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Аннотация. Методами группового (симметрийного) анализа дифференциальных
уравнений изучается обобщенная осесимметричная модель движения жидкости или газа
в пористой среде со степенной нелинейностью при наличии нестационарного внешнего
источника или поглощения. Найдена основная группа Ли преобразований дифференци-
ального уравнения, задающего эту модель. Получены все виды ее инвариантных подмо-
делей. Они задаются инвариантными решениями указанного уравнения. Инвариантные
решения ранга 1 получены либо в явном виде, либо их отыскание сведено к системам
обыкновенных дифференциальных уравнений первого порядка. Для явных решений при
конкретных значениях входящих в их выражения параметров построены графики распре-
деления давления в пористой среде. Остальные решения используются для исследования
физически содержательных краевых задач, для которых в начальный момент времени
в фиксированной точке среды задается давление и либо скорость его изменения вдоль
оси симметрии, либо радиальная скорость его изменения. Эти краевые задачи решаются
численно при некоторых конкретных значениях, входящих в них параметров. Получены
графики функций, определяющих эти решения. Проведенное исследование актуально во
многих областях прикладной науки и техники: фильтрация, механика грунтов, механика
горных пород, нефтепромысловая инженерия, строительная инженерия, нефтегеология,
биология и биофизика, материаловедение.

Ключевые слова: осесимметричная модель движения жидкости или газа в пористой
среде со степенной нелинейностью, нестационарный внешний источник или поглощение,
симметрийный анализ, инвариантные подмодели.
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MOTION OF A LIQUID OR GAS IN A POROUS MEDIUM
WITH POWER-LAW NONLINEARITY IN THE PRESENCE
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Abstract. The methods of symmetry (group) analysis are used to study the generalized
axisymmetric model of the motion of fluid or gas in a porous medium with power nonlinearity,
to which the presence of a non-stationary external source or absorption is added. The main
Lie group of transformations of the differential equation defining this model is found. All
types of its invariant submodels are obtained. They are defined by invariant solutions of the
specified equation. Invariant solutions of rank 1 are obtained either explicitly, or their search is
reduced to systems of ordinary differential equations of the first order. For explicit solutions at
specific values of the parameters included in their expressions, graphs of pressure distribution
in a porous medium are constructed. The remaining solutions are used to study physically
meaningful boundary value problems for which at the initial moment of time at a fixed point
of the medium the pressure and either the rate of its change along the axis of symmetry or the
radial rate of its change are specified. These boundary value problems are solved numerically for
some specific values of the parameters included in them. Graphs of the functions determining
these solutions are obtained. The conducted research is relevant in many areas of applied science
and technology: filtration, soil mechanics, rock mechanics, oil field engineering, construction
engineering, petroleum geology, biology and biophysics, materials science.

Keywords: axisymmetric model of the motion of fluid or gas in a porous medium with
power nonlinearity, non-stationary external source absorption, symmetry analysis, invariant
submodels.

1. ОПИСАНИЕ МОДЕЛИ

Многие природные вещества, например, такие как горные породы и почва (в частности, во-
доносные горизонты, нефтяные пласты), биологические ткани (частности, кости, древесина,
пробка), а также искусственные материалы, такие как цементы и керамика, можно рассмат-
ривать как пористые среды. Многие из их важных свойств можно объяснить, только рас-
сматривая их как пористые среды. Движение жидкости, жидкости или газа через пористую
среду представляет большой интерес и стал отдельной областью исследований. Изучающая
это движение наука получила название подземной гидромеханики. Основателями этой науки
стали французские ученые А. Дарси [1–3] и Ж. Дюпюи [4–6]. Одним из основоположников
нефтяной подземной гидромеханики был Л. С. Лейбензон [7, 8]. Он сыграл большую роль в
создании научных основ разработки нефтяных месторождений.

Классическая модель, описывающая движение жидкости или газа в пористой среде со
степенной нелинейностью задается следующим дифференциальным уравнением

pt “ ∆
´
pβ
¯
, β pβ ´ 1q ‰ 0, (1)

где p “ p pt,xq — давление; t— время; x “ px,y,zq P R3; ∆ “ B2x ` B2y ` B2z , β — произвольная
постоянная. Эта модель исследовалась во многих работах (см., например, [9–13] и приведен-
ную там большую библиографию). Изучение движения жидкости или газа в пористой среде
в рамках классической модели не всегда адекватно описывает реальные процессы. Прежде
всего, это относится к процессам с внешним нестационарным источником или поглощением.
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Исследование инвариантных подмоделей ранга 0 для общей трехмерной модели движения
жидкости или газа в пористой среде при наличии внешнего нестационарного источника или
поглощения было начато в [14, 15].

В [16] исследованы инвариантные подмодели ранга 1 для общей двумерной модели движе-
ния жидкости или газа в пористой среде при наличии внешнего нестационарного источника
или поглощения.

В нашей работе мы будем изучать осесимметричную модель, описывающую движение
жидкости или газа в пористой среде со степенной нелинейностью при наличии внешнего
нестационарного источника или поглощения. Эта модель задается уравнением

Bt “
ˆ

B2r ` 1

r
Br ` B2z

˙´
pβ
¯

` f ptq p, β pβ ´ 1q ‰ 0, f 1 ptq ‰ 0, (2)

где r “
a
x2 ` y2, функция f ptq определяет нестационарный внешний источник или поглоще-

ние. Для каждого реального процесса эта функция конкретизируется эмпирическим путем.
Случай f ptq ą 0 соответствует наличию внешнего источника. Случай f ptq ă 0 соответствует
наличию внешнего поглощения.

2. СИММЕТРИЙНЫЕ СВОЙСТВА УРАВНЕНИЯ (2)

Основным методом исследования уравнения (2) является групповой (симметрийный) ана-
лиз дифференциальных уравнений. Групповой анализ является одним из наиболее эффек-
тивных способов получения максимальной информации о свойствах решений дифференци-
альных уравнений. Основные понятия и алгоритмы современного группового анализа диф-
ференциальных уравнений можно найти, например, в [17–21] и приведенных там ссылках.

Оператор, допускаемый уравнением (2), ищется в виде

X “ ξ0 pt,r,z,pq Bt ` ξ1 pt,r,z,pq Br ` ξ2 pt,r,z,pq Bz ` η pt,r,z,pq Bp

где ξ0, ξ1, ξ2, η — неизвестные функции своих переменных.
Условие инвариантности многообразия, заданного уравнением (2) относительно этого опе-

ратора и расщепление по параметрическим производным дает переопределенную систему
определяющих уравнений. После третьего продолжения эта система приводится в инволю-
цию и интегрируется. Решение этой системы показывает, что основная группа Ли преобразо-
ваний уравнения (2) является четырехпараметрической группой G4, алгебра Ли которой L4

имеет базис

Y1 “ Bz , Y2 “ rBr ` zBz ` 2

β´1
pBp, Y3 “

ş
hptqdt
hptq Bt ` 1

β´1

´
h1ptq

ş
hptqdt

h2ptq ´ 1
¯
pBp,

Y4 “ 1

hptq

´
Bt ` h1ptq

pβ´1qh2ptqpBp
¯
, h ptq “ exp

`
pβ ´ 1q

ş
f ptq dt

˘
.

Функция f ptq, определяющая нестационарный внешний источник или поглощение, выра-
жается через функцию h ptq по формуле

f ptq “ h1 ptq
pβ ´ 1qh ptq .

Для алгебры L4 строится группа внутренних автоморфизмов, под действием которой L4

разбивается на непересекающиеся классы изоморфных подалгебр. В каждом классе выби-
рается подалгебра, базис которой содержит наименьшее число произвольных постоянных.
Получаются оптимальные системы неизоморфных подалгебр всех размерностей алгебры Ли
L4. Каждой подалгебре из этих оптимальных систем соответствует подгруппа группы G4.В
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результате получаются оптимальные системы неподобных подгрупп всех порядков группы Ли
G4. Применяя критерий инвариантности функции относительно группы Ли преобразований
[17–21], находим универсальный инвариант в пространстве R4pt,r,z,uq для каждой подгруппы
из этих оптимальных систем подгрупп. Это дает нам представление для всех инвариантных
решений уравнения (2). Эти решения определяют все инвариантные подмодели модели, за-
даваемой этим уравнением.

Мы изучаем только инвариантные осесимметричные решения, которые удовлетворяют
следующим условиям

Brp ‰ 0, Bzp ‰ 0. (3)

Поэтому в оптимальные системы подгрупп мы включили только те подгруппы H, для
которых инвариантное H-решение удовлетворяет условиям (3). Оптимальные системы этих
подгрупп приведены в таблицах 1, 2, где λ –произвольная постоянная. Для всех трехпарамет-
рических подгрупп условия (3) не выполняются, поэтому оптимальная система этих подгрупп
не приводится.

Таблица 1. Однопараметрические подгруппы θ1.k.
k Базис подалгебры Универсальный инвариант

1 Y2 ` λY3 z´λ

ż
h ptqdt, r

z
,

ˆ
h ptqş
h ptqdtz

2

˙ 1

1´β

p.

2 Y3 r, z,

ˆ
hptqş
hptqdt

˙ 1

1´β

p

3 Y1 ` Y3 exp p´zq
ż
h ptqdt, r,

ˆ
h ptqş
h ptqdt

˙ 1

1´β

p

4 ˘Y2 ` Y4

ż
h ptqdt¯ ln z,

r

z
, ph ptqq

1

1´β

exp

ˆ
2

1 ´ β

ż
h ptqdt

˙
p

5 Y1 ` Y4

ż
h ptqdt´ z, r, ph ptqq

1

1´β

p

6 Y4 r, z, ph ptqq
1

1´β

p.

Таблица 2. Двухпараметрические подгруппы θ2.k.
k Базис подалгебры Универсальный инвариант

1 Y1 ` Y3 Y4 r, ph ptqq
1

1´β

exp

ˆ
z

β ´ 1

˙
p

2 Y2 ` λY3 Y4
r

z
,
´
z2´λh ptq

¯ 1

1´β

p

3 Y1 ` Y4 Y2 ` Y3
g ptq ´ z

r
, prh ptqq

1

1´β

p

4 Y2 Y3
r

z
,

ˆ
h ptqş
h ptqdtz

2

˙ 1

1´β

p

3. ИНВАРИАНТНЫЕ РЕШЕНИЯ УРАВНЕНИЯ (2)

Каждое решение уравнения (2) определяет многообразие в пространстве R4pt, r, z, pq. Для
каждой подгруппы, допускаемой уравнением, решение называется инвариантным относи-
тельно данной подгруппы, если это многообразие является инвариантным многообразием
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этой подгруппы. Размерность этого многообразия в пространстве инвариантов подгруппы
называется рангом инвариантного решения [17–21].

Универсальные инварианты всех подгрупп, приведенные в таблицах 1, 2, позволяют полу-
чить представление всех существенно различных (не связанных посредством точечных пре-
образований) инвариантных решений ранга 1 и 2 уравнения (2), удовлетворяющих условию
(3).

Таблица 1 дает представление всех инвариантных решений ранга 2. Для каждой подгруп-
пы из этой таблицы с универсальным инвариантом tI1, I2, I3u,представление инвариантного
решения имеет вид I3 “ U pI1, I2q. Подстановка этого представления в уравнение (2) дает
уравнение для функции U , зависящей от двух переменных. Тем самым, в уравнении (2) про-
исходит редукция числа независимых переменных.

Представление всех инвариантных решений ранга 1 дает Таблица 2. Для каждой под-
группы из этой таблицы с универсальным инвариантом tI1, I2u представление инвариантного
решения имеет вид I2 “ U pI1q.

В дальнейших будем исследовать только инвариантные решения ранга 1.
В последующих формулах величины cn pn “ 1, 2, 3, 4q , t0 ě 0, r0, z0, p0 ą 0, p1, p2 являются

произвольными вещественными числами, на которые в отдельных случаях будут наклады-
ваться дополнительные ограничения.

3.1. Решение, инвариантное относительно подгруппы θ2.1 xY1 ` Y3, Y4y.
Из Таблицы 2 следует представление этого решения

p “ ph ptqq
1

β´1

exp

ˆ
z

1 ´ β

˙
U prq . (4)

Подстановка (4) в (2) дает уравнение

´
Uβ´1U 1

¯1
` 1

r
Uβ´1U 1 ` β

pβ ´ 1q2
Uβ “ 0

общее решение которого имеет вид

U “
ˆ
c1J0

ˆˇ̌
ˇ̌ β

β ´ 1

ˇ̌
ˇ̌ r
˙

` c2N0

ˆˇ̌
ˇ̌ β

β ´ 1

ˇ̌
ˇ̌ r
˙˙ 1

β

где J0 pxq — функция Бесселя нулевого порядка, а N0 pxq — функция Неймана нулевого по-
рядка.

Давление определяется по формуле

p “ ph ptqq
1

β´1

exp

ˆ
z

1 ´ β

˙ˆ
c1J0

ˆˇ̌
ˇ̌ β

β ´ 1

ˇ̌
ˇ̌ r
˙

` c2N0

ˆˇ̌
ˇ̌ β

β ´ 1

ˇ̌
ˇ̌ r
˙˙ 1

β

. (5)

На каждой цилиндрической поверхности r “ const ą 0 внутри пористой среды давление
распределено по формуле

p “ c ph ptqq
1

β´1

exp

ˆ
z

1 ´ β

˙
, c “ const ą 0.

Приведем два примера, задавая конкретные значения величинам c1, c2, β, r, h ptq.
При c1 “ 1, c2 “ 0, β “ ´1, h ptq “ 1

t2`t`1
, r “ 2, z ą 0 распределение давления показано на

Рис. 1.
В данном случае давление на цилиндрической поверхности r “ 2 монотонно возрастает со

временем под воздействием внешнего источника и стремится к бесконечности при t Ñ 8.
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Рис. 1. Распределение давления на цилиндрической поверхности r “ 2.

При c1 “ 1, c2 “ 0, β “ 1

4
, h ptq “ 2 pt` 1q , r “ 2, z ą 0 распределение давления показано на

Рис. 2.

В этом случае давление на цилиндрической поверхности r “ 2 монотонно убывает со
временем под воздействием внешнего поглощения и стремится к нулю при t Ñ 8.

Рис. 2. Распределение давления на цилиндрической поверхности r “ 2.

3.2. Решение, инвариантное относительно подгруппы θ2.2 xY2 ` λY3, Y4y.
Представление этого решения

p “
´
zλ´2h ptq

¯ 1

β´1

U pξq , ξ “ r

z
. (6)
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Функция U pξq удовлетворяет уравнению

`
ξ2 ` 1

˘ ´
Uβ´1U 1

¯1
`
ˆ
1

ξ
` 2γξ

˙
Uβ´1U 1 ` γ pγ ` 1qUβ “ 0, γ “ β pλ ´ 2q

β ´ 1
. (7)

При λ “ 2 решение уравнения (7) имеет вид

U “
˜
c3 ` c4

˜
a
ξ2 ` 1 ` ln

ξ

1 `
a
ξ2 ` 1

¸¸β

.

Давление определяется по формуле

p “ ph ptqq
1

β´1

˜
c3 ` c4

˜?
r2 ` z2

z
` ln

r

z `
?
r2 ` z2

¸¸β

. (8)

В каждый фиксированный момент времени во всех точках каждой конической поверхности
r “ cz pc “ const ą 0q давление одинаково.

При c3 “ 0, c4 “ 1, β “ 2, h ptq “ 2 p2t` 1q , r “ 2, z ą 0 распределение давления показано
на Рис. 3.

Рис. 3. Распределения давления для решения (8) при r “ 2.

В данном случае давление монотонно возрастает со временем под воздействием внешнего
источника и стремится к бесконечности при t Ñ 8.

При λ ‰ 2 уравнение (7) с помощью новой неизвестной функции W “ Uβ принимает вид

`
ξ2 ` 1

˘
W 2 `

ˆ
1

ξ
` 2γξ

˙
W 1 ` γ pγ ` 1qW “ 0. (9)

Это уравнение эквивалентно следующей системе

W 1 “ 1

ξ2 ` 1

ˆ
V ´

ˆ
1

ξ
` p2γ ´ 1q ξ

˙
W

˙
, V 1 “ ´

ˆ
γ2 ` 3γ ´ 2 ` 1

ξ

˙
W (10)
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А именно: 1) для любого решения pW pξq ,V pξqq системы (10) функция W pξq удовлетво-
ряет уравнению (9), 2) обратно, для любого решения W pξq уравнения (9) пара функций´
W pξq , V pξq “

`
ξ2 ` 1

˘
W 1 pξq `

´
1

ξ
` 2 pγ ´ 1q ξ

¯
W

¯
удовлетворяет системе (10).

Используем систему (10) для отыскания давления в пористой среде, если в начальный
момент времени t “ t0 ě 0 в фиксированной точке pr0,z0q заданы давление и его радиальная
производная

p pt0,r0,z0q “ p0 ą 0, pr pt0,r0,z0q “ p1, r0 ą 0, z0 ą 0. (11)

В этом случае начальные данные для системы (10) имеют вид

W pξ0q “
´
z2´λ
0

h pt0q
¯ β

1´β

p
β
0
, ξ0 “ r0

z0
,

V pξ0q “ z
γ´1

0
ph pt0qq

β
1´β

p
β´1

0

´
β
`
r2
0

` z2
0

˘
p1 ` 1

r0

`
2 pγ ´ 1q r2

0
` z2

0

˘
p0

¯
.

(12)

В силу гладкости правых частей системы (10) решение задачи Коши (10), (12) существует
и единственно в окрестности точки ξ0.

По формуле

p “
´
zλ´2h ptq

¯ 1

β´1

W
1

β pξq , ξ “ r

z
. (13)

получаем единственное решение уравнения (9), удовлетворяющее условиям (11), для которого

вдоль каждой конической поверхности r “ cz pc “ const ą 0q величина
`
zλ´2h ptq

˘ 1

1´β

p pt,r,zq
постоянна.

Например, при t0 “ 0, β “ 3

2
, λ “ 1, r0 “ 1, z0 “ 1, p0 “ 16, p1 “ ´1, h ptq “ 2t ` 1, z ą 0

задача Коши (10), (12) численно решена методом Рунге-Кутты-Фельберга [22] (с порядком
точности 4). График функции W “ W pξq показан на Рис. 4.

Рис. 4. График функции W “ W pξq.

Из этого графика в силу формулы (13) следует, что давление монотонно возрастает со
временем под воздействием внешнего источника и стремится к бесконечности при t Ñ 8.

3.3. Решение, инвариантное относительно подгруппы θ2.3 xY1 ` Y4, Y2 ` Y3y.
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Представление этого решения

p “ prh ptqq
1

β´1 U pξq , ξ “
ş
h ptq dt ´ z

r
. (14)

Функция U pξq удовлетворяет уравнению

`
ξ2 ` 1

˘ ´
Uβ´1U 1

¯1
´ β ` 1

β ´ 1
ξUβ´1U 1 ´ 1

β
U 1 ` β

pβ ´ 1q2
Uβ “ 0. (15)

Уравнение (15) эквивалентно системе

U 1 “ U1´βW,W 1 “ 1

ξ2 ` 1

ˆ
1

β
U1´βW ´ β

pβ ´ 1q2
Uβ ` β ` 1

β ´ 1
ξW

˙
. (16)

Пусть в начальный момент t “ t0 ě 0 времени в фиксированной точке с координатами
r “ r0 ą 0, z “ z0 задано давление и скорость его изменения вдоль оси Oz

p pt0,r0 ,z0q “ p
0

ą 0, pz pt0,r0 ,z0q “ p2. (17)

Начальные данные для системы (16) имеют вид

U pξ0q “ pr0h pt0qq
1

1´β

p0,

W pξ0q “ r
1

1´β

0
ph pt0qq

β
1´β

p
1

1´β

0
p2, ξ0 “ gpt0q´z0

r0
.

(18)

В силу гладкости правых частей системы (16) решение задачи Коши (16), (18) существует
и единственно в окрестности точки ξ0.

Применяя формулу (14), получаем единственное решение уравнения (9), удовлетворяющее
условиям (17), для которого вдоль каждой траектории z “

ş
h ptq dt´ cr pc “ constq величина

prh ptqq
1

1´β p pt,r,zq постоянна.
Например, при t0 “ 0, β “ 2, r0 “ 1, z0 “ 1, p0 “ 4, p2 “ 1,z ą 0, h ptq “ 2 pt` 1q задача

Коши (16), (18) численно решена методом Рунге-Кутты-Фельберга [22] (с порядком точности
4). График функции U pξq представлен на Рис. 5.

Из этого графика в силу формулы (14) следует, что давление монотонно возрастает со
временем под воздействием внешнего источника и стремится к бесконечности при t Ñ 8.

3.4. Решение, инвариантное относительно подгруппы θ2.4 xY2, Y3y.
Это решение имеет вид

p “
ˆ

h ptqş
h ptqdtz

2

˙ 1

1´β

U pξq , ξ “ r

z
, (19)

где функция U pξq удовлетворяет уравнению

`
ξ2 ` 1

˘ `
Uβ´1U 1˘1 `

´
1

ξ
´ 2p2β´1q

β´1
ξ
¯
Uβ´1U 1´

´βp3β´13q
β´1

Uβ ´ 1

βpβ´1qU “ 0.
(20)

Уравнение (20) эквивалентно системе

U 1 “ U1´βW,W 1 “ 1

ξ2 ` 1

ˆ
1

β
U1´βW ´ β

pβ ´ 1q2
Uβ ` β ` 1

β ´ 1
ξW

˙
. (21)
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Рис. 5. График функции U pξq.

Если в начальный момент времени t “ t0 ě 0 в фиксированной точке с координатами
r “ r0 ą 0, z “ z0 ą 0 давление и его радиальная производная заданы формулами (11), то
начальные данные для системы (21) имеют вид

U pξ0q “
´
z2
0

g1pt0q
gpt0q

¯ 1

1´β
p0,W pξ0q “ z

β`1

1´β

0

´
hpt0qş
hpt0qdt0

¯ β
1´β

p
β´1

0
p1,

ξ0 “ r0
z0
.

(22)

В силу гладкости правых частей системы (21) решение задачи Коши (21), (22) существует
и является единственным в окрестности точки ξ0.

Применяя формулу (19) получаем единственное решение уравнения (9), удовлетворяющее
условиям (11), для которого вдоль каждой конической поверхности r “ cz pc “ const ą 0q

величина
´

hptqş
hptqdtz

2

¯ 1

β´1

p pt,r,zq постоянна.

Например, при t0 “ 0, α “ 1.8, r0 “ 1, z0 “ 1, p0 “ 4, p1 “ 1, z ą 0, h ptq “ 1

t2`2t`2
задача

Коши (21), (22) численно решена методом Рунге-Кутта-Фельберга [22] (с порядком точности
4). График функции U pξq представлен на Рис. 6.

Из этого графика в силу формулы (19) следует, что давление монотонно убывает со вре-
менем под воздействием внешнего поглощения и стремится к нулю при t Ñ 8.

ЗАКЛЮЧЕНИЕ

В данной работе методами группового (симметрийного) анализа исследована обобщенная
осесимметричная модель движения жидкости или газа в пористой среде со степенной нели-
нейностью при наличии нестационарного внешнего источника или поглощения. Найденная
основная группа Ли преобразований дифференциального уравнения, задающего эту модель,
позволила получить вид всех ее инвариантных подмоделей, которые задаются инвариантны-
ми решениями указанного уравнения. Их вид приведен в таблицах 1 и 2.

Получены все инвариантные решения ранга 1. Это решения (5) и (8), найденные в яв-
ном виде, и решения (6), ((14) и (19), отыскание которых сведено к системам обыкновенных
дифференциальных уравнений первого порядка (10, (16) и (21) соответственно.
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Рис. 6. График функции U pξq.

Для решений (5) и (8) при некоторых конкретных значениях, входящих в них параметров,
построены графики распределения давления. Эти графики приведены на рисунках 1, 2, 3.
Указан физический смысл приведенных решений.

Решения (10, (16) и (21) были использованы для исследования физически содержательных
краевых задач, для которых в начальный момент времени в фиксированной точке среды
задается давление и либо скорость его изменения вдоль оси симметрии, либо радиальная
скорость его изменения. Эти краевые задачи решаются численно при некоторых конкретных
значениях, входящих в них параметров. Получены графики функций, определяющих эти
решения. Эти графики приведены на рисунках 4, 5, 6.

Значимость найденных решений заключается в следующем:
1. Они описывают конкретные физические процессы.
2. Эти решения могут быть использованы в качестве тестов в численных расчетах при изу-

чении движения жидкости или газа в пористой среде при наличии нестационарного внешнего
источника или поглощения.

3. Найденные в работе решения зависят от 5 произвольных числовых параметров и одной
произвольной функции, которые определяются эмпирически в зависимости от изучаемого
физического процесса. Это позволяет использовать подмодели, определяемые этими реше-
ниями, для исследования других физически содержательных краевых задач, отличных от
рассмотренных в данной работе.
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