РЕШЕНИЕ ЗАДАЧИ МАЛЫХ ДЕФОРМАЦИЙ НА ГЕОМЕТРИЧЕСКОЙ СЕТИ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

 $C. A. Шабров^1, Д. A. Литвинов^2, Ф. O. Найдюк^1$

 $^{1}-Воронежский государственный университет; ^{2}-Воронежский государственный университет инженерных технологий$

Поступила в редакцию 15.02.2023 г.

Аннотация. В работе показано использование метода конечных элементов, предложенного Ю. В. Покорным и показавшего свою эффективность при решении уравнений на геометрическом графе для поиска решения задачи малых деформаций. Получена оценка отклонения точного решения от приближенного на геометрическом графе.

Ключевые слова: геометрический граф, дифференциальное уравнение, малые деформации, метод конечных элементов.

SOLUTION OF THE PROBLEM OF SMALL DEFORMATIONS ON A GEOMETRIC NETWORK BY THE FINITE ELEMENT METHOD

S. A. Shabrov, D. A. Litvinov, F. O. Naidyuk

Abstract. The paper presents the using of the finite element method proposed by Yu. V. Pokorny which has shown its effectiveness in identifying a geometric graphical solution for small deformations task. An estimate of the rejection of the exact solution from the approximate one on the geometric graph is obtained.

 $\textbf{Keywords} \hbox{: geometric graph, differential equation, small deformations, finite element method.}$

ВВЕДЕНИЕ

В последние десятилетия возрастает актуальность моделирования и исследований процессов в науке и технических приложениях, имеющих характер сетей, прежде всего в тех областях, где такая особенность обусловлена геометрическими свойствами исследуемых объектов. Прежде всего это заметно в бурно развивающихся приложениях нанотехнологий, где субатомный характер технологических задач предполагает кардинально новые подходы в моделировании процессов и явлений, проходящих в линейных фрагментах изучаемого объекта. Это только одно из возможных приложений математических моделей, которые используют формализмы эволюционных систем с локализованными особенностями на геометрических графах. Группа математиков, работавших под руководством профессора Ю.В. Покорного, создала качественную теорию краевых задач второго порядка на геометрическом графе. К настоящему времени для уравнений второго порядка с достаточно гладкими коэффициентами, рассматриваемых на геометрических графах, изучен вопрос о разрешимости задачи с краевыми условиями типа Штурма-Лиувилля при условиях трансмиссии во внутренних вершинах графа, вопрос о структуре спектра, получен аналог осцилляционной теоремы Штурма, установлен аналог формулы Даламбера, разработаны алгоритмы для численного решения.

[©] Шабров С. А., Литвинов Д. А., Найдюк Ф. О., 2023

Начато исследование задач на графе, когда коэффициенты и правая часть не только не являются непрерывными, но и могут иметь особенности типа дельта-функций и их производных. Здесь можно отметить работы следующих авторов: Ю. В. Покорного [1], [2], [3], А. В. Боровских [4], В. В. Провоторова [5], [6], М. Ш. Бурлуцкую, А. П. Хромова [7], С. А. Шаброва [8], [9] и других. Однако остается актуальным развитие имеющихся и разработка новых подходов для анализа математических моделей малых деформаций и вынужденных колебаний на геометрическом графе, численные методы и алгоритмы определения классических решений. В работах [10], [11] было рассмотрено построение численного метода для уравнения малых колебаний, а также оценка погрешности метода. В данной статье аналогичные действия будут проведены для системы малых деформаций.

Пусть Γ — геометрическая сеть из R^n , реализованная в виде открытого геометрического графа. Если ребра сети допускают достаточно гладкую параметризацию и не имеют самопересечений, можно считать их прямолинейными интервалами (не включая в них внутренние узлы). Тем самым удобно считать, что Γ состоит из некоторого набора непересекающихся интервалов

$$\gamma_i = (a_i, b_i) = \{x = a_i + \lambda(b_i - a_i) : 0 < \lambda < 1\}, (i = 1, 2, ..., N),$$

называемых ребрами и некоторой совокупности их концов. Множество этих концов обозначим через $I(\Gamma)$, а каждую его точку назовем внутрен- ней вершиной графа Γ . Концы интервалов γ_i , не включенные в $I(\Gamma)$, назовем граничными вершинами, их множество обозначим через $\partial\Gamma$, т.е. $\partial\Gamma=\{b_w,w=1,2,...,r\}$. Объединение всех ребер обозначим через $R(\Gamma)$. Тем самым, $\Gamma=R(\Gamma)\cup I(\Gamma)$.

Для исследования также понадобятся специальные функции μ и ν , имеющие следующий вид

$$\nu(b_w) = \begin{cases} 1, \text{если ориентация выбрана от вершины } b_w \in \partial \Gamma, \\ 0, \text{если ориентация выбрана к вершине } b_w \in \partial \Gamma, \end{cases}$$

 $\mu_i(\alpha) = \begin{cases}
1, если ориентация на ребре <math>\gamma_i$ выбрана к вершине α , $0, если ориентация на ребре <math>\gamma_i$ выбрана от вершины α .

ПОСТРОЕНИЕ АЛГОРИТМА ДЛЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ, ОПИСЫВАЮЩЕЙ МАЛЫЕ ДЕФОРМАЦИИ

Рассмотрим следующую математическую модель:

$$\begin{cases} -\frac{d}{d\Gamma} \left(p(x) \frac{du}{dx} \right) + u(x) q(x) = f(x) ,\\ K(b_w) u(b_w) + (-1)^{\nu(b_w)} p(b_w) u'_x(b_w) |_{b_w \in \partial \Gamma} = 0. \end{cases}$$
(1)

Данная модель описывает деформации растянутой сетки из струн, где в точках $b_w \in \partial \Gamma : w = \overline{1,r}$ установлены пружины с жесткостями $K(b_w)$. Здесь f(x)—плотность внешнего воздействия в точке $x \in \Gamma$, q(x)— плотность упругой реакции внешней среды в точке $x \in \Gamma$, p(x)— сила натяжения в точке $x \in \Gamma$, u(x)—отклонение точки от положения равновесия, произошедший под воздействием силы f(x), $K(b_w)$ —жесткости пружин, установленных в граничных точках $b_w \in \partial \Gamma : w = \overline{1,r}$, где r—количество точек из $\partial \Gamma$, где производную по Γ будем понимать в следующем смысле:

$$\frac{d(p(x)u'(x))}{d\Gamma} = \begin{cases} (p(x)u'(x))', x \in R(\Gamma), \\ \sum_{i=1}^{N} (-1)^{\mu_i(\alpha)} p_i(\alpha) u_i'(\alpha), \alpha \in I(\Gamma). \end{cases}$$

Пусть ребра графа занумерованы некоторым способом. Каждое ребро графа разобьем на конечное число интервалов (здесь ребро рассматривается как отрезок, лежащий в \mathbb{R}^n),

точки разбиения обозначим через $\{x_j^i\}$, где i номер ребра, $j=\overline{1,N_i}$ —номер точки i-го ребра, где N_i —количество точек на i-ом ребре . Здесь $i=\overline{1,N}$, где N количество ребер графа. Без ограничения общности можно считать $\{x_j^i\}$ на каждом ребре занумерованы в порядке возрастания в смысле ориентации. Таким образом, $\{x_0^i\}$ и $\{x_{N_i}^i\}$ —начало и конец i-го ребра.

Введем следующие функции:

$$\varphi_{j}^{i}(x) = \begin{cases} \frac{x - x_{j-1}^{i}}{x_{j}^{i} - x_{j-1}^{i}} & \text{для } x \in [x_{j-1}^{i}; x_{j}^{i}], \\ \frac{x - x_{j+1}^{i}}{x_{j}^{i} - x_{j+1}^{i}} & \text{для } x \in [x_{j}^{i}; x_{j+1}^{i}], \\ 0 & \text{для остальных } x, j = \overline{1, N_{i} - 1}; \end{cases}$$

$$(2)$$

$$\overline{\varphi}_0^i(x) = \begin{cases} \frac{x - x_1^i}{x_0^i - x_1^i} & \text{для } x \in [x_0^i; x_1^i], \\ 0 & \text{для остальных } x; \end{cases}$$
(3)

$$\overline{\varphi}_{N_{i}}^{i}(x) = \begin{cases} \frac{x - x_{N_{i}-1}^{i}}{x_{N_{i}}^{i} - x_{N_{i}-1}^{i}} & \text{для } x \in [x_{N_{i}-1}^{i}; x_{N_{i}}^{i}], \\ 0 & \text{для остальных } x. \end{cases}$$
(4)

Для каждой внутренней вершины $\alpha \in I(\Gamma)$ введем два множества индексов ребер, которые примыкают к ней: первое множество $I_1(\alpha)$ — это множество индексов ребер, для которых α является началом ребра, а второе $I_2(\alpha)$ — концом.

Введем теперь функцию

$$\varphi_{\alpha}(x) = \sum_{i \in I_1(\alpha)} \overline{\varphi}_0^i(x) + \sum_{i \in I_2(\alpha)} \overline{\varphi}_{N_i}^i(x).$$

Положим для каждой граничной точки b_w :

$$\overline{\varphi}_{b_w}(x) = \begin{cases} \overline{\varphi}_0^{i_0}(x), \text{если ориентация выбрана от вершины } b_w \in \partial \Gamma, \\ \overline{\varphi}_{N_{i_0}}^{i_0}(x), \text{если ориентация выбрана к вершине } b_w, \end{cases}$$

где i_0 — номер ребра, для которого b_w является граничной вершиной.

Базисные функции, которые состоят из $\varphi_j^i(x)$, $i=\overline{1,N}$, $j=\overline{1,N_i-1}$, $\varphi_\alpha(x)$, $\overline{\varphi}_{b_w}(x)$, занумеруем каким-либо способом.

Нетрудно видеть, что количество базисных функций равно

$$M = \sum_{i=1}^{N} (N_i - 1) + |I(\Gamma)| + |\partial \Gamma|,$$

где |X| — мощность конечного множества X.

Обозначим занумерованные функции через $\varphi_i(x)$ $(i=\overline{1,M})$.

Вместо искомой функции u(x) будем искать лишь ее значения в узловых точках и в связи с этим будем использовать в уравнениях вместо u(x) функцию

$$v(x) = \sum_{i=1}^{M} v_i \varphi_i(x), \tag{5}$$

где v_i — ее значение в узловой точке x_i , то есть в такой точке в которой $\varphi_i(x_i)=1$. Уравнение

$$-(p(x)u'_{x}(x))'_{\Gamma} + u(x)q(x) = f(x)$$

Решение задачи малых деформаций на геометрической сети методом конечных элементов

умножим на базисную функцию $\varphi_k(x)$ и проинтегрируем по Γ :

$$\int_{\Gamma} \left(-(p(x)u_x'(x))_{\Gamma}' + u(x)q(x) \right) \varphi_k(x) d\Gamma = \int_{\Gamma} f(x)\varphi_k(x) d\Gamma.$$

Разбивая интеграл в левой части последнего равенства на три, и проинтегрировав первый интеграл дважды по частям, второй — один раз, будем иметь

$$\int_{\Gamma} ((p(x)u_x'(x))\varphi_{k_x}'(x)dx + \int_{\Gamma} u(x)\varphi_k(x)q(x)d\Gamma + \sum_{w=1}^{r} K(b_w)\varphi_i(b_w)\varphi_k(b_w) =$$

$$= \int_{\Gamma} \varphi_k(x)f(x)d\Gamma; \ k = 1,..., M.$$

Поставив сюда вместо u(x) функцию (5), мы получим систему из M уравнением с M неизвестной

$$\sum_{i=1}^{M} v_{i} \int_{\Gamma} p(x)\varphi'_{i_{x}}(x)\varphi'_{k_{x}}(x)dx + \sum_{i=1}^{M} v_{i} \int_{\Gamma} \varphi_{i}(x)\varphi_{k}(x)q(x)d\Gamma +
+ \sum_{i=1}^{M} v_{i} \sum_{w=1}^{r} K(b_{w})\varphi_{i}(b_{w})\varphi_{k}(b_{w}) =
= \int_{\Gamma} \varphi_{k}(x)f(x)d\Gamma; \ k = 1,..., M. \quad (6)$$

Следующая величина

$$\langle \varphi, \psi \rangle = \int_{\Gamma} p(x)\varphi_x'(x)\psi_x'(x)dx + \int_{\Gamma} \varphi(x)\psi(x)q(x)d\Gamma + \sum_{w=1}^{r} K(b_w)\varphi_i(b_w)\varphi_k(b_w)$$

является билинейным симметричным функционалом в пространстве E — абсолютно непрерывных на Γ функций, первая производная которых суммируема с квадратом на Γ , кроме того, эти функции удовлетворяют условиям $K(b_w)X(b_w) + (-1)^{\nu(b_w)}p(b_w)X_x'(b_w)|_{b_w \in \partial \Gamma} = 0$.

Очевидно, что из неотрицательности p(x) и q(x) на Γ , $\langle \varphi, \varphi \rangle$ является неотрицательным и невырожденным. Более того $\langle \varphi, \varphi \rangle \geqslant 0$ для всякой φ , $\langle \varphi, \varphi \rangle = 0$ для всякой $\varphi = 0$.

Поэтому $\langle \varphi, \psi \rangle$ может служить скалярным произведением, коэффициенты матрицы системы (6) образуют матрицу Грамма системы- линейно независимых функций $\{\varphi_i(x)\}$. Поэтому определитель системы отличен от нуля. Отсюда следует, что (6) имеет единственное решение.

ОБ ОЦЕНКЕ ПОГРЕШНОСТИ

Здесь доказывается следующая теорема.

Теорема 1. Пусть u(x) — точное решение математической модели (1), v(x) — приближенное решение, найденное с помощью адаптированного метода конечных элементов при разбиении i—го ребра на N_i . Тогда, справедлива оценка

$$a(u-v,u-v) \leq C \cdot h$$
,

 $ede\ h = max\{\frac{l_i}{N}\},\ C\ не\ зависит\ om\ h,\ a\ a(u,u)$ —энергетическая норма:

$$a(u,u) = \int_{\Gamma} p(x)u'^{2}(x)dx + \int_{\Gamma} u(x)^{2}q(x)d\Gamma + \sum_{w=1}^{r} K(b_{w})u_{i}^{2}(b_{w}).$$

Доказательство. Нетрудно видеть, что задача, поиска решения математической модели (1) эквивалентна задаче минимизации квадратичного функционала I(v)=(Lv,v)-2(f,v), где $Lu=-(p(x)u_x'(x))_\Gamma+u(x)q(x)$ и $(u,v)=\int_\Gamma uv\ d\Gamma$, на множестве H^2 — абсолютно непрерывных на Γ функций u(x), первая производная которых абсолютно непрерывна на Γ и таких, что $K(b_w)u(b_w)+(-1)^{\nu(b_w)}p(b_w)u'(b)|_{b_w\in\partial\Gamma}=0$. Перепишем выражение- (Lv,v) в виде

$$(Lv,v) = \int_{\Gamma} -(p(x)v_x'(x))_{\Gamma}'vd\Gamma + \int_{\Gamma} v^2(x)q(x)d\Gamma =$$

$$= \sum_{w=1}^{r} (-1)^{\nu(b_w)} (-p(b_w)v_x'(b_w)v(b_w)) + \int_{\Gamma} (p(x)v_x'^2(x))dx + \int_{\Gamma} v^2(x)q(x)d\Gamma =$$

$$= \sum_{w=1}^{r} K(b_w)v^2(b_w) + \int_{\Gamma} (p(x)v_x'^2(x))dx + \int_{\Gamma} v^2(x)q(x)d\Gamma. \quad (7)$$

Таким образом, функционал, который необходимо минимизировать, принимает вид

$$\sum_{w=1}^{r} K(b_w) v^2(b_w) + \int_{\Gamma} (p(x)v_x'(x)^2) dx + \int_{\Gamma} v^2(x) q(x) d\Gamma - \int_{\Gamma} f(x) d\Gamma.$$
 (8)

Решение математической модели (1) и дает минимум функционалу (8) на H^2 . Функционал (8) можно определить на функциях u(x) у которых первая производная u'(x) суммируема с квадратом на Γ , то есть на \hat{H}^1 — пополнении H^2 по норме

$$||u||^2_{\hat{H}^1} = \int_{\Gamma} p(x)u'^2(x)dx + \int_{\Gamma} u^2(x)q(x)d\Gamma + \sum_{w=1}^r K(b_w)u_i^2(0).$$

Отметим, что такое расширение не может привести к уменьшению минимума: каждое новое значение I(v) есть предел $I(v_n)$, где $v_n \in H^2$ и $||v_n-v||_{\hat{H}^1} \to 0$, если u функция из \hat{H}^1 , на которой функционал I(v) принимает наименьшее значение. Если $u \in H^2$, доставляет минимум I(v), то она становится минимизирующей на \hat{H}^1 .

Доказательство в обратную сторону достаточно очевидно: минимизация I(v) на \hat{H}^1 приводит к математической модели (8). Таким образом, I(v) мы можем минимизировать на \hat{H}^1 . Другими словами, в качестве базисных функций мы можем действительно брать $\{\varphi_i(x)\}$.

Оценим разность между точным решением u(x) и полученным приближенным решением v(x).

Сначала оценим разность между точным решением и ее интерполянтом в энергетической норме (модуль разности между u(x) и v(x) будет еще меньше). Последнее основано на аналоге классического результата теории конечных элементов, а именно: предположим, что $u_0(x)$ минимизирует I(u) на множестве \hat{H}^1 , H_N — конечномерное его подпространство. Тогда

- 1) минимум $I(v_h)$ и минимум $\langle u-v_h,u-v_h\rangle$, где v_h пробегает подпространство H_N , достигается на одной и той же функции u_h ,
- 2) по отношению к энергетическому скалярному произведению u_h есть проекция u на H_N , или, что то же самое, ошибка $u-u_h$ ортогональна H_N . То есть

$$\langle u - u_h, v_h \rangle = 0$$
 для всех $v_h \in H_N$; (9)

3) функция u_h , на которой достигается минимум, удовлетворяет условиям

$$\langle u_h, v_h \rangle = (f, v_h)$$
 для всех $v_h \in \hat{H}^1$ (10)

И

$$\langle u, v \rangle = (f, v)$$
 для всех $v \in H_N$. (11)

Как и в классической теории, для нас эта теорема является ключевой. Более того, все три ее части тесно связаны.

Из 1) следует 2): в пространстве со скалярным произведением функция из подпространства H_N , ближайшая к заданной функции u, всегда является ее проекцией на H_N . Наоборот, 1) вытекает из 2): $\langle u - u_h - v_h, u - u_h - v_h \rangle = \langle u - u_h, u - u_h \rangle - 2\langle u - u_h, v_h \rangle + \langle v_h, v_h \rangle$. Если справедливо равенство (10), то

$$\langle u - u_h, u - u_h \rangle \geqslant \langle u - u_h - v_h, u - u_h - v_h \rangle.$$

Равенство возможно только тогда, когда $\langle v_h, v_h \rangle = 0$, т.е. $v_h = 0$. Таким образом, u_h — единственная функция на которой $\langle u - u_h, u - u_h \rangle$ достигает минимума, и утверждение 1) доказано.

Утверждение 2) непосредственно вытекает из 3): если равенство (11) справедливо для всех $v \in \hat{H}^1$, то оно справедливо и для $v_h \in H_N$. Вычитая из него (10) получаем утверждение второй части.

Осталось доказать утверждение 3) — из него вытекает 2), а из него следует 1). Если u_h минимизирует I(u) на H_N , то $I(u_h) \geqslant I(u_h + \varepsilon v_h)$ для всех ε и v_h , или, вспоминая, выражение I(u) через $\langle u,u \rangle$ и (f;u),

$$\langle u_h, u_h \rangle - 2(f; u_h) \leqslant$$

$$\langle u_h, u_h \rangle - 2(f; u_h) + 2\varepsilon [\langle u_h, v_h \rangle - (f; v_h)] + \varepsilon^2 \langle v_h, v_h \rangle. \quad (12)$$

Поэтому

$$0 \le 2\varepsilon [\langle u_h, v_h \rangle - (f; v_h)] + \varepsilon^2 \langle v_h, v_h \rangle.$$

Так как это верно для сколь угодно малого числа ε любого знака, то $\langle u_h, v_h \rangle = (f; v_h)$, которое и означает равенство нулю первой вариации функционала I(u) в точке u_h в направлении v_h . Таким образом. утверждение 3) доказано.

Интерполянт $u_I(x)$ точного решения u(x) математической модели (1) можно выразить через базисные функции следующим образом

$$u_I(x) = \sum_{i=1}^{M} u(x_i)\varphi_i(x),$$

где $\varphi_i(x)$ определены выше, а x_i —узловые точки, в которых соответствующая базисная функция $\varphi_i(x) = 1$.

Через w(x) обозначим разность $u(x)-u_I(x)$. Оценим |w(x)| в энергетической норме.

Оценим теперь близость $u_I(x)$ к u(x) по энергетической норме, т.е оценим a(w,w)

$$a(w,w) = \int_{\Gamma} p(x)w'(x)^2 dx + \int_{\Gamma} w^2(x)q(x)d\Gamma + \sum_{w=1}^r K(b_w)w^2(b_w).$$

Тогда, очевидно, что

$$a(w,w) = \sum_{i=1}^{N} \int_{\Gamma} p(x)w_i'(x)^2 dx + \sum_{i=1}^{N} \int_{\Gamma} w_i^2(x)q_i(x)d\Gamma + \sum_{w=1}^{r} K(b_w)w^2(b_w).$$

Обозначим x_k^i : $i=\overline{1,N};\ k=\overline{0,N_i-1}-k$ -ую точку разбиения i-го ребра графа, в число которых могут включаться и инцидентные внутренние точки из $I(\Gamma)$.

Тогда для всех $x \in [x_k^i, x_{k+1}^i]$ справедливо равенство

$$w_{i}(x) = \int_{x_{k}^{i}}^{x} w_{i}'(\xi)d\xi = \int_{x_{k}^{i}}^{x} \left(w_{i}'(x_{k}^{i}+0) + \int_{x_{k}^{i}+0}^{\xi} dw_{i}'\right)d\xi =$$

$$= w_{i}'(x_{k}^{i}+0)(x-x_{k}^{i}) + \int_{x_{k}^{i}}^{x} \int_{x_{k}^{i}+0}^{\xi} du_{i}'d\xi. \quad (13)$$

Отсюда получим:

$$|w_i(x)| \le |w_i'(x_k^i + 0)|h_i + h_i \bigvee_{x_k^i + 0}^{x_{k+1}^i - 0} (u_i').$$
(14)

$$|w_{i}'(x_{k}^{i}+0)| = \left|u_{i}'(x_{k}^{i}+0) - \frac{u_{i}(x_{k+1}^{i}) - u_{i}(x_{i_{k}})}{h_{i}}\right| \leq \frac{1}{h_{i}} \int |u_{i}'(x_{k}^{i}+0) - u_{i}'(\xi)| d\xi \leq \bigvee_{x_{k}^{i}+0}^{x_{k+1}^{i}-0} (u_{i}'). \quad (15)$$

Значит для всех $x \in [x_k^i, x_{k+1}^i]$

$$|w_i(x)| \le 2h_i \bigvee_{x_k^i + 0}^{x_{k+1}^i - 0} (u_i') \le 2h \bigvee_{\gamma_i} (u_i').$$
 (16)

Без ограничения общности можем считать, что p(x) = 1. Для начала сделаем следующее преобразование

$$\int_{\gamma_{i}} w_{i}^{\prime 2} dx = \int_{\gamma_{i}} w_{i}^{\prime} dw_{i} = w_{i}^{\prime} w_{i} \Big|_{0+0}^{1-0} - \int_{0+0}^{1-0} w_{i} d(w_{i}^{\prime}) =$$

$$= -\left(\sum_{j=0}^{N_{i}-1} \int_{x_{k}^{i}+0}^{x_{k}^{i}+1} w_{i} d(w_{i}^{\prime}) + \sum_{k=1}^{N_{i}-1} w_{i} (x_{k}^{i}) \triangle w_{i}^{\prime} (x_{k}^{i}) =$$

$$= -\sum_{j=0}^{N_{i}-1} \int_{x_{k}^{i}+0}^{x_{k}^{i}+1} w_{i} d(w_{i}^{\prime}) = -\sum_{j=0}^{N_{i}-1} \int_{x_{k}^{i}+0}^{x_{k}^{i}+1} w_{i} d(w_{i}^{\prime}). \quad (17)$$

Тогда для первого слагаемого имеем

$$\left| \int_{\gamma_{i}} pw_{i}^{\prime 2} dx \right| = \left| \sum_{k=0}^{N_{i}-1} \int_{x_{k}^{i}+0}^{x_{k}^{i}+1} w_{i} d(u_{i}^{\prime}) \right| \leqslant \sum_{k=0}^{N_{i}-1} \int_{x_{k}^{i}+0}^{x_{k}^{i}+1} w_{i}(x) d(u_{j}^{\prime}) \right| \leqslant \sum_{k=0}^{N_{i}-1} \sup_{[x_{k}^{i}, x_{k+1}^{i}]} |w_{i}| \bigvee_{x_{k}^{i}+0}^{x_{k+1}^{i}-0} (u_{i}^{\prime}) \leqslant \sum_{k=0}^{N_{i}-1} 2h_{i} \left(\bigvee_{\gamma_{i}} (u_{i}^{\prime}) \right)^{2} \leqslant 2 \left(\bigvee_{\gamma_{i}} (u_{i}^{\prime}) \right)^{2} \sum_{k=0}^{N_{i}-1} h_{i} \leqslant 2 \left(\bigvee_{\gamma_{i}} (u_{i}^{\prime}) \right)^{2} l_{i},$$

$$\int_{\Gamma} pw^{\prime 2}(x) dx = \sum_{w=1}^{r} \int_{\gamma_{i}} w_{i}^{\prime 2}(x) dx \leqslant h \cdot \widehat{C}_{2}. \quad (18)$$

Аналогично получим

$$\int_{\Gamma} w^{2}(x)q(x)d\Gamma = \sum_{i=1}^{N} \sum_{j=0}^{n_{i}-1} \int_{x_{j}^{i}+0}^{x_{j+1}^{i}-0} w_{i}^{2}(x)q_{i}(x)d\sigma_{i}(x) \leqslant$$

$$\leqslant \sum_{i=1}^{N} (\sum_{j=0}^{n_{i}-1} \sup_{x_{j}^{i}+0} w_{i}^{2} \bigvee_{x_{j}^{i}+0}^{x_{j+1}^{i}-0} (Q_{i})) \leqslant 4h^{2}(\bigvee_{\Gamma} (u'))^{2} \bigvee_{\Gamma} (Q), \quad (19)$$

где $Q_i = \int_0^x q_i(x) d\sigma_i$, Q(x)—функция, определенная на всем графе и на i-ом ребре совпадающая с $Q_i(x)$. (h_i мало и изначально может быть взято меньшим единицы); константа \hat{C}_3 от h_i не зависит.

Так как
$$w(b_w) = w(0) = 0$$
, то $\sum_{w=1}^r K(b_w)w^2(0) = 0$.

Соединяя теперь неравенства (17), (18) и (19), мы получим требуемое неравенство. Теорема доказана.

ПРОГРАММА ДЛЯ РЕШЕНИЯ ЗАДАЧ

Программа предназначена для поиска решения систем уравнений с краевыми условиями на геометрической сети методом конечных элементов. Данные системы используются для моделирования различных сетей, таких как нефтепроводы, газопроводы, электрическая сеть и другие.

Входными данными будут следующие величины: $_deg1$ —количество ребер, примыкающих к перемычке с левой стороны; $_deg2$ —количество ребер, примыкающих к перемычке с правой стороны; $_p$ —функция силы натяжения струны; $_q$ —функция упругости струны в точке x; $_qa$ —упругость струны в точках из $I(\Gamma)$; $_F$ —функция плотности внешней силы в точке x; $_fa$ —функция плотности внешней силы в точках из $I(\Gamma)$; $_K$ —жесткости пружин, установленных в граничных точках.

Далее коэффициенты системы, для которой ищется решения с помощью написанной программы, обозначены также, как в (1)

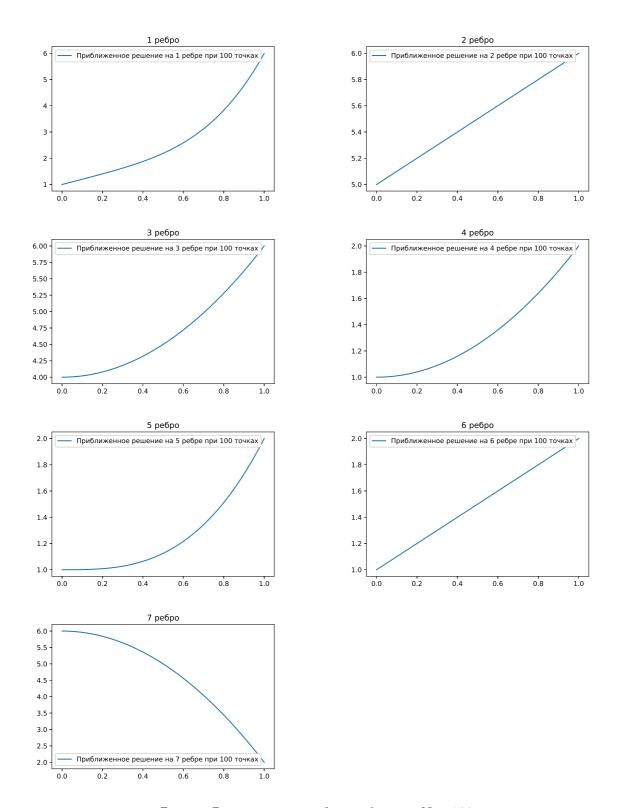


Рис. 1. Решение на каждом ребре при N=100

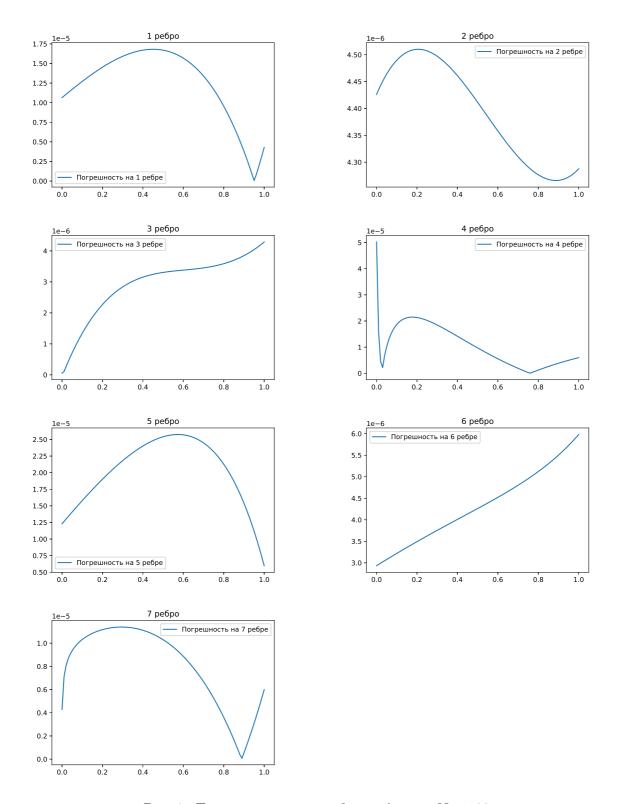


Рис. 2. Погрешность на каждом ребре $npu\ N=100$

$$p_1(x)=x+3; p_2(x)=x+1; p_3(x)=x+2; p_4(x)=x;$$

$$p_5(x)=x; p_6(x)=x+2; p_7(x)=x;$$

$$q_1(x)=2x; q_2(x)=3x^2-1; q_3(x)=5x-3; q_4(x)=6x-4;$$

$$q_5(x)=5x+7; q_6(x)=8x^3; q_7(x)=3x^2;$$

$$f_1(x)=-12x^3-36x^2\ (x+3)+2x\ (3x^4+2x+1)-2;$$

$$f_2(x)=(x+5)\ (3x^2-1)-1;$$

$$f_3(x)=-8x+(5x-3)\ (2x^2+4)-8; f_4(x)=-4x+(6x-4)\ (x^2+1);$$

$$f_5(x)=-9x^2+(5x+7)\ (x^3+1)\ ; f_6(x)=8x^3\ (x+1)-1;$$

$$f_7(x)=3x^2\cdot (6-4x^2)+16x;$$
 Значения функций коэффициентов на $I(\Gamma)$ будут следующими:
$$q_1(1)=q_2(1)=q_3(1)=q_7(0)=2; q_4(1)=q_5(1)=q_6(1)=q_7(1)=3;$$

$$f_1(1)=f_2(1)=f_3(1)=f_7(0)=82; f_4(1)=f_5(1)=f_6(1)=f_7(1)=6;$$

$$K_1(0)=6;\ K_2(0)=0.2;\ K_3(0)=0.0;$$

$$K_4(0)=0.0;\ K_5(0)=2.0;\ K_6(0)=0.0\ (20)$$

Выходными данными будут: графики функций u(x); графики отклонения приближенного решения от точного.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дифференциальные уравнения на геометрических графах/ Ю. В. Покорный, О. М. Пенкин, В. Л. Прядиев и др. М.: Физматлит. 2004. 272 с.
- 2. Покорный, Ю. В. Об уравнениях на пространственных сетях /Ю. В. Покорный, О. М. Пенкин, В. Л. Прядиев // Успехи матем. наук. 1994. Т. 49, № 4. С. 140.
- 3. Покорный, Ю. В. О дифференциалах Стилтьеса на геометрических графах / Ю. В. Покорный, М. Б. Зверева, Ж. И. Бахтина // Доклады РАН. 2008. Т. 423, № 4. С. 452—454.
- 4. Об одном классе дифференциальных уравнений на пространственной сети / А. В. Боровских, Р. Мустафокулов, К. П. Лазарев, Ю. В. Покорный // Доклады РАН. 1995. Т. 345, № 6. С. 730—732.
- 5. Волкова, А. С. Обобщенные решения и обобщенные собственные функции краевых задач на геометрическом графе / А. С. Волкова, В. В. Провоторов // Известия высших учебных заведений. Математика. 2014. № 3. С. 3-18.
- 6. Гнилицкая, Ю. А. Управление системами с распределенными параметрами на геометрическом графе / Ю. А. Гнилицкая, В. В. Провоторов // Вестник Тамбовского ун-та. Сер. Естественные и технические науки. 2013. Т. 18, № 5–2. С. 2483—2485.
- 7. Бурлуцкая, М. Ш. Смешанная задача для простейшего гиперболического уравнения первого порядка с инволюцией / М. Ш. Бурлуцкая, А. П. Хромов // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2014. Т. 14, \mathbb{N} 1. С. 10–20.
- 8. Шабров, С. А. Адаптация метода конечных элементов для математической модели с негладкими решениями / С. А. Шабров // Вести. Воронеж, гос. ун-та. Сер. Физика, математика. 2016. \mathbb{N} 2. С. 153–164.
- 9. Шабров, С. А. Математическое моделирование и качественные методы анализа граничных задач с производными по мере / С. А. Шабров : Дисс. доктора физ.—мат. наук Воронеж. гос. ун-т ; 2017.-412 с.

- 10. Шабров, С. А. Об адаптации метода конечных элементов для математической модели на геометрическом графе / С. А. Шабров, Д. А. Литвинов // Современные методы теории функций и смежные проблемы : Материалы Международной конференции Воронежская зимняя математическая школа, Воронеж, 28 января -02 февраля 2021 года. Воронеж, 2021. С. 304–308.
- 11. Shabrov, S. A. Adaptation of the finite element method for a mathematical model on a geometric graph / S. A. Shabrov, D. A. Litvinov // IOP Conf. Series: Journal of Physics: Conf. Series. -2021.-V. 1902. -P. 012087.

REFERENCES

- O.M., Pryadiev V.L. 1. Pokorny Y.V., Penkin et. al. Differential on geometrical graphs. [Pokornyj Yu.V., Penkin O.M., Pryadiev V.L. i dr. Diffegeometricheskix rencial'nye uravneniya na grafax. Moscow: Fizmatlit, 2004, 272 p.
- 2. Pokorny Yu.V., Penkin O.M., Pryadiev V.L. On equations on spatial networks. [Pokornyj YU.V., Penkin O.M., Pryadiev V.L. Ob uravneniyah na prostranstvennyh setyah]. *Uspexi matematicheskix nauk Russian Mathematical Surveys*, 1994, vol. 49, no. 4, pp. 140.
- 3. Pokorny Yu.V., Zvereva M.B., Bakhtina Zh.I. On Stieltjes differentials on geometric graphs. [Pokornyj YU.V., Zvereva M.B., Bahtina ZH.I. O differencialah Stilt'esa na geometricheskih grafah]. Doklady Akademii nauk Doklady Mathematics, 2008, vol. 423, no. 4, pp. 452–454.
- 4. Borovskikh A.V., Mustafokulov R., Lazarev K.P., Pokorny Yu.V. On a class of differential equations on a spatial network. [Borovskih A.V., Mustafokulov R., Lazarev K.P., Pokornyj YU.V. Ob odnom klasse differencial'nyh uravnenij na prostranstvennoj seti]. *Doklady Akademii nauk Doklady Mathematics*, 1995, vol. 345, no. 6, pp. 730–732.
- 5. Volkova A.S., Provotorov V.V. Generalized solutions and generalized eigenfunctions of boundary value problems on a geometric graph. [Volkova A.S., Provotorov V.V. Obobshchennye resheniya i obobshchennye sobstvennye funkcii kraevyh zadach na geometricheskom grafe]. *Izvestiya vysshix uchebnyx zavedenij. Matematika Russian Mathematics*, 2014, no. 3, pp. 3–18.
- 6. Gnilitskaya Yu.A., Provotorov V.V. Control of Systems with Distributed Parameters on a Geometric Graph. [Gnilickaya YU.A., Provotorov V.V. Upravlenie sistemami s raspredelennymi parametrami na geometricheskom grafe]. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki Bulletin of the Tambov University. Series Natural and technical sciences, 2013, vol. 18, no. 5–2, pp. 2483–2485.
- 7. Burlutskaya M.Sh., Khromov A.P. Mixed problem for the simplest first-order hyperbolic equation with involution. [Burluckaya M.SH., Hromov A.P. Smeshannaya zadacha dlya prostejshego giperbolicheskogo uravneniya pervogo poryadka s involyuciej]. *Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika Proceedings of the University of Saratov. New series. Series: Mathematics. Mechanics. Informatics*, 2014, vol. 14, no. 1, pp. 10–20.
- 8. Shabrov S.A. Adaptation of the finite element method for a mathematical model with nonsmooth solutions. [SHabrov S.A. Adaptaciya metoda konechnyh elementov dlya matematicheskoj modeli s negladkimi resheniyami]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika Proceedings of the University of Saratov. New series: Mathematics. Mechanics. Informatics, 2016, no. 2, pp. 153–164.
- 9. Shabrov S.A. Mathematical modeling and qualitative methods for the analysis of boundary value problems with derivatives with respect to measure. [SHabrov S.A. Matematicheskoe modelirovanie i kachestvennye metody analiza granichnyh zadach s proizvodnymi po mere]. Dissertation for the Doctor of Physical and Mathematical Sciences, Voronezh State University, 2017, 412 p.
 - 10. Shabrov S.A., Litvinov D.A. On the adaptation of the finite element method for a

mathematical model on a geometric graph. [SHabrov S.A., Litvinov D.A. Ob adaptacii metoda konechnyh elementov dlya matematicheskoj modeli na geometricheskom grafe]. Modern methods of function theory and related problems: Proceedings of the International Conference Voronezh Winter Mathematical School, Voronezh, January 28 – February 02, 2021. Voronezh, 2021, pp. 304–308. 11. Shabrov S.A., Litvinov D.A. Adaptation of the finite element method for a mathematical model on a geometric graph. IOP Conf. Series: Journal of Physics: Conf. Series, 2021, vol. 1902, p. 012087.

Шабров Сергей Александрович, доктор физико-математических наук, профессор кафедры математического анализа Воронежского государственного университета, Воронеж, Российская Федерация E-mail: shabrov s a@math.vsu.ru

Shabrov Sergey Alexandrovich, Doctor of Physics and Mathematics, Head of the Department of Mathematical Analysis, Faculty of Mathematics, Voronezh State University, Voronezh, Russia E-mail: shabrov s a@math.vsu.ru

Литвинов Дмитрий Анатольевич, кандидат физико-математических наук, старший преподаватель кафедры информационных технологий, моделирования и управления Воронежского государственного университета инженерных технологий, Воронеж, Российская Федерация E-mail: d77013378@yandex.ru Litvinov Dmitriy Anatolievich, Candidate of Physical and Mathematical Sciences, senior teacher of the Department of information technologies, modeling and management, Voronezh State University of Engineering technologies, Voronezh, Russian Federation E-mail: d77013378@yandex.ru

Найдюк Филипп Олегович, кандидат физико-математических наук, Воронежский государственный университет, Воронеж, Российская Федерация E-mail: xakepph@yandex.ru

Naidyuk Philip Olegovich, Candidate of Physical and Mathematical Sciences, Voronezh State University, Voronezh, Russian Federation E-mail: xakepph@yandex.ru