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Abstract: In this article, a Barenblatt-Zheltov-Kochina model as an example on
linear Sobolev type equations , is introduced with a Cauchy condition in quasi-Banach
spaces. In this model, we are used quasi-Laplace operators which are defined on quasi-
Sobolev spaces.
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Ycaosue Komm ajisas Y paBaeHuii bapenoaarra-2KenroBa-Kounnoit
B KBazmbanaxosbix IIpocTpancTBax
HxaBan Kagnm Kxanad Agab-lenadn

Awnunoramus: B sToii craTbe, mogens Bapenbiaarra-2Kenrosa-Kounmoii B KauecTse npume-
pa JUHEHHBIX YpaBHEHHUI COOOJEBCKOTO THUITA, BBOAUTCS C ycaoBueM Komm B KBa3znmbaHaXOBBIX
MIPOCTPAHCTBAX. B 9TOit MOIENIN MCIOMb3YIOTCS KBA3UJIAILIACOBBI OIEPATOPDI, OMpPeIeIeHHbIE
Ha KBa3MCODOJIEBCKUX MPOCTPAHCTBAX.

KuroueBbie cjioBa: KBa3nbOaHAXOBBI IIPOCTPAHCTBA, KBA3MCODOJIEBBI TPOCTPAHCTBA, KBa-
suomnepaTop Jlammaca, yciosuem Korrm.

INTRODUCTION

Quasi-normed space (L - |) is a vector space i over a field F ( a set of real or complex
numbers)with quasi-norm ¢ - | , which differs from the norm only by « inequality » : Yu,v €
U ylu+ vl < Clylul +y [lv]), where a constant C' > 1. If C' = 1, then the quasi-norm becomes
a norm, and the quasi-normed space turns into a normed space. Generally, a quasi-normed space
is not normed space but metrizable [1]|, Lemma 3.10.1, then it is topological linear spaces and the
concepts of fundamental sequence and completeness are correct. A complete quasi-normed space
il is called quasi-Banach space[1,2] .

A monotonically increasing sequence {\;} < R, k € N such that klim A = 400 was used to
—00

construct quasi-Sobolev spaces [i":

a0 m q
I = {u = {ug} : k21 ()\,f |uk|> < +OO} .q€ (0,4 ),m € R, and then to define quasi- Laplace
operator Au = \ju on these spaces with its inverse A~lu = {)\gluk}—quasz’ Green’s operator. We
were proved [;* as a quasi-Banach space, and A -toplinear isomorphism operator [3,4,5].
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A Barenblatt-Zheltov-Kochina equation is the most famous non-classical equation simulating
the processes of filtration, thermal conductivity and moisture, which was studied in a concept of
Banach space and has received much attention in a lot of the references [6,7,8].

In this article, we introduce non homogeneous linear Sobolev type equation with Cauchy
condition in quasi-Banach spaces, and take model Barenblatt-Zheltov-Kochina as an example on
it.

1.Relatively p—Bounded Operators
Let 8 and § be quasi-Banach spaces. A linear operator L : I — § is called continuous if

klim Luy = L hm uy | for any sequence {ux} < 4, converging in il; and is called bounded if it
—00 k—o0

maps bounded sets to bounded sets.
A continuous linear operator L is called toplinear isomorphism if there exists an inverse operator
L' : § — 4, which is also continuous. The space of linear bounded operators £(4;F) is quasi-

Banach with the quasi-norm g5 [L] = sup gf Lul .
ulul=1
Theorem 1.For every q € (0, + o), m € R, [J" be a quasi-Banach space with g|u,, =

O a2 1/q
(57
Remark.We observe that the spaces £;' do not depend on choice of a sequence {M\} , and
there are dense and continuous embedding ¢ — £7* for n > m and g € R,. Also, we note that a

constant C = 24~ when q € (0,1), while C = 1 when g € [1,00) .

Theorem 2.For every ¢ € (0, + ), m € R, a quasi-Laplace operator A : l;”” — ' is a
toplinear isomorphism operator.

Let operators L,M € L(l;F), then a L-resolvent set:

pE(M) = {up e C: (uL — M)™' € L(F;4)} and a L-spectrum oZ(M) = C\p"(M) of an
operator M. Suppose pZ(M) # ¢, then operator-functions: (uL — M)*I,Rﬁ(M) = (uL — M)"'L
and Lﬁ(M ) = L(uL — M)~! are called L resolvent, right and left L resolvent of an operator M
respectively. We observe that:V, A, u € C,

(WL — M) (AL~ M)~ =T+ (A — )R (M) 1)

RY(M) — Ry (M) = (n— \Rj(M)RX(M), 2)
An operator M is said to be spectrally bounded with respect to an operator L (shortly, M (L,o)-
bounded ) if
JaeRy YueC (ju| >a) = (uep(M)).
Let an operator M (L,o)-bounded, and a contour:
v={peC: |u| =r>a}. Consider integrals of the type F. Rissa
P = —JRL Ydp, Q= -— | LL(M)dp.

211 211
5

Lemma 1 . Let an operator M(L,J)—bounded, then operators P € L(U) (= L(4U)) and Q €
L(F)(= L(F;F)) are projectors.

Proof. Take a contour 4 = {\ € C: |\ =7 > r}. According to the analyticity of integral
operators P and @ then,
P? = s g g RL(M RL( )dpd\ =

- (2;')2 ACMMJRL( )du+JR (M )dxfud“A _p

o vy 5 ol
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according to the Fubini theorem, residue theorems and the equation (2). We prove @ as a projector
operator Similarly. e
We observe that V u € i,
LPu = QLu. (3)

MPu = QMu. (4)

Let 40 (U') = kerP (imP), F° (§') = kerQ (im@Q), and Ly (My) is the restriction of an operator
L (M) to U*, k = 0,1.1t follows from the lemma 1 that the projectors P and @ split the spaces L
and § into direct sums Y = O DU and F=F' D FL.
Theorem 3 .(Sviridyuk-Jawad Al-Delfi Theorem) Let an operator M (L,o)-bounded, then
(i) operators Ly, M € L(UF:F*), k = 0,1;
(i) there are operators Lt € £(F5U) and Myt e £(F%;U0).
Proof.Clearly, the statement(i) follows from the relations (3),(4).
(i) Using the equation (1) when A = 0, by the continuity of an operator M, and by Lemma 1,
let f°e§°, then
1 d 1 d 1
Mo [t = w2 o [ By o (LR o = =1
8! 8! 8!

Now, let u° € 4°, then

_1dp 1 du 1 f I
— | (L — M)V =M’ = —— | S’ + — | RA(M)uCdp = —u®.
omi | )M 27m'f Ut o | Bty = —u
v v v
This means that an operator Mal is equal to a restriction of an operator fﬁ §(uL — M)_l%ii

5
on the subspace §°. Also, by Lemma 1, an operator Lfl is equal to a restriction of an operator

L {(uL — M)~ 'dp. on a subspace F'. o

2mi
v

According to Theorem 3, there are operators: H = My 'L e L(4°), S = LMy e L(uY).

We say that oo is a removable singularity point if H = Q; pole of order p € N if HP # O
and HPt! = Q; essential singularity point of L-resolvent of an operator M if H* # O, k € Nof
L-resolvent of an operator M. An operator M (L,0)-bounded is called M (L,p)-bounded if oo — is a
nonessential singularity point of its L-resolvent.

Cauchy Condition for Nonhomogeneous Equations

Let operators L,M € L(4;F), where il and § are quasi-Banach spaces. Consider linear Sobolev
type equation
Li = Mu + f. (5)

A vector function u : (a,b) — 4 ,(a,b) < R satisfying equation (5) is called a a solution of
this equation. The solution u = w(t) of the equation (5) will be called the solution of a Cauchy
problem.:

u(0) = up. (6)

For equation (5) (briefly, a solution to the problem (5), (6)) it in addition satisfies the Cauchy
condition (6) for some ug € $l.

A mapping U*® € C*(R; L(L)) is called a group of solving operators of a homogeneous equation
(5) if USU! = Us*t Vs,t € R, and for any ug € 4, the vector function u(t) = Ulug has solutions of
a homogeneous equation (5).
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Theorem 4. Let the operator M be (L,p)-bounded , p € {0} U N | point 0 € [a,b]. Then for
any fe C%([a,b];F) and any

Uy € {ueﬂ:u = — Z HkMol(HQ)f(k)(O)},
k=0

there is a unique solution u € C*([a,b]; 1) of problem (5) , (6) , which also has the form
» t
=~ Y VHFMN I - Q) f M (t) + Ulug + f U L7IQf(s)ds
k=0 0

Here the family of operators {U? : t € R} is a solving group of a homogeneous equation (5) .
Proof. According to Theorem 3, problem (5), (6) is reduced to two problems:

Hi® = u® + My f0,u°(0) = u (7)

ot = Sul + Lflfl,ul(O) = u(l), (8)

where uMvectors € U™, f™ € F™, m — 0.1. Operator S € L(U'), so problem (8) has a unique
solution u' € C®([a,b]; 1), is presented as:

¢
ut(t) = eud + fe(ts)SLl_lel(s)ds, where t € [a,b].
0

In order to consider the problem (7), we assume additionally that oo is a nonessential singularity
point of L-resolvent of an operator M.

Then, by successive differentiatinn equation (7) with respect to ¢t and premultiplying it by the
operator H from the left, we finally get

P 0
uO(t) = = > H*Mg* fB)(t), ¢ e [a,b].
k=0
Hence, it is clear that problem (7) is unsolvable if
P 0
up # — > H* Mgt f9(0). 9)
k=0

On the other hand, if (9) does not hold, then problem (7) has a unique solution u’ e
C*([a,b]; 4%). Let us describe the set of admissible intinal values of problem (7), i.e. such that
problem (7) is uniquely solvable. According to (9) and Theorem 3, this set has the form

Pr={uetl: ([-Q)(Mu+ > LMy ' f*(0)) = 0}.

k=0

Therefore, ug € {u elu=— Z H M (1 - Q) f*(0 )} . Thus, the theorem is proved.e

Example . Let 4 = ["+2, ,3" = lm LM € L(I7"%,17) set by the formulas L = A— A, M = aA,
where A € R and a € R\{0}. Since o(M) = {Mk eC: = % EeN\{l: A= )\l}}, then
M(L,o0)-bounded .Also,
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$10 — {0}7 1f)‘¢ {)‘k}v
fuet: up=0,keN\{l: XA=N\}};
O P DY oW
{fuell: up =0, N\ =A\}.
The subspaces §*, k = 0,1 are defined similarly.We observe that an operator M (L,0)-bounded.
Indeed, it is easy to show that in this case the operator H = Q.
Consider the Barenblatt-Zheltov-Kochina equation:

A=A)u = alAu+ f. (10)

If take Cauchy condition with equation (10), we have problem (10), (6).
Corollary. Let 0 € [a,b], then for any A € R, a € R\{0}, ¢ € Ry, f € C*([a,b]; £7) and any

ug € {ue EZHZ tu=—My (I—Q)f(0)},

there is a unique solution u € C*([a,b]; f;””) of the problem (10), (6), which also has the form:

t
u(t) = —Mo_l(]l —Q)f(t) + Ulug + fUtsLl_le(s)ds.
0

Proof.Since an operator M (L,0)-bounded, which is shown in the previous example, where
H = O and according to Theorem 4, then the desired result is satisfied.e
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