ON QUASI-SOBOLEV SPACES

Jawad Kadhim Khalaf Al-Delfi

(Mustansiriyah University, Baghdad, Iraq)

Поступила в редакцию 01.07.2018 г.

Abstract: The notion quasi-Sobolev spaces is introduced in the article based on the concept quasi-norms. Completeness of these spaces can be proved on the appropriate quasi-norms and continuous embedding of these spaces is shown in the work. Also concepts quasi-operators Laplace and Green are introduced and shown that these quasi-operators are toplinear isomorphisms.

Key words and phrases: quasi-norm, quasi-Banach Space, quasi-Sobolev spaces, Laplas' quasi-operator, Grins' quasi-operator.

ОБ КВАЗИСОБОЛЕВЫ ПРОСТРАНСТВА Джавад Кадим Кхалаф Аль-Делфи

Аннотация: На основе понятия квазинормы в статье вводится понятие квазисоболевских пространств. Показывается их полнота относительно соответствующих квазинорм и непрерывность вложений этих пространств. Также вводятся понятия квазиоператоров Лапласа и Грина и показывается, что эти квазиоператоры являются топлинейными изоморфизмами.

Ключевые слова: квазинормы, квазибанахово пространство, квазисоболевы пространства, квазиоператор Лапласа, квазиоператор Грина.

INTRODUCTION

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with a class boundary C^{∞} , and $W_p^m(\Omega)$, $1 \leq p < \infty$, $m \in \mathbb{N} \cup \{0\}$] – Sobolev space, where $W_p^{\circ}(\Omega) = L_p(\Omega)$ is a Lebesgue space. The Sobolev embedding theorem is also well known : for all $0 < m \leq l < \infty, 1 \leq p \leq q < \infty$ such that $\frac{1}{p} - \frac{m-l}{n} \leq \frac{1}{q} < 1$ then $W_p^m(\Omega)$ is dense and continuous (even compact) embedded in $W_p^l(\Omega)$ [1], that is:

$$W_p^m(\Omega) \hookrightarrow W_p^l(\Omega)$$
 (1)

Also well known, Laplace operator $-\Delta$, which is defined by the form :

$$-\langle \Delta u, v \rangle = \sum_{m=1}^{n} \int_{\Omega} u_{x_m} v_{x_m} dx,$$

sets a toplinear isomorphism operator([2], sec. 3):

$$-\Delta: \overset{\circ}{W_2^1}(\Omega) \to W_2^{-1}(\Omega), \tag{2}$$

[©] Jawad Kadhim Khalaf Al-Delfi, 2020

such that:

$$\overset{\circ}{W}_{2}^{1}(\Omega) \hookrightarrow L_{2}(\Omega) \hookrightarrow W_{2}^{-1}(\Omega), \tag{3}$$

where $W_2^{-1}(\Omega)$ is dual space of a Sobolev space $\overset{\circ}{W}_2^1(\Omega)$

Furthermore, Let $\{\lambda_k\} \subset \mathbb{R}_+$ — set of eigenvalues of a Laplace operator $-\Delta$ which is monotonically increasing sequence such that $\lim_{k\to\infty} \lambda_k = +\infty$. We construct

$$l_2^1 = \left\{ x = \{x^k\} : \sum_{k=1}^{\infty} \lambda_k |x^k|^2 < +\infty \right\},$$

$$l_2^{-1} = \left\{ x = \{x^k\} : \sum_{k=1}^{\infty} \lambda_k^{-1} |x^k|^2 < +\infty \right\},\,$$

and observe toplinear isomorphism operators: $l_2^1 \cong \stackrel{\circ}{W} _2^1(\Omega)$, $l_2^{-1} \cong W_2^{-1}(\Omega)$, and also dense and continuous embeddings:

$$l_2^1 \hookrightarrow l_2 \hookrightarrow l_2^{-1},\tag{4}$$

which is coming from (2). We observe that l_2^1 , l_2^{-1} are Banach spaces with norms $||x||_1^2 = \sum_{k=1}^{\infty} \lambda_k |x^k|^2$

and $||y||_{-1}^2 = \sum_{k=1}^{\infty} \lambda_k^{-1} |y^k|^2$ consequently. We introduce a quasi-operator Laplace:

$$\Lambda x = \lambda_k x^k. \tag{5}$$

Since $\|\Lambda x\|_{-1} = \|x\|_1$, then from (5) and according to (2), (4) it is easy to obtain a toplinear isomorphism operator $\Lambda: l_2^1 \to l_2^{-1}$. The inverse of Λ is a quasi-operator Green Λ^{-1} that is defined as:

$$\Lambda^{-1}y = \lambda_k^{-1}y^k. (6)$$

The article is devoted to the transfer of the ideology described above to the sequence space l_p , $p \in (0,\infty)$ with extension of (1) to construct sequence spaces of power $m \in \mathbb{R}$ which have called quasi-Sobolev spaces and are defined as:

$$l_p^m = \left\{ x = \{x^k\} : \sum_{k=1}^{\infty} \lambda_k^{mp/2} |x^k|^p < +\infty \right\},\,$$

where, $\{\lambda_k\}$ is monotonically increasing sequence of positive numbers such that $\lim_{k\to\infty} \lambda_k = +\infty$. When $m=0, l_p^0 = l_p$

The article contains three sections, the first section contains the basic facts of the concept of quasi-Banach spaces, and in the second section, analog of the Sobolev embedding theorem is presented. In third section, the Laplace quasi-operator is introduced and is proved as toplinear isomorphism.

3. QUASI-SOBOLEV SPACE

Let \mathfrak{U} — real vector space.

Definition . A function $_q\|\cdot\|:\mathfrak{U}\to R$ is called a quasi-norm if it is satisfied the following properties:

- (i) $\forall u \in \mathfrak{U}, \ _{q}||u|| \ge 0$, such that $_{q}||u|| = 0 \Leftrightarrow u = 0$;
- (ii) $\forall u \in \mathfrak{U} \ \forall \alpha \in \mathbb{R} \ _q \|\alpha u\| = |\alpha|_q \|u\|;$
- (iii) $\forall u, v \in \mathfrak{U}$ $_{a} \|u + v\| \leq c(_{a} \|u\| +_{a} \|v\|)$, where $c \in [1, +\infty)$.

A quasi-normed space is $(\mathfrak{U},_q \| \cdot \|)$ or simply \mathfrak{U} .

A sequence $\{x_k\} \subset \mathfrak{U}$ is called *convergent* to $x \in \mathfrak{U}$ if $\lim_{k \to \infty} q \|x_k - x\| = 0$, or this fact writes as: $\lim_{k\to\infty} x_k = x$. A sequence is called fundamental if $\lim_{k,r\to\infty} (x_k - x_r) = 0$.

A space \mathfrak{U} is called quasi-Banach if any fundamental sequence in this space converges to some point in it. We immediately note that any Banach space is a quasi-Banach space, and the opposite is not true in generally.

Example. Sequence spaces l_p be quasi-Banach spaces when $p \in (0, +\infty]$, while they are Banach spaces only when $p \in [1, +\infty]$.

Theorem 1. For every $p \in (0, +\infty)$, $m \in \mathbb{R}$, a space l_p^m be a quasi-Banach space with a function: $|q||x||_m = \left(\sum_{k=1}^{\infty} \lambda_k^{mp/2} |x^k|^p\right)^{1/p}.$

Proof this fact analogues section. 4.2 [3]. We also note that a constant $c=2^{1/p}$ when $p\in(0,1)$ and c = 1 when $p \in [1, +\infty)$.

4. THE EMBEDDING THEOREM

Let \mathfrak{U} and \mathfrak{F} — two quasi-Banach spaces. We say that:

- $-\mathfrak{U}$ embedded in \mathfrak{F} , if \mathfrak{U} subset of \mathfrak{F} , i.e. $\mathfrak{U} \subset \mathfrak{F}$;
- $-\mathfrak{U}$ dense embedded in \mathfrak{F} , if moreover closure $\overline{\mathfrak{U}}=\mathfrak{F}$;
- $\mathfrak U$ dense and continuous embedded in $\mathfrak F$, if moreover for all $u \in \mathfrak U_q ||u||_{\mathfrak U} \geqslant M_q ||u||_{\mathfrak F}$, where $M \in \mathbb{R}_{+}$ a constant independent of u.

Theorem 2. For every $p \in (0, +\infty]$, $m \in \mathbb{R}$, $l \leq m$ then l_p^m is dense and continuous embedded in l_p^l , that is, $l_p^m \hookrightarrow l_p^l$.

proof. $l_p^m \subset l_p^l$ is obvious. We prove dense embedded l_p^m in l_p^l . Let $x \in l_p^l$, and we consider

$$x_1 = (x^1, 0, 0, \dots), x_2 = (x^1, x^2, 0, 0, \dots), \dots, x_k = (x^1, x^2, \dots, x^k, 0, 0, \dots).$$

It is obvious, $\{x_k\} \subset l_p^m$, such that $\lim_{k \to \infty} x_k = x$ in a quasi-norm of l_p^l . Continuous embedded $l_p^m \hookrightarrow l_p^l$ is obvious.

5. 3. QUASI-OPERATOR LAPLAC

Let $\mathfrak U$ and $\mathfrak F$ — quasi-Banach spaces, a linear operator $S:\mathfrak U\to\mathfrak F$ is called continuous if $dom S = \mathfrak{U}$ and $_q \|u\|_{\mathfrak{U}} \geqslant M_q \|Su\|_{\mathfrak{F}}$, for all $u \in \mathfrak{U}$, $M \in \mathbb{R}_+$ a constant independent of u. A continuous linear operator S is called toplinear isomorphism if there exists an inverse operator $S^{-1}: \mathfrak{F} \to \mathfrak{U}$, which is also continuous.

We define a quasi-Laplace operator $\Lambda x = \lambda_k x^k$, where $x \in l_p^m$ by formula (5). **Theorem 3.** For all $p \in (0, +\infty)$, a quasi-Laplace operator $\Lambda : l_p^{m+2} \to l_p^m$ — toplinear isomorphism.

proof. It is clear that Λ is continuous –

$$q \|\Lambda x\|_m = \left(\sum_{k=1}^{\infty} \lambda_k^{(m/2)+1} |x^k|^p\right)^{1/p} = q \|x\|_{m+2}.$$

We construct quasi-Green operator $\Lambda^{-1}x=\lambda_k^{-1}x$, where $x\in l_p^{m+2}$ by formula (6) Obviously, $\Lambda\Lambda^{-1}x=x$ for all $x\in l_p^m$, and $\Lambda^{-1}\Lambda x=x$ for all $x\in l_p^{m+2}$. Moreover, Λ^{-1} is continuous –

$$_{q}\|\Lambda^{-1}x\|_{m+2} = \left(\sum_{k=1}^{\infty} \lambda_{k}^{(m/2)-1} |x^{k}|^{p}\right)^{1/p} = _{q}\|x\|_{m}. \bullet$$

Remark .An extension of the results of this article to the case of complex spaces l_p , $p \in (0, +\infty)$, is obvious.

REFERENCES

- 1. Triebel, H. Interpolation theory, function spaces, differential operators / H. Triebel. Moscow : Mir, 1980. 664 p.
- 2. Ladyzhenskaya, O. A. Linear and Quasi-Linear Elliptic Equations / O. A. Ladyzhenskaya, N. N. Ural'tseva. M. : Science, 1973.-578 p.
- 3. Al-Delfi, J. K. Quasi-Banach space for the sequence space ℓ_p , where $0 / J. K. Al-Delfi // Journal of college of Education (Iraq Baghdad). Mathematics. 2007. <math>N_2$ 3. P. 285–295.
- 4. Al-Delfi, J. K. The quasi-Laplace operator in quasi-Sobolev spaces / J. K. Al-Delfi // Bulletin of Samara State University, Series of Mathematics. Mechanics. Physics. -2013.- iss. 2(31).-2013.-P. 13-16.
- 5. Al-Delfi, J. K. Quasi-Sobolev spaces ℓ_p^m / J. K. Al-Delfi // Bulletin of South Ural State University, Series of Mathematics., Mechanics. Physics. 2013. V. 5, № 1. P. 107–109.

Jawad Kadhim Khalaf Al-Delfi, Lecturer. Ph. D. Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Teл.: rassian71@mail.ru

Джавад Кадим Кхалаф Аль-Делфи, Старший преподаватель, Ph. D., кафедра математики, Факультет Науки, Мустансирия Университета, Багдад, Ирак

Tel.: rassian71@mail.ru