МАТЕМАТИКА

УДК 517.9

ПРИМЕНЕНИЕ ВАРИАЦИОННОГО МЕТОДА ПРИ РЕШЕНИИ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Е. В. Богомолова

Государственный университет "Дубна"

Поступила в редакцию 06.08.2025 г.

Аннотация. Рассматривается численное решение нелинейной краевой задачи для обыкновенного дифференциального уравнения, использующее вариационный метод минимизации функционала в некотором классе функций и метод Ритца, заключающийся в построении приближённого решения в виде линейной комбинации координатных функций.

Ключевые слова: нелинейная краевая задача, однородная краевая задача, симметричный положительно определённый оператор, вариационный метод, минимизация функционала, метод Ритца.

APPLICATION OF THE VARIATIONAL METHOD IN SOLVING A NONLINEAR BOUNDARY VALUE PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION

E. V. Bogomolova

Abstract. A numerical solution of a nonlinear boundary value problem for an ordinary differential equation is considered, using the variational method of minimizing a functional in a certain class of functions and the Ritz method, which consists in constructing an approximate solution in the form of a linear combination of coordinate functions.

Keywords: nonlinear boundary value problem, homogeneous boundary value problem, symmetric positive definite operator, variational method, functional minimization, Ritz method.

ВВЕДЕНИЕ

Рассмотрим численное решение нелинейной краевой задачи для обыкновенного дифференциального уравнения, которая часто встречается в физических приложениях [1]:

$$\frac{d^2u}{dx^2} + f(u) = 0; (1)$$

$$u(0) = u_0, u(l) = u_1. (2)$$

Здесь $u = u(x) \in C^2[0, l]$ — искомая функция, f(x) — известная гладкая функция.

© Богомолова E. B., 2025

Заменяя функцию f(u) её первыми членами ряда Тейлора с центром разложения в точке u_0 , преобразуем уравнение к виду

$$-\frac{d^2u}{dx^2} - f'(u_0)u = f(u_0) - f'(u_0)u_0.$$

Тогда левую часть уравнения можно рассматривать как линейный оператор L, определённый на множестве K функций, обладающих непрерывными производными второго порядка на [0,l] и удовлетворяющих краевым условиям (2). Таким образом, краевая задача сводится к решению операторного уравнения

$$L[u] = C_0;$$
 при $u(0) = u_0, u(l) = u_1,$ (3)

где

$$L[u] = -\frac{d^2u}{dx^2} - f'(u_0)u; \ C_0 = f(u_0) - f'(u_0)u_0; \ u \in K.$$

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Предположим сначала, что краевые условия являются однородными. И будем решать краевую задачу с однородными условиями

$$L[u] = C; (4)$$

$$u(0) = 0, u(l) = 0, (5)$$

где $L[u] = -\frac{d^2u}{dx^2} - f'(0)u; C_0 = f(0).$

Теорема. Пусть в классе K_1 функций, непрерывных на [0,l] вместе со своими первыми и вторыми производными и удовлетворяющих условиям (5), задан оператор $L[u] = -\frac{d^2u}{dx^2} - f'(0)u$. Тогда L—симметричный линейный оператор и, при условии $f'(0) \leq 0$, положительно определённый в классе K_1 .

Доказательство. Пусть $u \in K_1, v \in K_1$.

Тогда для постоянных α и β имеем $L[\alpha u + \beta v] = \alpha L[u] + \beta L[v]$, то есть L — линейный оператор.

Докажем, что оператор L является симметричным, то есть выполняется равенство (L[u],v)=(u,L[v]).

Действительно, имеем

$$\int_{0}^{l} (v \cdot L[u] - u \cdot L[v]) dx = \int_{0}^{l} \left(v \left(-\frac{d^{2}u}{dx^{2}} - f'(0)u \right) - u \left(-\frac{d^{2}v}{dx^{2}} - f'(0)v \right) \right) dx =$$

$$= \int_{0}^{l} \left(-v \frac{d^{2}u}{dx^{2}} + u \frac{d^{2}v}{dx^{2}} \right) dx.$$

Применяя интегрирование по частям и учитывая краевые условия (5), получим

$$\int\limits_0^l (v\cdot L[u]-u\cdot L[v])\,dx = -v\frac{du}{dx}\bigg|_0^l + \int\limits_0^l \frac{du}{dx}\cdot \frac{dv}{dx}dx + u\frac{dv}{dx}\bigg|_0^l - \int\limits_0^l \frac{du}{dx}\cdot \frac{dv}{dx}dx = 0,$$

то есть (L[u], v) - (u, L[v]) = 0. Значит, оператор L симметричен.

Докажем, что оператор L является положительно определённым при условии $f'(0) \leq 0$.

Применение вариационного метода при решении нелинейной краевой задачи...

Для функции $u \in K_1$ имеем

$$(L[u], u) = \int_{0}^{l} u L[u] dx = \int_{0}^{l} u \left(-\frac{d^{2}u}{dx^{2}} - f'(0)u \right) dx = -u \frac{du}{dx} \Big|_{0}^{l} + \int_{0}^{l} \left(\left(\frac{du}{dx} \right)^{2} - f'(0)u^{2} \right) dx =$$

$$= \int_{0}^{l} \left(\left(\frac{du}{dx} \right)^{2} - f'(0)u^{2} \right) dx. \quad (6)$$

Тогда $(L[u],u)\geqslant 0$ при условии, что для всех $x\in [0,l]$ выполняется неравенство $\left(\frac{du}{dx}\right)^2-f'(0)u^2\geqslant 0$, то есть при $f'(0)\leqslant 0$. Если (L[u],u)=0, то дифференциальное уравнение $\left(\frac{du}{dx}\right)^2-f'(0)u^2=0$, имеет решение $u(x)=Ce^{\pm\sqrt{|f'(0)|}ix}$, которое при условиях (5) является нулевым $u\equiv 0$. Следовательно, оператор L положительно определённый.

Теорема доказана.

Применяя вариационный метод [2], краевая задача (4), (5) заменяется равносильной задачей об отыскании функции, дающей в классе K_1 минимум функционалу

$$F[u] = (L[u], u) - 2(C, u). \tag{7}$$

В частности, учитывая (6), рассматриваемый функционал имеет вид

$$F[u] = \int_{0}^{l} (L[u] - 2C)u dx = \int_{0}^{l} \left(\left(\frac{du}{dx} \right)^{2} - f'(0)u^{2} - 2f(0)u \right) dx.$$
 (8)

Рассмотрим теперь задачу (3) с неоднородными краевыми условиями в предположении, что выполняется условие $f'(0) \leq 0$. Оператор L в классе функций $K = \{u(x)\}$, где $u(x) \in C^2[0,l]$ и удовлетворяющих условиям (2), вообще говоря, не является симметричным и положительно определённым, поэтому нельзя непосредственно использовать функционал (7).

Построим функцию $z = z(x) \in C^2[0, l]$, для которой выполнены краевые условия (2).

Введём функцию v(x) = u(x) - z(x), где u(x) — решение нашей неоднородной задачи (4), (2). Тогда функция v(x) удовлетворяет однородным краевым условиям

$$v(l) = u(l) - z(l) = u_1 - u_1 = 0;$$

$$v(0) = u(0) - z(0) - u_0 - u_0 = 0;$$
(9)

и является решением уравнения

$$L[v] = L[u] - L[z] = C - L[z], \tag{10}$$

где $L[z] = -\frac{d^2z}{dx^2} - f'(0)z$ — известная функция. Функция v(x) является решением однородной краевой задачи (10), (9), и на основании формулы (7) даёт наименьшее значение функционалу

$$F[v] = (L[v], v) - 2(c, C - L[z]).$$

Возвращаясь к функции u, преобразуем этот функционал

$$F[u-z] \equiv F_1[u] = (L[u-z], u-z) - 2(u-z, C-L[z]) =$$

$$= (L[u], u) - 2(u, C) + (u, L[z]) - (z, L[u]) + 2(z, C) - (L[z], z).$$

Последние два слагаемых не зависят от искомой функции u(x), значит, будем минимизировать функционал

$$F_2[u] = (L[u],u) - 2(u,C) + (u,L[z]) - (z,L[u]).$$

Покажем, что его можно заменить функционалом, не содержащем функцию z(x). Имеем

$$(u, L[z]) - (z, L[u]) = \int_{0}^{l} \left[\left[u \left(-\frac{d^{2}z}{dx^{2}} - f'(0)z \right) - z \left(-\frac{d^{2}u}{dx^{2}} - f'(0)u \right) \right] dx =$$

$$= \int_{0}^{l} \left[-u \frac{d^{2}z}{dx^{2}} + z \frac{d^{2}u}{dx^{2}} \right] dx = u \frac{dz}{dx} \Big|_{0}^{l} + \int_{0}^{l} \frac{du}{dx} \cdot \frac{dz}{dx} dx + z \frac{du}{dx} \Big|_{0}^{l} - \int_{0}^{l} \frac{dz}{dx} \cdot \frac{du}{dx} dx = -u \frac{dz}{dx} \Big|_{0}^{l} + z \frac{du}{dx} \Big|_{0}^{l} \right] .$$

Тогда

$$F_{2}[u] = -u\frac{du}{dx}\Big|_{0}^{l} + \int_{0}^{l} \left(\left(\frac{du}{dx}\right)^{2} - f'(0)u^{2} - 2uC\right) dx - u\frac{dz}{dx}\Big|_{0}^{l} + z\frac{du}{dx}\Big|_{0}^{l} =$$

$$= \int_{0}^{l} \left(\left(\frac{du}{dx}\right)^{2} - f'(0)u^{2} - 2uC\right) dx - u\frac{dz}{dx}\Big|_{0}^{l} - v\frac{du}{dx}\Big|_{0}^{l} =$$

$$= \int_{0}^{l} \left(\left(\frac{du}{dx}\right)^{2} - f'(0)u^{2} - 2uC\right) dx - u\frac{dz}{dx}\Big|_{0}^{l} =$$

Последнее слагаемое фиксировано, поэтому вместо функционала $F_2[u]$ можно рассматривать функционал

$$\Phi[u] = \int_{0}^{l} \left(\left(\frac{du}{dx} \right)^{2} - f'(0)u^{2} - 2uC \right) dx.$$

$$\tag{11}$$

Для приближенного решения вариационной задачи о нахождении минимума функционала (11) в классе K функций, обладающих непрерывными производными второго порядка на [0,l] и удовлетворяющих краевым условиям (2), можно использовать метод Ритца.

Построим последовательность гладких линейно независимых координатных функций $\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)$, где $\varphi_0(x)$ удовлетворяет неоднородным краевым условиям $\varphi_0(0) = u_0$, $\varphi_0(l) = u_1$, а $\varphi_j(x)$ $(i = 1, \dots, n)$ удовлетворяют однородным краевым условиям $\varphi_i(0) = 0$, $\varphi_i(l) = 0$. Составим линейную комбинацию

$$u(x,c_1,...,c_n) = \varphi_0(x) + \sum_{i=1}^n c_i \varphi_i(x).$$
 (12)

Причём $u(0,c_1,\ldots,c_n)=\varphi_0(0)+\sum\limits_{i=1}^nc_i\varphi_i(0)=u_0,\ u(l,c_1,\ldots,c_n)=\varphi_0(l)+\sum\limits_{i=1}^nc_i\varphi_i(l)=u_1$ при любых постоянных c_1,\ldots,c_n .

Приближённое решение вариационной задачи (11) при неоднородных условиях (2) будем искать в виде (12). Для этого подставим $u(x,c_1,\ldots,c_n)$ в функционал (11). Тогда получим $\Phi[u]=\psi(c_1,\ldots,c_n)$, где ψ — некоторая известная функция от n переменных c_1,\ldots,c_n . Для того чтобы $\Phi[u]$ было минимальным, в силу необходимых условий экстремума получим систему уравнений

$$\frac{\partial \psi}{\partial c_1} = 0, \dots, \frac{\partial \psi}{\partial c_n} = 0,$$

из которой определяются постоянные c_1, \ldots, c_n .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Вычислим приближенное решение уравнения (1), удовлетворяющее при l=1 краевым условиям: $u_0=0,\ u_1=1.$ В качестве линейно независимых координатных функций будем использовать полиномы $\varphi_0(x)=u_0+\frac{u_1-u_0}{l}x;\ \varphi_1(x)=x(x-l);\ \varphi_2(x)=x^2(x-l);\ \varphi_3(x)=x^3(x-l).$

Численные эксперименты проводились с использованием библиотеки функций Mathcad. Результаты применения рассмотренного метода при $f(u)=e^{\alpha u}$ и при $f(u)=\sin\alpha u$ приведены соответственно в таблицах 1 и 2, где невязка берётся в виде $R[u]=\frac{d^2u}{dx^2}+f(u)$. Представление результатов в виде профилей решения u(x) дано на рис.1, 2 соответственно.

Таблица 1. Численное решение $npu\ f(u) = e^{\alpha u}$.

	Значения	Невязка	Значения	Невязка	Значения	Невязка	Значения	Невязка
	u(x),	1105110110	u(x),	1105110110	u(x),	1102110110	u(x),	1102110110
	$\alpha = -\frac{1}{8}$		$\alpha = -\frac{1}{4}$		$\alpha = -\frac{1}{2}$		$\alpha = -\frac{3}{4}$	
0	0	-1.998e-4	0	-7.924e-4	0	-3.117e-3	0	-6.901e-3
0.1	0.142	-2.137e-4	0.14	-8.285e-4	0.135	-3.121e-3	0.131	-6.629e-3
0.2	0.275	-5.688e-4	0.27	-2.171e-3	0.261	-7.927e-3	0.253	-0.016
0.3	0.398	-1.182e-3	0.391	-4.49e-3	0.378	-0.016	0.366	-0.033
0.4	0.512	-1.977e-3	0.503	-7.498e-3	0.488	-0.027	0.473	-0.055
0.5	0.616	-2.889e-3	0.607	-0.011	0.589	-0.039	0.572	-0.08
0.6	0.711	-3.856e-3	0.701	-0.015	0.684	-0.053	0.667	-0.107
0.7	0.796	-4.828e-3	0.788	-0.018	0.772	-0.066	0.756	-0.135
0.8	0.873	-5.756e-3	0.866	-0.022	0.853	-0.08	0.841	-0.163
0.9	0.941	-6.6e-3	0.937	-0.025	0.929	-0.092	0.922	-0.19
1	1	-7.326e-3	1	-0.028	1	-0.104	1	-0.216

Таблица 2. Численное решение при $f(u) = \sin \alpha u$.

	Значения	Невязка	Значения	Невязка	Значения	Невязка	Значения	Невязка
	u(x),		u(x),		u(x),		u(x),	
	$\alpha = -\frac{1}{8}$		$\alpha = -\frac{1}{4}$		$\alpha = -\frac{1}{2}$		$\alpha = -\frac{3}{4}$	
0	0	-1.845e-4	0	-7.321e-4	0	-2.882e-3	0	-6.386e-3
0.1	0.098	-5.513e-5	0.096	-2.206e-4	0.092	-8.822e-4	0.089	-1.981e-3
0.2	0.196	1.074e-5	0.192	3.352e-5	0.185	7.05e-5	0.178	4.623e-5
0.3	0.294	2.648e-5	0.289	7.559e-5	0.278	9.835e-5	0.269	-1.391e-4
0.4	0.393	5.509e-6	0.386	-4.91e-5	0.373	-6.797e-4	0.361	-2.395e-3
0.5	0.492	-3.871e-5	0.485	-2.955e-4	0.47	-2.154e-3	0.457	-6.627e-3
0.6	0.592	-9.272e-5	0.584	-6.193e-4	0.569	-4.229e-3	0.555	-0.013
0.7	0.693	-1.431e-4	0.685	-9.772e-4	0.672	-6.832e-3	0.658	-0.021
0.8	0.794	-1.764e-4	0.788	-1.327e-3	0.777	-9.92e-3	0.766	-0.032
0.9	0.896	-1.794e-4	0.893	-1.63e-3	0.886	-0.013	0.88	-0.045
1	1	-1.389e-4	1	-1.849e-3	1	-0.018	1	-0.062

Анализируя результаты, видим, что при отрицательных значениях α , близких к нулю, невязка уменьшается. При α близких к минус единице для решения данной задачи лучше воспользоваться, например, методом прогонки. Линеаризация нелинейной части краевой задачи приводит к потере точности решения, но может использоваться при малых значениях

аргумента.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена нелинейная краевая задача для обыкновенного дифференциального уравнения. Получены условия применения вариационного метода о минимизации функционала. Методом Ритца найдено численное решение. Результаты проиллюстрированы примером.

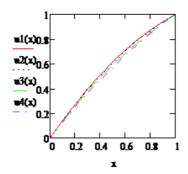


Рис. 1. Профиль решения при нелинейности $f(u) = e^{\alpha u}$.

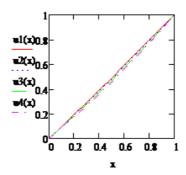


Рис. 2. Профиль решения при нелинейности $f(u) = \sin \alpha u$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Петров, И. Б. Вычислительная математика для физиков / И. Б. Петров. М. : ФИЗ-МАТЛИТ, 2021. 376 с.
- 2. Демидович, Б. П. Численные метода анализа. Приближение функций, дифференциальные и интегральные уравнения / Б. П. Демидович, И. А. Марон, Э. З. Шувалова. СПб. : Издательство "Лань", 2016.-400 с.

REFERENCES

- 1. Petrov I.B. Computational Mathematics for Physicists. [Petrov I.B. Vychislitel'naya matematika dlya fizikov]. Moscow, 2021, 376 p.
- 2. Demidovich B.P., Maron I.A., Shuvalova E.Z. Numerical Methods of Analysis. Approximation of Functions, Differential and Integral Equations. [Demidovich B.P., Maron I.A., SHuvalova E.Z. CHislennye metoda analiza. Priblizhenie funkcij, differencial'nye i integral'nye uravneniya]. St. Petersburg, 2016, 400 p.

Применение вариационного метода при решении нелинейной краевой задачи...

Богомолова Елена Владимировна, кандидат технических наук, доцент кафедры высшей математики, ФГБОУ ВО «Государственный университет «Дубна», Дубна, Московская обл., Россия

E-mail: bogomolova 69@mail.ru

Bogomolova Elena Vladimirovna, Candidate of Technical Sciences, Associate Professor, Department of Higher Mathematics, Dubna State University, Dubna, Moscow Region, Russia

E-mail: bogomolova69@mail.ru