COMPOSITION TOPOLOGICAL ISOMORPHISM OPERATORS ON SPACES l_2^s

Jawad Kadhim K. Al-Delfi

(Mustansiriyah University, Baghdad, Iraq)

Поступила в редакцию 20.07.2024 г.

Abstract: Many results of sequence space l_2^s , $s \in \mathbb{R}$ that are quasi-Hilbert spaces, are studied. Composition of bounded linear operators on these spaces is proved as Fredholem topological isomorphism operators.

Key words and phrases: Quasi-Hilbert space, Fredholem operator, Topological isomorphism, Composition operator.

КОМПОЗИЦИЯ ТОПОЛОГИЧЕСКИЙ ИЗОМОРФИЗМ ОПЕРАТОРОВ В ПРОСТРАНСТВАХ l_2^s Джавад Кадим Кх. Аль-Делфи

Аннотация: В статье, изучены многие результаты пространства последовательностей l_2^s , $s \in \mathbb{R}$, которые являются квазигильбертовыми пространствами. Доказано, что композиция ограниченных линейных операторов в этих пространствах есть топологический фредгольмский изоморфизм.

Ключевые слова: Квазигильбертово пространство, фредгольмский оператор, топологический изоморфизм, композиция оператора.

1. INTRODUCTION

It is known, sequence spaces l_p , $0 are Banach space only when <math>1 and the space <math>l_2$ is only one that be Hilbert space[1,2]. In [3,4], we were introduced spaces l_p to a power of a real number, 0 which are defined:

$$l_p^s =: \left\{ u = \{u_k\} : \sum_{k=1}^{\infty} \left(\lambda_k^{\frac{s}{2}} |u_k| \right)^p < +\infty \right\},\,$$

where $\{\lambda_k\} \subset \mathbb{R}_+$, $k \in \mathbb{N}$ such that $\lim_{k \to \infty} \lambda_k = +\infty$ is monotonically increasing sequence. When s = 0 then $l_p^0 = l_p$. Also, we were introduced bounded linear operators $Tv = \lambda_k v_k$ and its inverse $T^{-1}w = \lambda_k^{-1}w_k$.

In [5], using a notion of quasi-Banach space, a concept of quasi-Hilbert space which is generalization of Hilbert space were presented. Not all Spaces l_p^s that be quasi-Hilbert spaces

In this work, we study some of the properties of l_2^s and define operators with their inverse on these spaces. Composition of operators are introduced with some examples, remarks and results, are proved as Fredholem topological isomorphism.

[©] Jawad Kadhim K. Al-Delfi, 2025

2. SOME RESULTS ABOUT SEQUENCE SPACES l_2^s

A linear space \mathfrak{U} and function $q \| \cdot \|$, that differs from function $\| \cdot \|$ by an inequality: $q \| \xi + \eta \| \le$ $\rho(q\|\xi\|+q\|\eta\|), \ \forall \xi, \eta \in \mathfrak{U}, \ \rho \in [1,+\infty)$ is called a quasi-normed space. If $\rho=1$, a quasi-norm $q\|\cdot\|$ be a norm $\|\cdot\|$. A complete quasi-normed space is called a quasi-Banach space [6].

Definition 2.1 [5]. A quasi-Hilbert space \mathfrak{U} is quasi-Banach space such that

$$q \|\xi + \eta\|^4 - q \|\xi - \eta\|^4 = 8(q \|\xi\|^2 \tau(\xi, \eta) + q \|\eta\|^2 \tau(\eta, \xi)), \forall \xi, \eta \in \mathfrak{U}, \tag{1}$$

is satisfied, where $\tau(\xi,\eta)$ and $\tau(\eta,\xi)$ are Gateaux derivatives:

$$\tau(\xi,\eta) = \frac{q\|\xi\|}{2} \left(\lim_{\varphi \to +0} \frac{q\|\xi + \varphi\eta\| - q\|\xi\|}{\varphi} + \lim_{\varphi \to -0} \frac{q\|\xi + \varphi\eta\| - q\|\xi\|}{\varphi} \right), \tag{2}$$

 φ is a real number . $\tau(\eta,\xi)$ at $\eta \in \mathfrak{U}$ in the direction ξ is defined similarly. If

$$\tau(\xi,\eta) =_{q} \|\xi\| \left(\lim_{\varphi \to 0} \frac{q \|\xi + \varphi \eta\| -_{q} \|\xi\|}{\varphi} \right), \tag{3}$$

then \mathfrak{U} is a smooth quasi-Hilbert space.

Remark 2.2. A quasi-Banach space \mathfrak{U} is a Hilbert space if and only if an equality:

$$a\|\xi + \eta\|^2 + a\|\xi - \eta\|^2 = 2a\|\xi\|^2 + 2a\|\eta\|^2, \forall \xi, \eta \in \mathfrak{U}, \tag{4}$$

is satisfied. Also, a Hilbert space is a quasi-Hilbert space [5], conversely, is not true, indeed:

Suppose $\xi, \eta \in l_4^1$, where $\xi = \{\xi_k\} = \{1,1,0,...\}$, $\eta = \{\eta_k\} = \{1,1,0,...\}$ with $\{\lambda_k\} = \{\sqrt{k}\}$. Then, the space l_4^1 is a smooth quasi-Hilbert space, since equations (1) and (3) are hold, but an equation (4) is not satisfied.

Theorem 2.3 [5]. l_2^s is a smooth quasi-Hilbert space and Hilbert space with a function: $_q\|\xi\|_2^s$ $=\left(\sum_{k=1}^{\infty}\lambda_{k}^{s}|\xi_{k}|^{2}\right)^{1/2},\ s\in\mathbb{R},$

emarks 2.4. (1) If it is replaced s by s-2 or s+2, in definition of l_2^s we have sequence spaces l_2^{s-2} and l_2^{s+2} . By analogy with Theorem 2.3, these spaces be Hilbert spaces.

aces
$$l_2^{s-2}$$
 and l_2^{s+2} . By analogy with Theorem 2.3, these spaces be Hilbert spaces.

(2) Since $d(\xi, \eta) = {}_{q} \| \xi - \eta \|_{2}^{s} = \left(\sum_{k=1}^{\infty} \lambda_{k}^{s} |\xi_{k} - \eta_{k}|^{2}\right)^{1/2}$, l_2^{s} is a complete metric space.

Theorem 2.5. For every $s \in \mathbb{R}$, then $l_2^{s} \subseteq l_2^{s-2}$ and ${}_{q} \| v \|_{2}^{s-2} \le C \cdot {}_{q} \| v \|_{2}^{s}$ where $C > 0$.

Proof: Let $v = \{v_k\} \in l_2^{s}$, so $\sum_{k} \lambda_{k}^{s} |v_k|^{2} < +\infty$. Since $\lambda_{k}^{s-2} |v_k|^{2} \le \lambda_{k}^{s} |v_k|^{2}$, where $\lambda_{k} > 0$, then
$$\lambda_{s-2}^{s-2} |v_k|^{2} \le \sum_{k} \lambda_{k}^{s} |v_k|^{2} \le \infty$$
 which implies that $l^{s} \subseteq l^{s-2}$

 $\sum_{k} \lambda_k^{s-2} |v_k|^2 \leqslant \sum_{k} \lambda_k^s |v_k|^2 < \infty \ \forall k \in \mathbb{N}, \text{ that is, } v \in l_2^{s-2}, \text{ which implies that } l_2^s \subset l_2^{s-2}.$

Now, $\forall k \in \mathbb{N}$, we have $q||v||_2^{s-2} = (\sum_{k} \lambda_k^{s-2} |v_k|^2)^{\frac{1}{2}}$

$$= (\sum_k \lambda_k^{-2} \lambda_k^s |v_k|^2)^{\frac{1}{2}} \leqslant (\sup_k \lambda_k^{-2})^{\frac{1}{2}}._q \|v\|_2^s.$$

So $_{q}\|v\|_{r}^{s-2} \leq (\sup_{k} \lambda_{k}^{-2})^{\frac{1}{2}}._{q}\|v\|_{2}^{s}$. Putting $C = (\sup_{k} \lambda_{k}^{-2})^{\frac{1}{2}}$, we have the desired result. **Theorem 2.6.** For every $s \in \mathbb{R}$, then $l_{2}^{s+2} \subseteq l_{2}^{s}$ and $_{q}\|v\|_{2}^{s} \leq C._{q}\|v\|_{2}^{s+2}$ where C > 0. **Proof:** Let $v = \{v_{k}\} \in l_{2}^{s+2}$, then $\sum_{k} \lambda_{k}^{s+2} |v_{k}|^{2} < +\infty$, $\forall k \in \mathbb{N}$. Since, $_{q}\|v\|_{2}^{s} = (\sum_{k} \lambda_{k}^{s} |v_{k}|^{2})^{\frac{1}{2}} = (\sum_{k} \lambda_{k}^{s} |v_{k}|^{2})^{\frac{1}{2}} = (\sum_{k} \lambda_{k}^{s} |v_{k}|^{2})^{\frac{1}{2}}$ $(\sum_{k} \lambda_{k}^{s+2-2} |v_{k}|^{2})^{\frac{1}{2}} = (\sum_{k} \lambda_{k}^{s+2} \lambda_{k}^{-2} |v_{k}|^{2})^{\frac{1}{2}} \leqslant (\sup_{k} \lambda_{k}^{-2})^{\frac{1}{2}} \cdot_{q} \|v\|_{2}^{s+2}, \text{ this implies that } q \|v\|_{2}^{s} \leqslant C \cdot_{q} \|v\|_{2}^{s+2},$

where $C = (\sup_{k} \lambda_k^{-2})^{\frac{1}{2}}$ and the proof is compete.

COMPOSITION LINEAR OPERATORS

If $\mathfrak U$ and $\mathfrak V$ are normed spaces, a linear operator $T:\mathfrak U\to\mathfrak V$ is bounded if $||T\xi||_{\mathfrak V}\leqslant\gamma.||\xi||_{\mathfrak U}$ such that a constant $\gamma\geqslant 0$; linear isometric if $||T\xi||_{\mathfrak V}=||\xi||_{\mathfrak U}$. A set of all bounded linear operators is denoted by $\mathbf B(\mathfrak U,\mathfrak V)$. A bounded operator T whose inverse is bounded, is called topological isomorphism. If $T\in\mathbf B(\mathfrak U,\mathfrak V)$ and $S\in\mathbf B(\mathfrak V,\mathfrak W)$, then a composition of these operators is $C_T(S)=SoT:\mathfrak U\to\mathfrak W$, where $(SoT)\xi=S(T\xi), \forall \xi\in\mathfrak U$ [1,3].

Remark 3.1. If T is a linear isometric operator then $||T0||_{\mathfrak{V}} = ||0||_{\mathfrak{U}}$, which implies that (kernel of $T)kerT = \{0\}$, and T is injective. Also, since $\gamma = ||T|| = 1$, then T is bounded.

Example 3.2. If an operator $T: l_2^0 \to l_2^0$ is given by: $T\xi = \xi$, $\forall \xi \in l_2^0$ then it is topological isomorphism, since it is bounded bijective and $\|T\xi\|_2^0 = \|\xi\|_2^0$.

Theorem 3.3. For every $s \in \mathbb{R}$, A linear operator $T_1: l_2^s \to l_2^{s-2}$ such that $T_1u = \lambda_k u_k$ is topological isomorphism.

Proof: Let
$$u = \{u_k\} \in l_2^s$$
, $||T_1 u||_2^{s-2} = (\sum_k \lambda_k^{s-2} |\lambda_k u_k|^2)^{\frac{1}{2}}$

$$= (\sum_k \lambda_k^{s-2} . \lambda_k^2 |u_k|^2)^{\frac{1}{2}} = (\sum_k \lambda_k^s |u_k|^2)^{\frac{1}{2}} = \|u\|_2^s,$$

where $||T_1|| = 1$, then T_1 is bounded. Also, $\forall v = \{v_k\} \in l_2^{s-2}$,

 $\|T_1^{-1}v\|_2^s = (\sum_k \lambda_k^s |\lambda_k^{-1}v_k|^2)^{\frac{1}{2}} = (\sum_k \lambda_k^{s-2}.|u_k|^2)^{\frac{1}{2}} = \|v\|_2^{s-2}, \text{ where } \|T_1^{-1}\| = 1. \text{Then } T_1^{-1} \text{ is bounded, hence } T_1 \text{ is topological isomorphism.}$

Theorem 3.4.A linear operator $T_2: l_2^{s+2} \to l_2^s$, $T_2 u = \lambda_k u_k$, $k \in \mathbb{N}$ is topological isomorphism. **Proof:** Proof of this theorem is similar to proof of Theorem 3.3, where $T_2^{-1}v = \lambda_k^{-1}v_k, \forall v = \{v_k\} \in l_2^s$ is an inverse of bounded operator which is also bounded.

Definition 3.5 [7]. $T \in \mathbf{B}(\mathfrak{U}, \mathfrak{V})$, where \mathfrak{U} and \mathfrak{V} are Banach spaces, is called a Fredholm operator if kerT and $cokerT = \mathfrak{F}/imgT$ are finite, that is, an index of T $(indT) = dim\ kerT - dim\ cokerT$ is finite.

Remark 3.6. If $T \in \mathbf{B}(\mathfrak{U}, \mathfrak{V})$ is topological isomorphism, then $ker(T) = \{0\}$ and $im(T) = \mathfrak{F}$, that is, $coker(T) := \mathfrak{F}/im(T) = \{0\}$, hence indT = 0, so T is Fredholem, conversely, is not true, indeed:

let $T: l_2^0 \to l_2^0$ be an operator such that $T(\xi_1, \xi_2, \xi_3, \dots) = (0, \xi_2, \xi_3, \dots)$.

Clearly, $kerT = \{0\}$, so dimkerT = 0. Also, $imgT = Span\{\xi_2, \xi_3, ...\}$

 $\neq l_2^0$, then T is not surjective and $dim\ coker T = 1$, hence

 $ind\ T=0$, so T is Fredholem and has no inverse, then T is not topological isomorphism.

Theorem 3.7. For every $s \in \mathbb{R}$, a linear operator $T_1: l_2^s \to l_2^{s-2}, T_1 = \lambda_k u_k$, $k \in \mathbb{N}$ is a Fredholem operator.

Proof: From Theorem 3.4, T_1 is bijective operator. Since (image of T_1) $img \ T_1 = l_2^{s-2}$ where T_1 is surjective, then $coker \ T_1 = l_2^{s-2}/img \ T_1 = 0$, so $dim \ coker \ T_1 = 0$. Also, T_1 is injective, this implies that $ker \ T_1 = 0$ and $dim \ ker T_1 = 0$. Thus, $ind \ T_1 = 0$, so T_1 is a Fredholem operator.

Remark 3.8. Similar to Theorem 3.7, we can prove an operator T_2 is Fredholem, where $indT_2 = 0$.

Theorem 3.9 [8]. If $T: \mathfrak{U} \to \mathfrak{V}$ and $S: \mathfrak{V} \to \mathfrak{W}$ are Fredholem operators, then $C_T(S)$ is Fredholem operator such that $ind(C_T(S)) = ind(S) + ind(T)$.

Theorem 3.10. A composition operator $C_{T_2}(T_1): l_2^{s+2} \to l_2^{s-2}, s \in \mathbb{R}$, is topological isomorphism and Fredholem.

Proof: Let $u = \{u_k\} \in l_2^{s+2}$, we have,

$$||T_1(T_2u_k)||_2^{s-2} = (\sum_k \lambda_k^{s-2} |\lambda_k(T_2u_k)|^2)^{\frac{1}{2}} = (\sum_k \lambda_k^{s-2} . \lambda_k^2 |\lambda_k u_k|^2)^{\frac{1}{2}}$$
$$= (\sum_k \lambda_k^{s+2} |u_k|^2)^{\frac{1}{2}} = ||u||_2^{s+2},$$

so
$$C_{T_2}(T_1)$$
 is bounded. Also, $\forall v = \{v_k\} \in l_2^{s-2}$,
$$||T_2^{-1}(T_1^{-1}v_k)||_2^{s+2} = (\sum_k \lambda_k^{s+2} |\lambda_k^{-1}(T_1^{-1}v_k)|^2)^{\frac{1}{2}} = (\sum_k \lambda_k^{s+2} . \lambda_k^{-2} |\lambda_k^{-1}v_k|^2)^{\frac{1}{2}}$$
$$= (\sum_k \lambda_k^{s-2} |v_k|^2)^{\frac{1}{2}} = ||v||_2^{s-2},$$

so $(C_{T_1}(T_2))^{-1}$ is bounded. Thus, $C_{T_2}(T_1)$ is topological isomorphism.

According to Theorem 3.7, Remark 3.8 and Theorem 3.9 then $C_{T_2}(T_1)$ is Fredholem, where $ind(C_{T_2}(T_1)) = 0$.

Remark 3.11. If we take $T_1, T_2 \in \mathbf{B}(l_2^s, l_2^s)$ such that $T_1u = T_2u = \lambda_k u_k$, then, obviously, as above results, operators $C_{T_2}(T_1) = T_1 o T_2 : l_2^s \to l_2^s$ and $C_{T_1}(T_2) = T_2 o T_1 : l_2^s \to l_2^s$ are topological isomorphism and Fredholem operators.

REFERENCES

- 1. Kreyszig, E. Introductory Functional Analysis with Applications / E. Kreyszig. John Wiley and Sons, Inc, 1978.
- 2. Maddox, I. Elements of Functional Analysis / I. Maddox. Cambridge University Press, New Delhi, India, 1998.
- 3. Al-Delfi, J. K. The Laplace'Quasi-operator in Quasi-Sobolev Spaces / J. K. Al-Delfi // Bulletin of Samara State University, Series of "Mathematics Mechanics.Physics". 2013. \mathbb{N}^2 2(31). P. 13–16.
- 4. Al-Delfi, J. K. Quasi-Sobolev spaces ℓ_p^m / J. K. Al-Delfi // Bulletin of South Ural State University, Series of "Mathematics, Mechanics, Physics". 2013. V. 5, Nº 1. P. 107–109.
- 5. Al-Delfi, J. K. Quasi-Inner Product Spaces of Quasi-Sobolev Spaces and Their Completeness / J. K. Al-Delfi // Ibn Al-Haitham Journal for Pure and Applied science, 1806; DOI:10.30526/2017, IHSCICONF, Iraq. 2017.
- 6. Sanchez, F. Quasi-Banach spaces of almost universal disposition / F. Sanchez, J. Garbulinska // Journal of Functional Analysis. 2014. V. 267. P. 744–771.
- 7. Waterstraat, N. Fredholm Operators and Spectral Flow / N. Waterstraat // Rend. Sem. Mat. Univ. Politec. -2017. V. 75, N 1. P. 7-51.
- 8. Schechter, M. Basic theory of Fredholm operators / M. Schechter // Annali della Scuola Normale Superiore di Pisa. 1967. V. 21, \mathbb{N}^2 2, serie 3. P. 261–280.

Джавад Кадим Кхалаф Аль-Делфи, Доцент, Профессор, PhD, Кафедра математики, Факультет Науки, Мустансирия Университета,Багдад, Ирак

E-mail: jawadaldelfi@uomustansiriyah.edu.iq

Jawad Kadhim Khalaf Al-Delfi, Assistant Professor, PhD, Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

E-mail: jawadaldelfi@uomustansiriyah.edu.iq