2 ď 0 на r0,1s ˆ r0,1s, причем в нуль она обращается только

на границе соответствующего квадрата. Тогда из (6) следует, что x2ptq ă 0 при t P p0,1q и
в соответствии с (2) xp0q “ xp1q “ 0. Следовательно, xptq строго выпукла на r0,1s и в силу
симметричности граничных условий (2), (3) справедливо неравенство

xptq ě ϕptq}x}, 0 ď t ď 1, (7)

где }x} “ max0ďtď1 |xptq|, ϕptq “ mintt,1 ´ tu.
Запишем интегральное уравнение (5) в операторной форме

x “ Ax,

где A – оператор действующий на подмножестве неотрицательных функций пространства
Cr0,1s, определенный равенством

Axptq “
ż

1

0

Gpt,sqrapsqxpsq ` fps,xpsqqs ds, 0 ď t ď 1.

Обозначим через K конус неотрицательных, строго выпуклых на отрезке r0,1s функций
u P C4

r0,1s удовлетворяющих условиям (2) и (3). Полуупорядоченность в этом конусе введем
следующим образом: будем считать u ă v, если uptq ď vptq при t P r0,1s.
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Пусть x P K. Как было выше показано B2Gpt,sq
Bt2 ă 0 при t P r0,1s и поэтому

pAxq2ptq “
ż

1

0

B2Gpt,sq
Bt2 fps,xpsqq ds ă 0, 0 ď t ď 1.

Следовательно, при x P K неотрицательная функция u “ Ax строго выпукла и удовле-
творяет условиям (2) и (3). Это означает, что A – положительный оператор на K. Вполне
непрерывность A легко проверятся.

Теорема 2. Предположим, что max0ďtď1 aptq ă 12 и выполнены условия

1. limxÑ0` max0ďtď1

fpt,xq
x

“ 0;

2. limxÑ`8 min0ďtď1

fpt,xq
x

“ 8.

Тогда краевая задача (1)–(3) имеет по крайней мере одно положительное решение.
Доказательство. Покажем, что оператор A растягивает конус K. В дальнейшем для

удобства выкладок введем обозначение ra :“ max0ďtď1 aptq. Из условия 1 теоремы следует
существование числа r ą 0 такого, что

fpt,xq ď µx, t P r0,1s, 0 ă x ď r, (8)

где 0 ă µ ă 12 ´ ra.
В силу (4) и (8) при x P Kp0,rq имеем

Axptq “
ż

1

0

Gpt,sqrapsqxpsq ` fps,xpsqqs ds ď ra` µ

6
ψptq

ż
1

0

xpsq ds ď 1

24
pra ` µq}x}. (9)

Далее, из (7) следует, что xp1
2
q ě 1

2
}x} и соответственно }x} ď 2xp1

2
q. С учетом выбора µ из

(9) окончательно получим

Ax

ˆ
1

2

˙
ă x

ˆ
1

2

˙
.

Следовательно, Ax´ x R K при x P Kp0,rq.
Несложно видеть, что условие 2 теоремы гарантирует существование числа R ą 0, такого

что

fpt,xq ě ηx, t P r0,1s, x ě R, (10)

где η ą 384.
В силу (4) и (10) для x P KpR,8q имеем

Axptq ě η

6
ψptq

ż
1

0

ψpsqxpsq ds ě η

6
ψptq

ż
1

0

ψpsqϕpsq ds ¨ }x} ě η

96
ψptqxptq. (11)

Отсюда, в частности, следует, что Axp1
2

q ě η
384
xp1

2
q. Ввиду выбора η окончательно получим

Ax
`
1

2

˘
ą x

`
1

2

˘
. Следовательно, x´Ax R K при x P KpR,8q.

Таким образом, при разумном выборе r и R положительный вполне непрерывный оператор
A растягивает конус K. Тогда, как следует из теоремы 1, оператор A имеет по меньшей
мере одну неподвижную точку в K, что равносильно существованию по крайней мере одного
положительного решения краевой задачи (1)–(3) Теорема доказана.

Теорема 3. Предположим, что max0ďtď1 aptq ă 12 и выполнены условия

1. limxÑ0` min0ďtď1

fpt,xq
x

“ 8;
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2. limxÑ`8 max0ďtď1

fpt,xq
x

“ 0.

Тогда краевая задача (1)–(3) имеет по крайней мере одно положительное решение.

Доказательство. Докажем, что оператор A сжимает конус K. Условие 1 теоремы гаран-
тирует существование числа r ą 0 такого, что

fpt,xq ě ξx, t P r0,1s, 0 ă x ď r, (12)

где ξ ą 384.
В силу (4) и (12) при x P Kp0,rq, аналогично методу получения (11), будем иметь

Axptq ě ξ

96
ψptqxptq,

откуда вытекает, что Ax
`
1

2

˘
ą x

`
1

2

˘
. Следовательно, x´Ax R K при x P Kp0,rq.

Далее, ввиду условия 2 теоремы найдется число R ą 0 такое, что

fpt,xq ď ζx, t P r0,1s, x ě R, (13)

где 0 ă ζ ă 12 ´ ra.
Опираясь на (4) и (13) при x P KpR,8q, следуя методу получения (9), будем иметь

Axptq ď 1

24
pra ` µq}x}.

Поскольку из (7) следует, что xp1
2

q ě 1

2
}x}, то }x} ď 2xp1

2
q. Окончательно получим

Ax

ˆ
1

2

˙
ă x

ˆ
1

2

˙
.

Следовательно, Ax´ x R K при x P KpR,8q.
Итак, при разумном выборе r и R положительный вполне непрерывный оператор A сжи-

мает конус K. Тогда, как следует из теоремы 1, оператор A имеет по меньшей мере одну
неподвижную точку в K, что равносильно существованию по крайней мере одного положи-
тельного решения краевой задачи (1)–(3) Теорема доказана.

Теорема 4. Предположим, что aptq ” 0, выполнены условия теоремы 3, функция fpt,uq
дифференцируема по u и монотонно убывает по второму аргументу. Тогда краевая задача
(1)–(3) имеет единственное положительное решение.

Доказательство. Допустим, что x1ptq и x2ptq – положительные решения задачи (1)–(3).
Пусть yptq “ x1ptq ´ x2ptq, где yptq удовлетворяет краевой задаче

yp4qptq “ fpt,x1ptqq ´ fpt,x2ptqq, 0 ă t ă 1, (14)

yp0q “ yp1q “ 0, (15)

y2p0q “ y2p1q “ 0, (16)

По формуле конечных приращений Лагранжа имеем

yptqyp4qptq “ yptqrfpt,x1ptqq ´ fpt,x2ptqqs “ yptqf 1
upt,rxptqqpx1ptq ´ x2ptqq “ y2ptqf 1

upt,rxptqq,

где rxptq принимает значения промежуточные между x1ptq и x2ptq. Отсюда в силу монотонно-
сти f

yptqyp4qptq ď 0, t P r0,1s.
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Проинтегрировав выражение слева, получим
ż

1

0

yptqyp4qptq dt “ ´y1ptqy2ptq
ˇ̌
1

0
`
ż

1

0

py2ptqq2 dt “
ż

1

0

ry2ptqs2 dt.

Итак,

0 ď
ż

1

0

ry2ptqs2 dt ď 0.

Таким образом, y2ptq “ 0 для всех t P r0,1s. Отсюда с учетом краевых условий (15), (16)
легко видеть, что задача (14)–(16) имеет только нулевое решение yptq “ 0. Следовательно,
x1ptq “ x2ptq.

ПРИМЕРЫ

Приведем примеры, иллюстрирующие выполнение условий вышеприведенных теорем.
Пример 1. Рассмотрим краевую задачу

x2ptq ` etxptq ` pt2 ` 1qx2ptqp1 ´ e´xptqq “ 0, 0 ă t ă 1, (17)

xp0q “ xp1q “ 0, (18)

x2p0q “ x2p1q “ 0, (19)

где fpt,xq “ pt2 ` 1qx2p1 ´ e´xq.
Имеем

max
0ďtď1

aptq “ max
0ďtď1

et “ e ă 12,

lim
xÑ0`

max
tPr0,1s

fpt,xq
x

“ lim
xÑ0`

2xp1 ´ e´xq “ 0,

lim
xÑ`8

min
tPr0,1s

fpt,xq
x

“ lim
xÑ`8

xp1 ´ e´xq “ 8.

Следовательно, согласно теореме 2 задача (17)–(19) имеет по крайней мере одно положитель-
ное решение.

Пример 2. Рассмотрим краевую задачу

x2ptq ` p1 ` t2q
a
xptq “ 0, 0 ă t ă 1, (20)

xp0q “ xp1q “ 0, (21)

x2p0q “ x2p1q “ 0, (22)

где fpt,xq “ p1 ` t2q?
x.

Имеем

lim
xÑ0`

min
tPr0,1s

fpt,xq
x

“ lim
xÑ0`

1?
x

“ 8,

lim
xÑ`8

max
tPr0,1s

fpt,xq
x

“ lim
xÑ`8

2?
x

“ 0.

Согласно теореме 4 задача (20)–(22) имеет единственное положительное решение.

ЗАКЛЮЧЕНИЕ

В работе установлены достаточные условия существования и единствености положитель-
ного решения двухточечной краевой задачи для одного нелинейного обыкновенного диф-
ференциального уравнения четвертого порядка с симметричными граничными условиями.
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Полученные результаты основываются на использовании теоремы Красносельского о рас-
тяжении (сжатии) конуса и позволяют охватить довольно широкий класс краевых задач с
подлинейной и надлинейной надбавкой f соответственно. Приведенные в статье результа-
ты расширяют и дополняют исследования автора по данной тематике и могут представлять
некоторый теоретический интерес для специалистов, занимающихся вопросами существова-
ния положительных решений краевых задач для нелинейных дифференциальных уравнений.
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