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Abstract: Many results of sequence space 5, s € R that are quasi-Hilbert spaces,
are studied. Composition of bounded linear operators on these spaces is proved as
Fredholem topological isomorphism operators.
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KOMIIO3UIIN A TOIIOJIOTNMYECKUN N30MOP®I3M
OIIEPATOPOB B ITPOCTPAHCTBAX [3
HexaBan Kagum Kx. Anb-/lendnu

AwnnaoTtanusi: B crarbe, n3y4eHbl MHOTHE PE3YJIBTATHI IPOCTPAHCTBA IOCIEJ0BATETbHOCTEHN
15, s € R, KOTOpBIE ABJIAIOTCS KBa3UIMIBOEPTOBLIMU IIpocTpaHcTBaMu. JlokazaHo, IT0 KOMIO-
3UINsT OIPAHUYIEHHBIX JIMHEHHBIX OMEPATOPOB B ITUX MPOCTPAHCTBAX €CTh TOMOJOTHIECKHIA
dPearoabMCKIil B30MOPQU3M.

Kumrouesbie cioBa: Ksasurminb6eproBo IIpoCTPaHCTBO, (DPeroIbMCKUI OllepaTop, TOIO-
JIOTMIECKUN U30MOP(U3M, KOMITO3UIIMS OIIEPATOPA.

1. INTRODUCTION

It is known, sequence spaces [,, 0 < p < o0 are Banach space only when 1 < p < o and the
space Iy is only one that be Hilbert space[1,2|. In [3,4], we were introduced spaces I, to a power of
a real number, 0 < p < o0 which are defined:

Is = {u — {up) : i (A§|uk|>p < —i—oo} ,
k=1

where {\;} < R, k € N such that klim Ay = 400 is monotonically increasing sequence. When
—00

s = 0 then lg = lp. Also, we were introduced bounded linear operators Tv = A\pv; and its inverse
T lw= )\lzlwk .

In [5], using a notion of quasi-Banach space, a concept of quasi-Hilbert space which is
generalization of Hilbert space were presented. Not all Spaces [; that be quasi-Hilbert spaces

In this work, we study some of the properties of 5 and define operators with their inverse on
these spaces. Composition of operators are introduced with some examples, remarks and results,
are proved as Fredholem topological isomorphism.
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2. SOME RESULTS ABOUT SEQUENCE SPACES I3

A linear space Y and function 4| - |, that differs from function | - | by an inequality: 4§ + | <
Pl +4 Inl), YEm € 4L, p € [1, + ) is called a quasi-normed space.If p = 1, a quasi-norm 4| - |
be a norm | - ||. A complete quasi-normed space is called a quasi-Banach space [6].

Definition 2.1 [5]. A quasi-Hilbert space il is quasi-Banach space such that:

all€ +nl* =g 1€ = nl* = 8(lIEIPT(Em) +q Inl>T(n,8)), ¥Em € 4L, (1)

is satisfied, where 7(£,n) and 7(n,§) are Gateaux derivatives:

e = AL (Al Il bl ]
’ —+0 © p——0 12 7

¢ is a real number . 7(1,£) at 1 € 4 in the direction £ is defined similarly. If

r(a) = le] (tim 22 =S, ®

then 4 is a smooth quasi-Hilbert space.
Remark 2.2. A quasi-Banach space i is a Hilbert space if and only if an equality:

o€ + 17 +q 1€ = nl* = 24[1€* + 24Iml*, Y€ € 4, (4)

is satisfied. Also, a Hilbert space is a quasi-Hilbert space [5], conversely, is not true, indeed:
Suppose &1 € 1} , where ¢ = {&} = {1,1,0,..} , n = {m} = {1,1,0,...} with {\z} = {v/k}. Then,
the space [} is a smooth quasi-Hilbert space, since equations (1) and (3) are hold, but an equation
(4) is not satisfied.
Theorem 2.3 [5]. 5 is a smooth quasi-Hilbert space and Hilbert space with a function: [£|3

1/2
<§:Amuﬁ JseR,

Remarks 2.4. (1) If it is replaced s by s — 2 or s + 2, in definition of [§ we have sequence
spaces ZS_Q and l§+2. By analogy with Theorem 2.3, these spaces be Hilbert spaces.

1/2
(2) Since d(&,n)= 4/l — nl5= (Z I ) , I5 is a complete metric space.

Theorem 2.5. For every s € R, then I3 < 1572 and ,|v]5 2 < C.q|v[§ where C > 0.
Proof: Let v = {vg} € 13, so X \i|vog|? < +o0. Since A 2|vg|> < Aj|ug|?,where Ay > 0, then
k

%)\272|vk|2 < %)\Z|vk|2 < Yk e N, that is, v € I572, which implies that 15 < 1572
_ . 1
Now, Yk € N, we have ,|jv]3 2 = (% X572 o)) 2
1 _9\1
ZA TR ERS (SI;PAkz)?-qHUHi-
So gllv]i72 < (sup A;Q)%.quHg. Putting C' = (sup )\72)%, we have the desired result.

Theorem 2. 6 For every s € R, then I572 € I3 and ,|v[§ < C.4|v]5T* where C > 0.
Proof: Let v = {v},} € 1572 then %)\Z+2|vk|2 < +o0, Yk € N. Since, ||v|5 = (% )‘Z‘UR‘Q)% =

(%l N2 o) = (%l NN o) 2 < (sup Ae?)7.q|v]32, this implies that 4 [v]3 < C.qfv]5*2,

where C' = (sup )\,;2)% and the proof is compete.
k
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If ${ and U are normed spaces, a linear operator T : 4 — U is bounded if |T¢|y < 7.|¢|y
such that a constant v > O;linear isometric if |T¢|y = [£]y. A set of all bounded linear operators
is denoted by B(4, ). A bounded operator 7" whose inverse is bounded, is called topological
isomorphism. If 7' e B(, ) and S € B(U,20), then a composition of these operators is Cr(S) =
SoT : 4 — 2, where (SoT)§ = S(T¢€), VE € U [1,3] .

Remark 3.1. If T is a linear isometric operator then ||70[ly = |0]|y, which implies that ( kernel
of T)kerT = {0} , and T is injective. Also, since v = |T'|| = 1, then T is bounded.

Example 3.2. If an operator T : 19 — 19 is given by: T¢ = &, V€ € 19 then it is topological
isomorphism, since it is bounded bijective and |T¢||$ = [£]9.

Theorem 3.3. For every s € R, A linear operator T} : I5 — l§72 such that Tiu = Apug is
topological isomorphism.

Proof: Let u = {uy} € I3, |Trul3™ = (A2 hpuef?)?

k

s— 1 1 s
= QXA )2 = ZA Juk[*)2 = JJul3,

k

where |T1| = 1, then T} is bounded Also, Yv = {v;} € 1572,
1T )3 = Z)\ 1AL o2 ) %A2_2.|uk\2)%:\\v”§_2, where |T;!| = 1.Then T, ! is bounded,

hence T is topologlcal isomorphism.

Theorem 3.4.A linear operator Tj : [51?

— 15, Tou = A\puyg, k € N is topological isomorphism.

Proof: Proof of this theorem is similar to proof of Theorem 3.3, where T{lv = )\Iglvk,Vv =
{vr} € l5is an inverse of bounded operator which is also bounded.

Definition 3.5 [7]. T' € B(4,%0), where { and ¥ are Banach spaces, is called a Fredholm
operator if kerT and cokerT = §/imgT are finite, that is, an index of T (indT") = dim kerT —
dim cokerTis finite.

Remark 3.6. If 7' € B(4L,%0) is topological isomorphism, then ker(T) = {0} and im(T) = §,
that is, coker(T") := §/im(T) = {0}, hence indT = 0, so T is Fredholem, conversely, is not true,
indeed:

let T : 19 — 19 be an operator such that T(&1, &2, &5, ...) = (0,9, &3, ...).

Clearly, kerT = {0}, so dimkerT = 0. Also, imgT = Span{{s,&s, ...}

# 19 , then T is not surjective and dim cokerT = 1, hence

ind T =0, so T is Fredholem and has no inverse, then 7" is not topological isomorphism.

Theorem 3.7. For every s € R, a linear operator 17 : [ — ZS_Q, T = Mug ,k € Nis a
Fredholem operator.

Proof: From Theorem 3.4, Ty is bijective operator. Since ( image of Tp) img T} = l§72 where
T is surjective, then coker T) = lg_Q/img Ty = 0, so dim coker Ty} = 0. Also, T} is injective, this
implies that ker T7 = 0 and dim kerT} = 0. Thus, ind T1 = 0, so 17 is a Fredholem operator.

Remark 3.8. Similar to Theorem 3.7, we can prove an operator T is Fredholem, where ind1s =
0.

Theorem 3.9 [8]. If T : 4 — U and S : Y — W are Fredholem operators, then Cr(S) is
Fredholem operator such that ind(Cr(S)) = ind(S) + ind(T).

Theorem 3.10. A composition operator Cr,(Ty) : 1572 — 157%s € R, is topological
isomorphism and Fredholem.

Proof: Let u = {u} € l§+2, we have,
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N

|73 (Tour) 572 = > A2 (Touy)[2) 2 =2 A2 A |?)

1
= QAP k)7 = Jul3t?,
k

so O, (T}) is bounded. Also, Vv = {v} € 1572,
— — s s — — 1 s — — 1
|75 (1 1%)\\2”#% AN o)) 2 =(% AN k) 2

_ 1 _
= QA o)z = ol
k

so (C7,(T3))~! is bounded. Thus, Cr,(T}) is topological isomorphism.

According to Theorem 3.7, Remark 3.8 and Theorem 3.9 then C7r,(77) is Fredholem, where
ind(CT2 (Tl)) = 0.

Remark 3.11. If we takeT),T5 € B(15,15) such that Thu = Thu = A\guy , then, obviously, as
above results, operators Cr,(T1)= T101% : I5 — 15 and Cp, (T2)= T20T} : 1§ — 1§ are topological
isomorphism and Fredholem operators.
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