ОБРАТНАЯ ЗАДАЧА ТИПА ГУРСА ДЛЯ МНОГОМЕРНЫХ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ ВИДА АЛЛЕРА

Т. Д. Омуров, А. О. Рыспаев

Кыргызский национальный университет имени Жусупа Баласагына, Бишкек Кыргызстан

Поступила в редакцию 17.11.2020 г.

Аннотация. В данной работе, с учетом аналитико-регуляризационных методов исследована многомерная обратная задача с условиями типа Гурса, где вырождается двумерное интегральное уравнение Вольтерра-Фредгольма первого рода. Далее, на основе разработанных системных алгоритмов разработан численный метод решения этого уравнения, причем построенные разностные (сеточные) аналоги схемы являются устойчивыми.

Ключевые слова: уравнение Вольтерра-Фредгольма, обратная задача, разностные схемы, квадратурная формула, метод регуляризации, численно-системный алгоритм.

THE INVERSE PROBLEM OF THE TYPE OF THE GURS FOR MULTIDIMENSIONAL HYPERBOLIC EQUATIONS OF THE ALLER TYPE

T. D. Omurov, A. O. Ryspaev

Abstract. In this work by analytic-regularization methods we investigate a multidimensional inverse problem with Goursat type conditions ,where a two-dimensional first kind Volterra-Fredholm integral equation degenerates. Further, a numerical method for solving this equation is elaborated on the base of developed system algorithm while the constructed of difference (grid) scheme analogues are stable.

Keywords: Volterra-Fredholm equation, inverse problem, difference schemes, quadrature formula, method of regularization, numerically-system algorithm.

ВВЕДЕНИЕ

В указанной области отметим работы [3–5, 7, 10], где изучаются обратные задачи для дифференциальных уравнений в частных производных гиперболического типа, сводящиеся к одномерным уравнениям Вольтерра и Вольтерра-Фредгольма первого рода [6, 9, 11]. При этом с учетом метода регуляризации доказаны достаточные условия разрешимости изучаемых задач. В работах [1, 2] предлагается численный алгоритм на основе метода регуляризации. Изучаемые классы задач встречаются в области задач геофизики, в теории электромагнитных зондирований, слоистых сред [4, 5] и др.

В нашем случае рассмотрена многомерная обратная задача влагопереноса с интегральной зависимостью. Исходная задача трансфор-мируется к системе уравнений Вольтерра-Фредгольма первого рода. На основе аналитико-регуляризационных методов работы [8] разработан регуляризационно-численный алгоритм решения указанного уравнения.

[©] Омуров Т. Д., Рыспаев A. O., 2022

1. РЕГУЛЯРИЗАЦИЯ ОБРАТНОЙ ЗАДАЧИ С ИНТЕГРАЛЬНОЙ ЗАВИСИМОСТЬЮ

В данном разделе изучим многомерную обратную задачу с условиями типа Гурса. На основе метода регуляризации доказаны достаточные условия разрешимости в классе $W_n = (C_n^{1,1,1}(\Omega); C_n^{1,0}(D_0)).$

Пусть задается гранично-обратная задача:

$$u_{xyt}(x,y,t) + a(y)u_{xt} = f(x,y,t,u,u_y), (1.1)$$

$$\begin{cases} u(x,0,t) = (G_0z)(x,t), \\ (u_y + au)|_{x=0} = \varphi(y,t), \\ (u_y + au)|_{t=0} = 0, \end{cases}$$
 (1.2)

$$u(x,y,t)|_{y=y_0} = g(x,t), (0,\infty)y_0$$
 — фиксированная точка, (1.3)

где требуется определить функции (u,z), так как:

$$G_0 z = \int_0^t K(x, t, s) z(x, s) ds + \lambda \int_0^T \int_0^{N_0(x)} H_0 \left(x, t, s, \tau, \int_0^s z(\tau, s') ds' \right) d\tau ds.$$
 (1.4)

При этом φ,g,f — известные n —мерные векторные функции, соответственно $\varphi\in C_n^{0,1}(R_+\times[0,T]),\ g\in C_n^{1,1}(D_0=[0,X]\times[0,T]),\ f\in C_n^{0,0,0,1,1}(\Omega\times R\times R),\ \Omega=[0,X]\times R_+\times[0,T];$ функции $a(y)\geqslant 0,\ \varphi(y,t)$ интегрируемы по y в $R_+=[0,\infty).$ Кроме того $K(x,t,s),H_0(x,t,s,\tau,l)-n\times n$ матричные функции, причем $K\in C_n^{1,1,1}(D_3);\ K_t^{(i)}(x,t,t)\equiv 0,\ (i=0,1),\ D_3=D_0\times\{0\leqslant s\leqslant t\leqslant T\}, H_0(x,t,s,\tau,l)\in C_n^1(D_4),\ D_4=D_0\times\{0\leqslant \tau\leqslant X\}\times R,\ H_0|_{s=t}\equiv 0,\ H_0|_{\tau=x}\equiv 0.$ Функция $N_0(x)\in C^1[0,X],\ 0\leqslant N_0(x)\leqslant x\leqslant X,\ a\ z(x,0)=q={\rm const},\ G_0-{\rm оператор}$ типа Вольтерра—Фредгольма, $0<\lambda$ — известный параметр.

Так как искомые функции (u;z) являются n-мерными векторными функциями, то $u(x,y,t)\in C_n^{1,1,1}(\Omega), z(x,t)\in C_n^{1,0}(D_0).$

1. Исследуем задачу (1.1)-(1.3) в $C_n^{1,1,1}(\Omega)$. Проведя подстановку

$$u_y + au = Ve^{-y} + \varphi(y,t), \quad \forall (x,y,t) \in \Omega,$$
 (1.5)

где V — новая искомая функция и

$$x = 0: V(0,y,t) = 0, t = 0: V(x,y,0) + \varphi(y,0) = 0, V(x,y,0) = 0, \forall (x,y,t) \in \Omega = [0,X] \times R_{+} \times [0,T],$$
 (1.6)

получим

$$u(x,y,t) = e^{-\int_{0}^{y} a(s)ds} \cdot \psi(x,t) + \int_{0}^{y} e^{-\int_{s}^{y} a(s')ds'} \cdot \{e^{-s}V(\eta,s,\tau) + \varphi(s,t)\}ds \equiv (A_{1}V)(x,y,t), \quad (1.7)$$

где $\psi(x,t)$ — пока неизвестная функция. Тогда учитывая (1.3), имеем:

$$g(x,t) = e^{-\int_{0}^{y_0} a(s)ds} \cdot \psi(x,t) + \int_{0}^{y_0} e^{-\int_{s}^{y_0} a(s')ds'} \{e^{-s}V(\eta,s,\tau) + \varphi(s,t)\}ds,$$

отсюда определяется функция:

$$\psi(x,t) = \left[g(x,t) - \int_{0}^{y_0} e^{-\int_{s}^{y_0} a(s')ds'} \{ e^{-s}V(s,x,t) + \varphi(s,t) \} ds \right] e^{\int_{0}^{y_0} a(s)ds}.$$
 (1.8)

Подставляя функцию $\psi(x,t)$ в (1.7), получим

$$u(x,y,t) = e^{-\int_{y_0}^{y} a(s)ds} \left[g(x,t) - \int_{0}^{y_0} e^{-\int_{s}^{y_0} a(s')ds'} \{e^{-s}V(s,x,t) + \varphi(s,t)\} ds \right] + \int_{0}^{y} e^{-\int_{s}^{y} a(s')ds'} \{e^{-s}V(s,x,t) + \varphi(s,t)\} ds \equiv (AV)(x,y,t).$$

$$(1.9)$$

Основываясь на (1.3), (1.7) из (1.1), следует

$$V_{xt} = f(x, y, t, A_1 V, V e^{-y} + \varphi(y, t) - a \cdot A_1 V). \tag{1.10}$$

Интегрируя уравнение (1.10) по x и t, имеем интегральное уравнение второго рода:

$$V(x,y,t) = \int_{0}^{x} \int_{0}^{t} f(\eta,y,\tau,(A_1V)(\eta,y,\tau),V(\eta,y,\tau)e^{-y} + \varphi(y,\tau) - a \cdot (A_1V)(\eta,y,\tau))d\tau d\eta \equiv (Q_1V)(x,y,t).$$
(1.11)

Утверждение 1. Пусть

$$\begin{cases}
\sqrt{n}L_f[2N_0 + 1 + ||a||_c 2N_0]XT = d < 1, \\
L_{1f} = \sup_{\Omega} ||f_{l_1}(x, y, t, l_1, l_2)||, L_{2f} = \sup_{\Omega} ||f_{l_2}(x, y, t, l_1, l_2)||, L_f = \max(L_{1f}, L_{2f})
\end{cases}$$
(1.12)

$$\begin{cases}
Q_1: S_r(V_0) \to S_r(V_0) = \{V: |V - V_0| \le r = \text{const}, \forall (x, y, t) \in \Omega\}, \\
\|Q_1 V_0 - V_0\| \le (1 - d)r.
\end{cases}$$
(1.13)

Тогда уравнение (1.11) однозначно разрешимо в $C^{1,0,1}(\Omega)$.

Действительно, первое условие (1.12) означает сжимаемости оператора Q_1 , так как d является коэффициентом сжимаемости оператора Q_1 ,

$$\|Q_1V - Q_1\widetilde{V}\| \le \sqrt{n}L_f[2N_0 + 1 + \|a\|_c 2N_0]XT \cdot \|V - \widetilde{V}\| = d\|V - \widetilde{V}\|.$$

Второе условие (1.13) означает, что оператор Q_1 отображает область определения в себя, так как при условии $\|Q_1V_0-V_0\| \leq (1-d)r$, имеет место

$$|Q_1V - V_0| = |Q_1V - Q_1V_0 + Q_1V_0 - V_0| \le d\|V - V_0\| + (1 - d)r \le dr + (1 - d)r = r.$$

Из полученных результатов следует, что для оператора Q_1 реализуются условия принципа Банаха [12], тогда существует единственное решение (1.11) в $C^{1,0,1}(\Omega)$.

Поэтому уравнения (1.11) строится по правилу Пикара:

$$V_{n+1} = Q_1 V_n, \quad (n = 0, 1, 2, ...),$$
 (1.14)

с оценкой погрешности $\|V-V_n\|\leqslant d^nr$ $\underset{n\to\infty}{\overset{d<1}{\longrightarrow}}$ 0, где V_0 — начальное приближение.

2. Далее, учитывая (1.2), (1.4) и G_0z для построения функции z(x,t), имеем систему уравнений Вольтерра-Фредгольма первого рода:

$$\begin{cases}
\int_{0}^{t} K_{t}(x,t,s)z(x,s)d\tau ds + \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} H_{0t}\left(x,t,s,\tau,\int_{0}^{s} z(\tau,s')ds'\right) d\tau ds = F'_{t}(x,t), \\
F(x,t) \equiv \left[g(x,t) - \int_{0}^{y_{0}} e^{-\int_{s}^{y_{0}} a(s')ds'} \left\{e^{-s}V(s,x,t) + \varphi(s,t)\right\}ds\right] e^{\int_{0}^{y_{0}} a(s')ds'},
\end{cases} (1.15)$$

где $0 < \lambda$ —не является характеристическим значением уравнения (1.15). Система (1.15) приводится к виду:

$$\int_{0}^{t} K_{ts}(x,t,s) \int_{0}^{s} z(x,s')ds'ds - \lambda \int_{0}^{T} \int_{0}^{N_{0}(s)} \left(H_{0t}(x,t,s,\tau,\int_{0}^{s} z(s')ds') d\tau ds = -F'_{t}(x,t).$$
 (1.16)

Введя подстановку вида

$$\int_{0}^{t} z(x,s)ds = \theta(x,t), \theta(x,0) = 0,$$
(1.17)

получим

$$\begin{cases} (G\theta)(x,t) \equiv \int_{0}^{t} K_{0}(x,s)\theta(x,s)ds + \int_{0}^{t} K_{1}(x,t,s)\theta(x,s)ds + \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} H(x,t,s,\tau,\theta(\tau,s))d\tau ds = \\ = -F'_{t}(x,t), \\ \int_{0}^{t} z(x,s)ds = \theta(x,t), \\ K_{0}(x,s) \equiv K_{ts}(x,s,s); 0 \leqslant K_{1}(x,t,s) \equiv K_{ts}(x,t,s) - K_{ts}(x,s,s); -H_{0t}(x,t,s,\tau,\theta(\tau,s)) \equiv \\ \equiv H(x,t,s,\tau,\theta(\tau,s)) \geqslant 0, \\ (\lambda > 0), \end{cases}$$

при этом для $n \times n$ -матричной функции $C_n(D_0)K_0(x,s)$, требуется, что $\gamma_i(x,s)$, $(i=\overline{1,n})$ собственные значения этой матрицы причем

$$\gamma_i(x,s) \geqslant \alpha > 0. \tag{*}$$

Введем возмущенную систему

$$\begin{cases}
\varepsilon \theta_{\varepsilon}(x,t) + (G\theta_{\varepsilon})(x,t) = -F'_{t}(x,t), \, \theta_{\varepsilon}(x,0) = 0, \\
\delta z_{\delta}(x,t) + \int_{0}^{t} z_{\delta}(x,s)ds = \theta_{\varepsilon}(x,t) + \delta z(x,0), \\
\widetilde{F}(x,t) \equiv F'_{t}(x,t),
\end{cases} (1.19)$$

где ε , δ — малые параметры.

Если $W(x,t,0,\varepsilon)$ — матричная функция Коши системы

$$\theta_{\varepsilon t} + \frac{1}{\varepsilon} K_0 \theta_{\varepsilon} = F_0(x, t), \, \theta_{\varepsilon}(x, 0) = 0,$$
(1.20)

то на основе неравенства Важевского [8], имеет место:

$$W(x,t,s,\varepsilon) \equiv e^{-\int_{s}^{t} \frac{K_{0}(x,\tau)d\tau}{\varepsilon}}; \qquad \|W(x,t,s,\varepsilon)\| \leqslant \sqrt{n}e^{-\frac{\alpha}{\varepsilon}(t-s)}, \quad (s \leqslant t).$$
 (1.21)

Поэтому, учитывая (1.21) первое уравнение системы (1.19) преобразуется к виду:

$$\theta_{\varepsilon}(x,t) = -\frac{1}{\varepsilon} \int_{0}^{t} W(x,t,s,\varepsilon) K_{0}(x,s) \cdot \left\{ -\frac{1}{\varepsilon} \int_{0}^{s} \left[K_{1}(x,s,s') - K_{1}(x,s',s') \right] \theta_{\varepsilon}(x,s') ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta_{\varepsilon}(\tau,s')) - H(x,s,s',\tau,\theta_{\varepsilon}(\tau,s')) \right] d\tau ds' \frac{1}{\varepsilon} \widetilde{F}(x,s) \right\} ds - \frac{1}{\varepsilon} \int_{0}^{t} \left[K_{1}(x,t,s') - K_{1}(x,s',s') \right] \theta_{\varepsilon}(x,s') ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} H(x,t,s',\tau,\theta_{\varepsilon}(\tau,s')) d\tau ds' \frac{1}{\varepsilon} \widetilde{F}(x,t),$$

$$\theta_{\varepsilon}(x,t) = -\frac{1}{\varepsilon} \int_{0}^{t} W(x,t,s,\varepsilon) K_{0}(x,s) \cdot \left\{ -\frac{1}{\varepsilon} \int_{0}^{s} \left[K_{1}(x,s,s') - K_{1}(x,s',s') \right] \theta_{\varepsilon}(x,s') ds' + \frac{1}{\varepsilon} \int_{0}^{t} \left[K_{1}(x,t,s') - K_{1}(x,s',s') \right] \theta_{\varepsilon}(x,s') ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta_{\varepsilon}(\tau,s')) - H(x,s,s',\tau,\theta_{\varepsilon}(\tau,s')) \right] d\tau ds' - \frac{1}{\varepsilon} (\widetilde{F}(x,s) - \widetilde{F}(x,t)) ds' - \frac{1}{\varepsilon} W(x,t,0,\varepsilon) \times \left\{ \int_{0}^{t} \left[K_{1}(x,t,s') - K_{1}(x,s',s') \right] \theta_{\varepsilon}(x,s') ds' - \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} H(x,t,s',\tau,\theta_{\varepsilon}(\tau,s')) d\tau ds' + \widetilde{F}(x,t) \right\} = \left(\aleph_{0}\theta_{\varepsilon} \right) (x,t,\varepsilon).$$

$$(1.22)$$

Аналогично получим

$$\begin{cases}
z_{\delta}(x,t) = -\frac{1}{\delta^{2}} \int_{0}^{t} W_{0}(x,t,s,\delta)(\theta_{\varepsilon}(x,s) - \theta_{\varepsilon}(x,t))ds + \frac{1}{\delta}W_{0}(x,t,0,\delta)\theta_{\varepsilon}(x,t) + \\
+W_{0}(x,t,0,\delta)z(x,0), \\
\|W_{0}(x,t,0,\delta)\| \leqslant \sqrt{n}e^{-\frac{1}{\delta}t}.
\end{cases} (1.23)$$

Сначала, оценим (1.22), т. е

$$\begin{cases} \|\theta_{\varepsilon}\| \leqslant m_0 \|\theta_{\varepsilon}\|_{C_n} + M_1, \\ 0 < M_1 = \sqrt{n} (2L_{K_1} \frac{1}{\alpha^2} C_0 T_0 + L_{K_1} e^{-1} \frac{1}{\alpha}) \cdot T + \sqrt{n} (L_F \frac{1}{\alpha^2} C_0 + \lambda L_H \frac{1}{\alpha} e^{-1}), \\ 0 < m_0 = \sqrt{n} (2L_H \frac{1}{\alpha^2} C_0 T_0 \lambda + L_H \frac{1}{\alpha} e^{-1} \lambda) T < 1, \\ T_0 = \sup_{D_0} \|K_0(x,t)\|, C_0 = \int_0^\infty e^{-z} z dz = 1. \end{cases}$$

где $0 < L_{K_1}, L_{\widetilde{F}}, L_H$ — коэффициенты Липшица функций K_1, \widetilde{F}, H соответственно. Отсюда следует:

$$\|\theta_{\varepsilon}\|_{C_n} \le (1 - m_0)^{-1} \cdot M_1.$$
 (1.24)

Далее, учитывая, $\theta_{\varepsilon} = \theta + \Im_{\varepsilon}$, имеем:

$$\Im_{\varepsilon}(x,t) = -\frac{1}{\varepsilon} \int_{0}^{t} W(x,t,s,\varepsilon) K_{0}(x,s) \left\{ -\frac{1}{\varepsilon} \int_{0}^{s} \left[K_{1}(x,s,s') - K_{1}(x,s',s') \right] \Im_{\varepsilon}(x,s') ds + \frac{1}{\varepsilon} \int_{0}^{t} \left[K_{1}(x,t,s') - K_{1}(x,s',s') \right] \Im_{\varepsilon}(x,s') ds' + \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,s,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') - H(x,s,s',\tau,\theta(\tau,s')) \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') - H(x,s,s',\tau,\theta(\tau,s')) \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') - H(x,s,s',\tau,\theta(\tau,s')) \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') - H(x,s,s',\tau,\theta(\tau,s')) \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' ds' - \frac{1}{\varepsilon} \lambda \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') \right] d\tau ds' ds' ds' ds'$$

$$-H(x,t,s',\tau,\theta(\tau,s'))]d\tau ds'\}ds - \frac{1}{\varepsilon}W(x,t,0,\varepsilon) \cdot \left\{ \int_{0}^{t} [K_{1}(x,t,s') - K_{1}(x,s',s')]\Im_{\varepsilon}(x,s')ds' - K_{1}(x,s',s') - K_{2}(x,s')ds' - K_{3}(x,s')ds' - K_{4}(x,s',s') - K_{4}(x,s',s') \right\} \right\}$$

$$-\frac{1}{\varepsilon}\lambda \int_{0}^{T} \int_{0}^{N_{0}(x)} \left[H(x,t,s',\tau,\theta(\tau,s')) + \Im_{\varepsilon}(\tau,s') - H(x,t,s',\tau,\theta(\tau,s'))\right] d\tau ds' ds + \Delta(x,t,\varepsilon,0) \equiv$$

$$\equiv (D\Im_{\varepsilon})(x,t,\varepsilon),$$

здесь

$$\begin{cases} \Delta(x,t,\varepsilon,0) \equiv -\frac{1}{\varepsilon} \int_{\varepsilon}^{T} W(x,t,s,\varepsilon) K_0(x,s) (\theta(x,t) - \theta(x,s)) ds - W(x,t,0,\varepsilon) \theta(x,t), \\ \|\Delta\|_{C_n} \leqslant (L_0 T_0 \sqrt{n} \frac{1}{\alpha^2} + L_0 \sqrt{n} \frac{1}{\alpha} e^{-1}) \varepsilon = Q_1 \varepsilon. \end{cases}$$

 $0 < L_0$ — коэффициент Липшица по t.

Следовательно

$$\|\Im_{\varepsilon}\|_{C_n} \le (1 - m_0)^{-1} Q_1 \varepsilon = M_2(\varepsilon). \tag{1.26}$$

Пусть

$$z_{\delta} = z + \xi_{\delta}$$
.

Тогда

$$\begin{split} \xi_{\delta}(x,t) &= -\frac{1}{\delta^2} \int\limits_0^T W_0(x,t,s,\delta) (\theta_{\varepsilon}(x,s) - \theta(x,s)) ds + \frac{1}{\delta} (\theta_{\varepsilon}(x,s) - \theta(x,s)) - W_0(x,t,0,\delta) \times \\ &\times (z(x,t) - z(x,0)) - \frac{1}{\delta} \int\limits_0^t W_0(x,t,s,\delta) (z(x,t) - z(x,s)) ds. \end{split}$$

Отсюда следует

$$\|\xi_{\delta}\|_{C_n} \leq 2\sqrt{n}(\frac{1}{\delta}M_2(\varepsilon) + L_z\delta) = Q_0(\varepsilon,\delta), \ (0 < L_z = \text{const}),$$
 (1.27)

значит:

$$\Im_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} 0, \, \xi_{\delta}(x,t) \xrightarrow[\varepsilon \to 0, \delta \to 0]{} 0, \forall (x,t) \in D_0, \tag{1.28}$$

так как

$$Q_0(\varepsilon,\delta) \xrightarrow[\varepsilon \to 0,\delta \to 0]{} 0$$
, когда $\frac{1}{\delta} M_2(\varepsilon) \xrightarrow[\varepsilon \to 0,\delta \to 0]{} 0$.

Поэтому

$$(\theta_{\varepsilon}, z_{\delta}) \xrightarrow[\varepsilon \to 0, \delta \to 0]{} (\theta; z), \, \forall (x, t) \in A.$$

$$(1.29)$$

Утверждение 2. При условии (1.28) система (1.16) регуляризируема в $C_n^{1,0}(D_0 = [0,X] \times [0,T])$, причем

$$z_{\delta}(x,t) \xrightarrow{\delta \to 0} z(x,t), \quad \forall (x,t) \in [0,X] \times [0,T] = \Omega_0,$$
когда $\frac{M_2(\varepsilon)}{\delta} \xrightarrow{\delta \to 0, \varepsilon \to 0} 0.$ (1.30)

Отметим, что по условию заданная функция z(x,t) должна быть дифференцируема по x. Поэтому и от решения уравнения (1.16) требуем это условие, а по t, функция непрерывна. Следовательно, можем сформулировать следующую теорему.

Теорема 1. В условиях исходной задачи и утверждения 1, 2 решение уравнения (1.1) устойчиво относительно функции ψ , т. е.

$$||u_{\delta}(x,0,t) - u(x,0,t)||_{C_n} \leq r_1 Q_0(\varepsilon,\delta), (M_3 = \sup_{D_3} ||K(.)||, r_1 = k_0 [M_3 T + |\lambda| \frac{1}{2} L_H T^2 \cdot ||N_0(x)||_C]).$$

Замечание 1. Полученные результаты данного раздела применимы и к задаче (1.1)–(1.3), когда

$$G_1 z = \int_0^t K(x, t, s) z(x, s) ds + \lambda \int_0^T \int_0^x \int_0^s H_0(x, t, s, \tau) z(\tau, s') ds' d\tau ds.$$
 (1.31)

В этом случае, допуская, что имеют место результаты утверждение 2, в следующем разделе рассмотрим реализацию численного метода на основе разработанных системных алгоритмов.

2. ЧИСЛЕННЫЙ АЛГОРИТМ РЕШЕНИЯ УРАВНЕНИЯ ВОЛЬТЕРРА-ФРЕДГОЛЬМА ПЕРВОГО РОДА

В предыдущем разделе, на основе регуляризационных методов доказаны достаточные условия разрешимости многомерной обратной задачи влагопереноса с интегральной зависимостью. Здесь, как для развития теории интегральных уравнений Вольтерра-Фредгольма первого рода рассмотрим численные методы для решения указанных уравнений.

Пусть

$$\int_{0}^{t} K(x,t,s)z(x,s)ds + \lambda \int_{0}^{1} \int_{0}^{x} H_{0}(x,t,s,\tau)z(\tau,s)d\tau ds = f(x,t), \ 0 < \lambda,$$
(2.1)

тогда (2.1) эквивалентно преобразуется к виду:

$$\begin{cases} \int_{0}^{t} K^{0}(x,s)\psi(x,s)ds + \int_{0}^{t} N^{0}(x,t,s)\psi(x,s)ds + \lambda \int_{0}^{1} \int_{0}^{x} H(x,t,s,\tau)\psi(\tau,s)d\tau ds = f(x,t), \\ \int_{0}^{t} z(x,s)ds = \psi(x,t), \ z(x,0) = 0, \quad \psi(x,0) = 0, \end{cases}$$
(2.2)

с учетом:

а₁)
$$|f_{\tilde{\delta}}(x,t) - f(x,t)| \le C_1 \tilde{\delta}$$
, $0 < C_1 = const$, $\forall (x,t) \in D_0$, где $\forall (x,t) \in D_0 = [0,1] \times [0,1]$, $0 \le N^0 \equiv -K_s(x,t,s) + K_s(x,s,s)$, $0 < \alpha \le K_0(x,s) \equiv -K_s(x,s,s)$, [так как $K_s(x,s,s) \le -\alpha < 0$, $\alpha > 0$];

$$a_2)H_0(x,t,1,\tau) \equiv 0, H_{0s}(x,t,s,\tau) \equiv H(x,t,s,\tau) > 0.$$

Используя малые параметры и формулу средних прямоугольников, введем системный алгоритм вида:

$$\begin{cases} \varepsilon \psi_{i_{2}-\frac{1}{2},i_{1}-\frac{1}{2}} + h_{1} \sum_{j_{1}=1}^{i_{1}-1} K_{i_{2},j_{1}-\frac{1}{2}}^{0} \psi_{i_{2},j_{1}-\frac{1}{2}} + h_{1} \sum_{j_{1}=1}^{i_{1}-1} N_{i_{2},i_{1},j_{1}-\frac{1}{2}}^{0} \psi_{i_{2},j_{1}-\frac{1}{2}} = f_{\delta i_{2},i_{1}}^{\delta i_{2},i_{1}}, \\ k_{i_{1}} + k_{1} \sum_{j_{1}=1}^{i_{1}-1} k_{i_{2},j_{1}-\frac{1}{2}}^{0} = (i_{k} - \frac{1}{2})h_{k}, \ i_{k} = \overline{1,N_{k}}, \\ h_{k}N_{k} = T_{k}, \ k = 1,2, \ h = h_{1} + h_{2}, f_{\delta i_{2},i_{1}}^{\delta i_{2},i_{1}} = f_{\delta i_{2},i_{1}}^{\delta i_{2},i_{1}}(x_{1i_{2}},x_{2i_{1}}), \\ \delta z_{i_{2},i_{1}} + h_{1} \sum_{j_{1}=1}^{i_{1}-1} z_{i_{2},j_{1}-\frac{1}{2}} = \psi_{\varepsilon,i_{2},i_{1}}, \ [x_{1} = x, x_{2} = t, x_{3} = s, x_{4} = \tau]. \end{cases}$$

$$(2.3_{1})$$

1. Чтобы исследовать (2.3_1) поступим следующим образом. Обозначим через $\widetilde{\psi}^{\alpha,h} = \left\{\widetilde{\psi}_{i_2-\frac{1}{2},i_1-\frac{1}{2}}^{\alpha,h}\right\}$ решение (2.3_1) и введем вектор

$$\left\{\widetilde{\beta}_{i_2-\frac{1}{2},i_1-\frac{1}{2}}^{\varepsilon,h}\right\} = \left\{\psi_{i_2-\frac{1}{2},i_1-\frac{1}{2}} - \widetilde{\psi}_{i_2-\frac{1}{2},i_1-\frac{1}{2}}^{\alpha,\varepsilon}\right\}, \quad i_k = \overline{1,N_k}, \, k = \overline{1,2}.$$

Так как

$$\varepsilon\psi_{i_{2}-\frac{1}{2},i_{1}-\frac{1}{2}} + h_{1} \sum_{j_{1}=1}^{i_{1}-1} K_{i_{2},j_{1}-\frac{1}{2}}^{0} \psi_{i_{2},j_{1}-\frac{1}{2}} + h_{2} \sum_{j_{1}=1}^{i_{1}-1} N_{i_{2},j_{2},j_{1}-\frac{1}{2}}^{0} \psi_{i_{2},j_{1}-\frac{1}{2}} + \\ + \lambda h_{1} h_{2} \sum_{j_{1}=1}^{N_{1}} \sum_{j_{2}=1}^{i_{2}} H_{i_{2},i_{1},j_{1}-\frac{1}{2},j_{2}-\frac{1}{2}} \psi_{j_{2}-\frac{1}{2},j_{1}-\frac{1}{2}} = f_{i_{2},i_{1}} - r_{i_{1},i_{2}} + \varepsilon \psi_{i_{2}-\frac{1}{2},i_{1}-\frac{1}{2}}, \\ i_{k} = \overline{1,N_{k}}, k = 1,2,$$

$$(2.4)$$

где

$$r_{i_{1}i_{2}} = \lambda \int_{0}^{1} \int_{0}^{x_{1}i_{2}} H(x_{1i_{2}}, x_{2i_{1}}, t_{1}, t_{2}) \psi(t_{1}, t_{2}) dt_{1} dt_{2} - \lambda h_{1} h_{2} \sum_{j_{1}=1}^{N_{1}} \sum_{j_{2}=1}^{i_{2}} H_{i_{2}, i_{1}, j_{1} - \frac{1}{2}} \psi_{1j_{2} - \frac{1}{2}, j_{1} - \frac{1}{2}} + h_{1} \int_{0}^{x_{2}i_{1}} N^{0}(x_{1i_{2}}, t) \psi(x_{1i_{2}}, t) dt - h_{1} \sum_{j=1}^{i-1} N^{0}_{i_{2}, i_{1}, j_{1} - \frac{1}{2}} \psi_{i_{2}, j_{1} - \frac{1}{2}} + \int_{0}^{\infty} K^{0}(x_{1i_{2}}, t) \psi(x_{1i_{2}}, t) dt - h_{1} \sum_{j_{1}=1}^{i-1} K^{0}_{i_{2}, j_{1} - \frac{1}{2}} \psi_{i_{2}, j_{1} - \frac{1}{2}}$$

остаточный член формулы средних прямоугольников, то вычитая (2.4) из (2.3_1) , имеем:

$$\left[\varepsilon + h_1 K_{i_2, j_1 - \frac{1}{2}}^0 + h_1 N_{i_2, j_1 - \frac{1}{2}}^0 + \lambda h_1 h_2 H_{i_2, i_1, j_1 - \frac{1}{2}, j_2 - \frac{1}{2}} \right] \beta_{i_2 - \frac{1}{2}, i_1 - \frac{1}{2}}^{\varepsilon, h} + h_1 \sum_{j_1 = 1}^{i_1 - 1} K_{i_2, j_1 - \frac{1}{2}}^0 \beta_{i_2, j_1 - \frac{1}{2}}^{\varepsilon, h} + \lambda h_1 h_2 \sum_{j_1 = 1}^{N_1} \sum_{j_2 = 1}^{i_2} H_{i_2, i_1, j_1 - \frac{1}{2}, j_2 - \frac{1}{2}} \beta_{j_2 - \frac{1}{2}, j_1 - \frac{1}{2}}^{\varepsilon, h} = f_{i_2, i_1} - f_{\tilde{\delta}i_2, i_1} - r_{i_1, i_2} + \varepsilon \psi_{i_2 - \frac{1}{2}, i_1 - \frac{1}{2}}, \quad i_k = \overline{1, N}, \quad k = 1, 2.$$

$$(2.5)$$

Найдем разность между соседними строками треугольной СЛАУ (2.5) и переходя к оценке по модулю, получим:

$$\left|\beta_{i_{2}-\frac{1}{2},i_{1}-\frac{1}{2}}^{\varepsilon,h}\right| \leqslant \frac{\varepsilon}{\varepsilon + h_{1}K_{1} + h_{1}K_{2} + \lambda h_{1}h_{2}K_{3}} \left|\widetilde{\beta}_{i_{2}-\frac{3}{2},j_{1}-\frac{3}{2}}^{\varepsilon,h}\right| + \frac{h^{2}L_{1}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}} \sum_{j_{1}=1}^{i_{1}-1} \left|\widetilde{\beta}_{i_{2}-\frac{1}{2},j_{1}-\frac{1}{2}}^{\varepsilon,h}\right| + \frac{h^{2}L_{2}}{\varepsilon + h_{1}(K_{1}+K_{2}) + \lambda h_{1}h_{2}K_{3}} \sum_{j_{1}=1}^{i_{1}-1} \left|\widetilde{\beta}_{i_{2}-\frac{3}{2},j_{1}-\frac{1}{2}}^{\varepsilon,h}\right| + \frac{\lambda h_{1}L_{3}}{\varepsilon + h_{1}(K_{1}+K_{2}) + \lambda h_{1}h_{2}K_{3}} \sum_{j_{1}=1}^{i_{1}-1} \sum_{j_{2}=1}^{i_{2}-1} \left|\widetilde{\beta}_{j_{2}-\frac{1}{2},j_{1}-\frac{1}{2}}^{\varepsilon,h}\right| + \frac{c_{1}\widetilde{\delta} + \left|r_{i_{1},i_{2}} - r_{i_{1}-1,i_{2}-1}\right| + \varepsilon\left|\psi_{i_{2}-\frac{1}{2},i_{1}-\frac{1}{2}} - \psi_{i_{2}-\frac{3}{2},i_{1}-\frac{3}{2}}\right|}{\varepsilon + h_{1}(K_{1}+K_{2}) + \lambda h_{1}h_{2}K_{3}},$$

$$(2.6)$$

где

$$\begin{cases} L_{1} = \max \left| K_{x}^{0}(x,s) \right|, & K_{1} = \min K_{0}(x,t), L_{2} = \max \left| N_{x}^{0}(x,t,s) \right|, & K_{2} = \min N^{0}(x,t,t), \\ L_{3} = \max \left| H_{x}^{0}(x,t,s,\tau) \right|, & K_{3} = \min H(x,t,t,x); & 0 < \lambda < \frac{\alpha - (K_{1} + K_{2})}{h_{2}K_{3}}, & \alpha > K_{1} + K_{2}, & \alpha h_{1} < 1. \end{cases}$$

С другой стороны,

$$\left| \psi_{i_2 - \frac{1}{2}, i_1 - \frac{1}{2}} - \psi_{i_2 - \frac{3}{2}, i_1 - \frac{3}{2}} \right| \leqslant \Phi_1 h, \quad \Phi_1 = \|\psi\|_C,$$

$$|r_{i_1, i_2} - r_{i_1 - 1, i_2 - 1}| \leqslant C_2 h^3, \quad C_2 = const, \quad i_k = \overline{1, N_k}.$$

Поэтому, из (2.5) вытекает неравенство (2.6)

$$\left| \widetilde{\beta}_{i_{2} - \frac{1}{2}, i_{1} - \frac{1}{2}}^{\varepsilon, h} \right| \leq \frac{\varepsilon}{\varepsilon + h_{1}K_{1} + h_{1}K_{2} + \lambda h_{1}h_{2}K_{3}} \left| \widetilde{\beta}_{i_{2} - \frac{3}{2}, j_{1} - \frac{3}{2}}^{\varepsilon, h} \right| + \frac{h^{2}L_{1}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}} \times \times \sum_{j_{1} = 1}^{i_{1} - 1} \left| \widetilde{\beta}_{i_{2} - \frac{1}{2}, j_{1} - \frac{1}{2}}^{\varepsilon, h} \right| + \frac{h^{2}L_{2}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}} \sum_{j_{1} = 1}^{i_{1} - 1} \left| \widetilde{\beta}_{i_{2} - \frac{3}{2}, j_{1} - \frac{1}{2}}^{\varepsilon, h} \right| + \frac{\lambda h_{1}L_{3}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}} \times \times \times \sum_{j_{1} = 1}^{N_{1}} \sum_{j_{2} = 1}^{i_{2} - 1} \left| \widetilde{\beta}_{j_{2} - \frac{1}{2}, j_{1} - \frac{1}{2}}^{\varepsilon, h} \right| + \frac{C_{1}\widetilde{\delta} + C_{2}h^{3} + \varepsilon h\Phi_{1}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}}, \quad i_{k} = \overline{1, N_{k}}, \quad k = \overline{1, 2}.$$

$$(2.7)$$

При $i_1 = 1, i_2 = 1$, следует:

$$\left| \widetilde{\beta}_{\frac{1}{2},\frac{1}{2}}^{\varepsilon,h} \right| \leqslant \frac{C_1 \widetilde{\delta} + C_2 h^3 + \varepsilon \left| \psi_{\frac{1}{2},\frac{1}{2}} \right|}{\varepsilon + h_1 (K_1 + K_2) + \lambda h_1 h_2 K_3}. \tag{2.8}$$

Так как $\psi(x,0) = 0$, то

$$\left| \widetilde{\beta}_{\frac{1}{2},\frac{1}{2}}^{\varepsilon,h} \right| \le \frac{C_1 \widetilde{\delta} + C_2 h^3 + \varepsilon h \Phi_1}{\varepsilon + h_1 (K_1 + K_2) + \lambda h_1 h_2 K_3}. \tag{2.9}$$

Обозначим через A_0 правые части (2.9) и полагая в (2.6) $i_2=2$, найдем:

$$\left| \widetilde{\beta}_{\frac{3}{2}, i_1 - \frac{1}{2}}^{\varepsilon, h} \right| \le \left(1 + \frac{\varepsilon + h^2 (L_1 + L_2) + 2\lambda h_1 h_2 L_3}{\varepsilon + h_1 (K_1 + K_2) + \lambda h_1 h_2 K_3} \right) A_0.$$
 (2.10)

Рассмотрим разностные уравнения

$$\mu_{i_k} = \frac{\varepsilon + h^2(L_1 + L_2) + 2\lambda h_1 h_2 L_3}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3} \mu_{i_k - 1} + \frac{\varepsilon + h^2(L_1 + L_2) + 2\lambda h_1 h_2 L_3}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3} \sum_{j_1 = 1}^{i_1 - 2} \mu_{j_k} + A_0, \quad (2.11)$$

$$i_k = \overline{2, N_k}, \quad N_k = \overline{1, 2}, \quad \mu_1 = A_0.$$

При этом очевидно, что

$$\left| \widetilde{\beta}_{i_1 - \frac{3}{2}, j_2 - \frac{1}{2}}^{\varepsilon, h} \right| \leqslant \mu_{i_k}. \tag{2.12}$$

Найдем разность $\mu_{i_k} - \mu_{i_k-1}$ и сведем (2.11) к задаче Коши для однородного разностного уравнения второго порядка, имеем

$$\mu_{i_k} - \left(1 + \frac{\varepsilon + h^2(L_1 + L_2) + 2\lambda h_1 h_2 L_3}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3}\right) \mu_{i_k - 1} + \frac{\varepsilon}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3} \mu_{j_k - 2} = 0,$$

$$i_k = \overline{3, N_k}, \quad k = \overline{1, 2}, \quad j_k = \overline{3, N_k}, \quad k = \overline{1, 2},$$

$$(2.13)$$

$$\mu_1 = A_0, \quad \mu_2 = \left(1 + \frac{\varepsilon + h^2(L_1 + L_2) + 2\lambda h_1 h_2 L_3}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3}\right) A_0.$$
 (2.14)

Известно решение (2.13) и (2.14), которое имеет вид:

$$\mu_{i_k} = l_1 \tau_1^{i_k - 1} + l_2 \tau_2^{i_k - 1}, \quad i_k = \overline{1, N_k}, \quad k = \overline{1, n},$$
 (2.15)

где τ_1 и τ_2 — корни характеристического уравнения

$$\begin{cases}
\tau^{2} - \left(1 + \frac{\varepsilon + h^{2}(L_{1} + L_{2}) + 2\lambda h_{1}h_{2}L_{3}}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}}\right)\tau + \frac{\varepsilon}{\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}} = 0, \\
l_{1} = \frac{\mu_{i_{1}}\tau_{2} - \mu_{i_{2}}}{\tau_{2} - \tau_{1}}, \quad l_{2} = \frac{\mu_{i_{2}} - \tau_{1}\mu_{i_{1}}}{\tau_{2} - \tau_{1}}, \\
D = \left[2\varepsilon + h_{1}(K_{1} + K_{2}) + h_{2}(L_{1} + L_{2}) + \lambda h_{1}h_{2}(K_{3} + 2L_{3})\right]^{2} - 4\varepsilon(\varepsilon + h_{1}(K_{1} + K_{2}) + \lambda h_{1}h_{2}K_{3}),
\end{cases} (2.16)$$

$$\tau_{1,2} = \frac{2\varepsilon + h_1(K_1 + K_2) + h_2(L_1 + L_2) + \lambda h_1 h_2(K_3 + 2L_3) \pm \sqrt{D}}{2(\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3)},$$
(2.17)

здесь

$$\tau_1 = \frac{2\varepsilon + [h_1(K_1 + K_2) + h_2(L_1 + L_2) + \lambda h_1 h_2(K_3 + 2L_3)] \times [1 - \eta(\varepsilon, h, h_1, h_2)]}{2(\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3)}$$

$$\tau_2 = \frac{2\varepsilon + [h_1(K_1 + K_2) + h_2(L_1 + L_2) + \lambda h_1 h_2(K_3 + 2L_3)] \times [1 + \eta(\varepsilon, h, h_1, h_2)]}{2(\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3)},$$
 (2.18)

Эти формулы полностью определяют решение задачи. Так как $\tau_2 \ge 0$, а $l_2 \le 0$, $\forall \varepsilon \ge 0$, то из (2.15) имеем:

$$\mu_{i_k} \leqslant l_1 \tau_1^{i_k - 1}, \quad i_k = \overline{1, N_k}, \quad N_k = \overline{1, 2}.$$
 (2.19)

Следовательно, с учетом $l_1 \leqslant A_0 = const$, $i = \overline{1,n}$ и

$$A_0 = \frac{C_1 \widetilde{\delta} + C_2 h_1^3 + \varepsilon h_1 \Phi_1}{\varepsilon + h_1 (K_1 + K_2) + \lambda h_1 h_2 K_3},$$

переходим к неравенству:

$$\mu_{i_k} \leq \frac{C_0[\tilde{\delta} + h_1^3 + \varepsilon h_1]}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3}, 0 < C_j = const, C_0 = \max_{C_j} j = \overline{1,3}; \ i_k = \overline{1,N_k}, \ N_k = \overline{1,2}.$$

Подавно и

$$\left| \widetilde{\beta}_{i-\frac{1}{2},i_2-\frac{1}{2}}^{\varepsilon,h} \right| \leq \frac{C_0[\widetilde{\delta} + h^3 + \varepsilon h_1]}{\varepsilon + h_1(K_1 + K_2) + \lambda h_1 h_2 K_3},$$

т. е. искомая оценка погрешности ε — регуляризируемого каркаса в первом случае приближенного решения уравнения (2.3_1) получена, причем

$$h_{\text{K.o.c.}}(\widetilde{\delta}) = \widetilde{\delta}^{\frac{1}{3}}, \quad \varepsilon_{\text{K.o.c.}}(\widetilde{\delta}) = \widetilde{\delta}^{\frac{2}{3}}, \quad \left\| \widetilde{\beta}^{\varepsilon_{\text{K.o.c.}}h_{\text{K.o.c.}}} \right\|_{C_{h_{\text{K.o.c.}}}} = O(\widetilde{\delta}^{\frac{2}{3}}).$$
 (2.20)

Теорема 2. При условии (2.20) справедлива оценка для ε — регуляризируемого каркаса приближенного решения уравнения (2.2) с условиями (a_1 , a_2), удовлетворяющая СЛАУ (2.3₁), то есть:

$$\left| \psi_{i_2 - \frac{1}{2}, i_1 - \frac{1}{2}} - \widetilde{\psi}_{i_2 - \frac{1}{2}, i_1 - \frac{1}{2}}^{\varepsilon(\widetilde{\delta}), h(\widetilde{\delta})} \right| = O(\widetilde{\delta}^{\frac{2}{3}}), \quad i_k = \overline{1, N_k}, \, k = \overline{1, 2}, \tag{2.21}$$

если $h(\widetilde{\delta}) = \widetilde{\delta}^{\frac{1}{3}}, \quad \varepsilon(\widetilde{\delta}) = \widetilde{\delta}^{\frac{2}{3}}.$

2. Далее, исследуем систему (2.3_2) . Для этого, учитывая (2.21) и оценку [4, 8] имеем

$$\left\|z(x,t)-\widetilde{z}^{\delta,\varepsilon}(x,t)\right\|_{C_{r}}\leqslant d_{1}\delta+d_{2}\frac{\varepsilon}{\delta}=O(\varepsilon^{\frac{1}{2}})=\sqrt{\varepsilon}(d_{1}+d_{2}), \text{где}\quad d_{1},d_{2}=\text{const}, \delta=\varepsilon^{\frac{1}{2}}. \quad (2.22)$$

Теорема 3. При условиях теоремы 2 и (2.22), если $\delta(\varepsilon) = \varepsilon^{\frac{1}{2}}$, то допускаемая погрешность численного алгоритма будет порядка $O(\tilde{\delta}^{\frac{1}{3}})$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Апарцин, А. С. Неклассические уравнения Вольтерра I рода: теория и численные методы / А. С. Апарцин. Новосибирск : Наука, 1999. 193 с.
- 2. Белоцерковский, С. М. Численные методы в сингулярных интегральных уравнениях / С. М. Белоцерковский, И. К. Лифанов. М. : Наука, 1985. 179 с.

- 3. Бухгейм, А. Л. Уравнения Вольтерра и обратные задачи / А. Л. Бухгейм. Новосибирск : Наука, 1983. 207 с.
- 4. Денисов, А. М. О приближенном решении уравнения Вольтерра первого рода, связанного с одной обратной задачей для уравнения теплопроводности / А. М. Денисов // Вест. МГУ. Вычисл. матем. и киберн. 1980. № 3. С. 49–52.
- 5. Дмитриев, В. И. Обратные задачи электромагнитных методов геофизики / В кН. Некорректные задачи естествознания // Под. ред. А. Н. Тихонова. — М. : МГУ, 1987. — С. 54–76.
- 6. Лаврентьев, М. М. Регуляризация операторных уравнений типа Вольтерра / М. М. Лаврентьев // Проблема матем. физики и вычислит. матем. 1977. С. 199-205.
- 7. Нахушев, А. М. Краевые задачи для нагруженных интегро-дифференциальных уравнений гиперболического типа и некоторые их приложения к прогнозу почвенной влаги / А. М. Нахушев // Дифференциальные уравнения. 1979. Т. 9, № 1. С. 96–105.
- 8. Омуров, Т. Д. Обратные задачи в приложениях математической физики / Т. Д. Омуров, А. О. Рыспаев, М. Т. Омуров. Бишкек, 2014.-192 с.
- 9. Омуров, Т. Д. Методы регуляризации интегральных уравнений Вольтерра первого и третьего рода / Т. Д. Омуров. Бишкек : Илим, 2003.-162 с.
- 10. Романов, В. Г. Обратные задачи для дифференциальных уравнений / В. Г. Романов. Н. : НГУ, 1973. 225 с.
- 11. Сергеев, В. О. Регуляризация уравнений Вольтерра первого рода / В. О. Сергеев // ДАН СССР. 1971. Т. 197, № 3. С. 531–534.
 - 12. Треногин, В. А. Функциональный анализ / В. А. Треногин. М. : Наука, 1980. 496 с.
- 13. Шабров, С. А. Адаптация метода конечных элементов для математической модели с негладкими решениями / С. А. Шабров // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. 2016. № 2. С. 153–164.

REFERENCES

- 1. Apartsin A.S. Nonclassical Volterra equations of the first kind: theory and numerical methods. [Aparcin A.S. Neklassicheskie uravneniya Vol'terra I roda: teoriya i chislennye metody]. Novosibirsk: Nauka, 1999, 193 p.
- 2. Belotserkovsky S.M, Lifanov I.K. Numerical methods in singular Integral equations. [Belocerkovskij S.M., Lifanov I.K. CHislennye metody v singulyarnyh integral'nyh uravneniyah]. Moscow: Nauka, 1985, 179 p.
- 3. Buchheim A.L. Volterra equations and inverse problems. [Buhgejm A.L. Uravneniya Vol'terra i obratnye zadachi]. Novosibirsk: Nauka, 1983, 207 p.
- 4. Denisov A.M. On the approximate solution of the Volterra equation of the first kind, associated with one inverse problem for the heat equation. [Denisov A.M. O priblizhennom reshenii uravneniya Vol'terra pervogo roda, svyazannogo s odnoj obratnoj zadachej dlya uravneniya teploprovodnosti]. Vest. MGU. Vychislitel'naya matematika i kibernetika , Moscow University Computational Mathematics and Cybernetics. 1980, no. 3, pp. 49–52
- 5. Dmitriev V.I. Inverse problems of electromagnetic methods of geophysics. Incorrect problems of natural science. [Dmitriev V.I. Obratnye zadachi elektromagnitnyh metodov geofiziki. Nekorrektnye zadachi estestvoznaniya]. Moscow. Publishing house of Moscow University, 1987, pp. 54–76.
- 6. Lavrentyev M.M. Regularization of Operator Equations of Volterra Type. [Lavrent'ev M.M. Regulyarizaciya operatornyh uravnenij tipa Vol'terra]. *Problema matem. fiziki i vychislit. matem. Problem of Mathematical Physics and Computational Mathematics*, 1977, pp. 199–205.
- 7. Nakhushev A.M. Boundary-value problems for loaded integro-differential equations of hyperbolic type and some of their applications to the forecast of soil moisture. [Nahushev A.M. Kraevye zadachi dlya nagruzhennyh integro-differencial'nyh uravnenij giperbolicheskogo tipa i

nekotorye ih prilozheniya k prognozu pochvennoj vlagi]. Differencial'nye uravneniya — Differential equations, 1979, vol. 9, no. 1, pp. 96–105.

- 8. Omurov T.D., Ryspaev A.O., Omurov M.T. Inverse problems in applications of mathematical physics. [Omurov T.D., Ryspaev A.O., Omurov M.T. Obratnye zadachi v prilozheniyah matematicheskoj fiziki]. Bishkek, 2014, 192 p.
- 9. Omurov T.D. Methods of regularization of integral Volterra equations of the first and third kind. [Omurov T.D. Metody regulyarizacii integral'nyh uravnenij Vol'terra pervogo i tret'ego roda]. Bishkek: Ilim, 2003, 162 p.
- 10. Romanov V.G. Inverse problems for differential equations. [Romanov V.G. Obratnye zadachi dlya differencial'nyh uravnenij]. N.: NSU, 1973, 225 p.
- 11. Sergeev V.O. Regularization of the Volterra equations of the first kind. [Sergeev V.O. Regulyarizaciya uravnenij Vol'terra pervogo roda]. DAN~SSSR~-~DAN~SSSR, 1971, vol. 197, no. 3, pp. 531–534.
- 12. Trenogin V.A. Functional analysis. [Trenogin V.A. Funkcional'nyj analiz]. Moscow: Nauka, 1980, 496 p.
- 13. Shabrov S.A. Adaptation of the finite element method for mathematical model with nonsmooth solutions. [Shabrov S.A. Adaptaciya metoda konechnyx elementov dlya matematicheskoyj modeli s negladkimi resheniyami]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika Proceedings of Voronezh State University. Series: Physics. Mathematics, 2016, no. 2, pp. 153–164.

Омуров Таалайбек Дардайылович, доктор физико-математических наук, профессор, кафедра математического анализа и дифференциальных уравнений, факультет математики и информатики, Кыргызский национальный университет имени Жусупа-Баласагына, Бишкек, Кыргызская Республика

E-mail: omurovtd@mail.ru

OmurovTaalaibek Dardayilovich, Doctorand mathematical of physical sciences, professor, *Department* ofMathematicalAnalysis and Differential Equations, Faculty of Mathematics and Informatics, Kyrqyz National University named after ZhusupBalasagyn, Bishkek, Kyrgyz Republic E-mail: omurovtd@mail.ru

Ryspaev Amantur Orozalievich, Candidate of physical and mathematical sciences, associate professor, Department of software engineering and innovative technologies, Kyrgyz National University named after Zhusup Balasagyn, Bishkek, Kyrgyz Republic E-mail: Ryspaev.Amantur@yandex.ru

Рыспаев Амантур Орозалиевич, кандидат физико-математических наук, доцент, кафедра "программная инженерия и инновационные технологии", факультет информационных и инновационных технологий, Кыргызский национальный университет имени Жусупа-Баласагына, Бишкек, Кыргызская Республика

E-mail: Ryspaev.Amantur@yandex.ru