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Abstract: This paper is concerned with so-called systems with diode nonlinearities.
We discuss such systems first from the mathemical viewpoint and recall some facts from
the theory of cones, projections, and differential inclusions. Afterwards we show that
certain electrical circuits with diode converters may be viewed as natural examples.
In particular, our approach provides a universal and “automatic” description for all
circuits which satisfy a so-called LC-condition. This condition is either fulfilled for a
circuit, or may be achieved by adding small inductivities and capacitiesto a specific
part of the circuit.
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СИСТЕМЫ С ДИОДНОЙ НЕЛИНЕЙНОСТЬЮ
В МОДЕЛИРОВАНИИ НЕКОТОРЫХ ЭЛЕКТРИЧЕСКИХ

ЦЕПЕЙ
Ю. Аппель, Л. П. Петрова

Аннотация: Эта статья посвящается так называемым системам с диодными нелиней-
ностями. Обсуждаются такие системы сначала с математической точки зрения, повторяя
некоторые результаты из теории конусов, проекций и дифференциальных включений.
Затем показывается, как некоторые электрические цепи с диодными преобразователями
могут служить естественными примерами. В частности, наш подход дает универсальное
и "автоматическое" описание всех цепей, которые удовлетворяют так называемому LC-
условию. Это условие либо выполняется для цепи, либо его можно получить, включая в
определенные места цепи малые индуктивности или ёмкости.

Ключевые слова: нормальный конус, касательный конус, сопряженный конус, ди-
одная нелинейность, дифференциальное включение, электрическая цепь, диодный преоб-
разователь, LC-условие.

In the theory of electrical circuits there exist various descriptions, both as algebraic and
differential systems, but only in the linear case. A great advantage is here the possibility of
programming this description of a linear circuit which provides a universal method. On the other
hand, for electrical circuits with nonlinear elements no such approach exists and, even worse,
probably cannot exist at all. In the literature a certain variety of methods may be found also for
nonlinear circuits, but each method applies only to one spedific type of circuits individually.
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The aim of this paper is to provide a universal and “automatic” description for all circuits which
satisfy a so-called LC-condition. This condition (a precise definition will be given below) is either
fulfilled for a circuit, or may be achieved by adding to the circuit small inductivities and capacities.
A crucial role is here played by the concept of diode nonlinearity which will be explained below.

After providing the necessary theoretical backgroud, at the end of this paper we will give
two typical examples. The first example illustrates how the LC-condition may be ensured
“automatically” by our algorithm, while the second example is concerned with a circuit which
does not satisfy an LC-condition but nevertheless leads to a diode nonlinearity.

1. Normal and tangent cones. In this section we recall some basic facts about normal and
tangent cones. In what follows, we will always work in the Euclidean space R

m with scalar product
〈x,y〉 = x1y1 + . . .+ xmym and corresponding norm ‖x‖2 = 〈x,x〉.

A set K ⊆ R
m is a cone if x,y ∈ K and s,t > 0 implies sx + ty ∈ K; so a cone is always

convex, but not necessarily closed. Standard examples are the positive octant R
m
+ := {x ∈ R

m :
x1, . . . , xm > 0} and the negative octant R

m
− := {x ∈ R

m : x1, . . . ,xm 6 0}; in particular, R+ =
[0,∞) and R− = (−∞,0]. The adjoint cone of a cone K ⊆ Rm is defined by

K∗ := {z ∈ R
m : 〈y,z〉 6 0 for all y ∈ K}. (1)

The adjoint cone K∗ is always closed, even if K is not. Moreover, it is easy to see that K∗∗ = K
if K is closed.

Given a closed convex set Q ⊆ R
m and a point x ∈ Q, the normal cone to Q at x is defined by

NQ(x) := {y ∈ R
m : 〈y,z − x〉 6 0 for all z ∈ Q}, (2)

while the tangent cone to Q at x is defined by

TQ(x) := {z ∈ R
m : 〈y,z〉 6 0 for all y ∈ NQ(x)}. (3)

A comparison with (1) shows that TQ(x) = NQ(x)
∗, so a tangent cone is always closed.

Moreover, we have NQ(x) = {0} and TQ(x) = R
m if x is an interior point of Q; therefore the

cones (2) and (3) are interesting only in case x ∈ ∂Q, the boundary of Q.
In some cases these cones may be calculated quite easily. For example, in the scalar caseQ = [a,b]

we have
NQ(a) = TQ(b) = R−, NQ(b) = TQ(a) = R+.

If Q = {x ∈ R
m : 〈x,n〉 6 c} is an affine halfspace, where n ∈ R

m is a normalized vector and
c ∈ R is fixed, a straightforward calculation shows that NQ(x) = {λn : λ > 0} and TQ(x) = {x ∈
R
m : 〈x,n〉 6 0} for any x ∈ ∂Q = {x ∈ R

m : 〈x,n〉 = c}.
The normal cone Nx(Q) and the tangent cone TQ(x) have some “duality properties”, the most

important one being summarized in the following

Lemma 1. For fixed x and Q, denote by νx : Rm → NQ(x) the metric projection onto the
normal cone (2) and by τx : Rm → TQ(x) the metric projection onto the tangent cone (3). Then
every y ∈ R

m admits an orthogonal decomposition of the form

y = νQ(y) + τQ(y), 〈νQ(y),τQ(y)〉 = 0. (4)

Conversely, if y = u+ v for some u ∈ NQ(x) and v ∈ TQ(x), then u = νx(y) and v = τx(y).

The proof of Lemma 1 is standard and follows from the general fact that, given a convex set
Q ⊂ R

m and an element y ∈ R
m, the point of best approximation x of y in Q may be characterized

by the variational inequality
〈y − x, z − x〉 6 0 (z ∈ Q).
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In what follows, we will use the fact that in case of a cone K we have the equivalence

y ∈ NK(x) ⇐⇒ x ∈ K, y ∈ K∗, 〈x,y〉 = 0. (5)

This follows from the maximal monotonicity of the multivalued map x 7→ NK(x) in case of a
cone. The basic definitions and results of the theory of cones may be found, e.g., in the textbooks
[1] or [3].

2. Diode nonlinearities. Now we are going to define precisely what we mean by a DN-system
and its solutions. Given an interval I ⊆ R and a closed convex set Q ⊆ R

m, we will consider
continuous maps f : I ×Q→ R

m in what follows.
Definition. A system with diode nonlinearity (or DN-system, for short) is a differential inclusion

of the form
ẋ ∈ f(t,x)−NQ(x) (6)

involving the normal cone (2). A solution of (6) is an absolutely continuous function x = x(t)
satisfying

ẋ(t) ∈ f(t,x(t))−NQ(x(t)) (7)

for almost all t ∈ I. �

Interestingly, DN-systems may be also formulated in the following different, but equivalent,
form. Denoting as before by τx the metric projection onto the cone (3), which means that ‖y −
τx(y)‖ = dist(y,TQ(x)) for y ∈ R

m, we may rewrite (6) in the form

ẋ = τxf(t,x). (8)

Let us briefly explain why (6) and (8) are equivalent. If x = x(t) is absolutely continuous and
satisfies

ẋ(t) = τx(t)f(t,x(t)) (9)

for almost all t ∈ I, from Lemma 1 we conclude that

τx(t)f(t,x(t)) = f(t,x(t))− νx(t)f(t,x(t)) ∈ f(t,x(t))−NQ(x(t)),

where νx is the metric projection onto the cone (2). Conversely, suppose that x = x(t) is absolutely
continuous and satisfies (7) almost everywhere. Choose a point u ∈ NQ(x(t)) such that ẋ(t) =
f(t,x(t)) − u. Then ẋ(t) and u are orthogonal, by Lemma 1, since ẋ(t) ∈ TQ(x(t)). Now, the
representation f(t,x(t)) = u+ẋ(t) and the orthogonality of u and ẋ(t) shows that u = νx(t)f(t,x(t))
and ẋ(t) = τx(t)f(t,x(t)), again by Lemma 1, and the last equality is precisely (9).

To treat DN-systems in the representation (6) we have to analyze the properties of the
multivalued map NQ : x 7→ NQ(x) (which is sometimes called the DN-operator generated by
Q in the literature). For instance, one may show that NQ has a closed graph in the sense that, if
xn ∈ Q satisfies xn → x as n→ ∞, and yn ∈ NQ(xn) satisfies yn → y as n→ ∞, then y ∈ NQ(x).
We point out, however, that the multivalued map TQ : x 7→ TQ(x) in general does not have a
closed graph.

The advantage of the representation (8) is of course that it does not involve multivalued maps.
On the other hand, (8) is not an ordinary differential equation, since it contains the projection
operator τx, which makes its treatment surprisingly difficult.

Before starting the application-oriented part of this paper, we need another lemma which shows
how didode nonlinearities behave under linear transformations.

Lemma 2. Let K ⊆ R
m be a cone, x ∈ K, u ∈ R

n, and A : Rm → R
n a linear operator. Then

the equivalence
u ∈ NA(K)(Ax) ⇐⇒ A∗u ∈ NK(x) (10)
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holds, where A∗ denotes the adjoint of A.

Proof. The relation on the left hand side of (10) means, by (5), that

Ax ∈ A(K), u ∈ A(K)∗, 〈Ax,u〉 = 0.

But this is obviously equivalent to

x ∈ K, A∗u ∈ K∗, 〈x,A∗u〉 = 0

which is precisely the right hand side of (10). �

3. Electrical circuits. Consider a diode converter which represents an electrical circuit
consisting of m ideal diods. We will assume that all knots of this circuit are inputs, i.e., contacts
through which the diode converter may be joined with other circuits. We enumerate the knots
(inputs) in a predetermined way by 0,1, . . . ,n. In the j-th diode, we denote the corresponding
current by xj and the corresponding voltage (from the anode to the cathode) by yj. Furthermore,
the incoming current, i.e., the current which flows from an outer circuit to the diode converter,
through the k-th input will be denoted by ik, the incoming voltage i.e., the voltage between the k-th
input and the 0-th input, by uk (k = 1,2, . . . , n). With this notation, the so-called Volt-Ampère
characteristic of the ideal diode may be written in the form y ∈ NRm

+
(x), which means by (5) that

x ∈ R
m
+ , y ∈ R

m
− , 〈x,y〉 = 0. (11)

In Figure 1 we have sketched an example of two circuits, where Figure 1 (a) contains only
the diodes, while in Figure 1 (b) the branches of the constructed diode converter are sketched by
dotted lines with arrows.

Figure 1.

The relation between the anode current vector x = (x1,x2, . . . ,xm) and the input current vector
i = (i1,i2, . . . ,in) of a general electrical circuit is given by Ax = i, where the (n × m)-matrix
A = (akj)k,j has the entries

akj =





1 if the j-th diode anode is joined with the k-th knot,

−1 if the j-th diode cathode is joined with the k-th knot,

0 otherwise.

(12)

We do not take into account the rule for the 0-th knot, since it follows from the corresponding
rules for the other knots and our assumption that the sum of all input currents is zero. In the
following Proposition, we denote by

Aj := (a1j ,a2j , . . . ,anj)
T (j = 1,2, . . . ,m) (13)
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the j-th column of the matrix A = (akj)k,j with elements (12).

Proposition. Let K = R
m
+ be the cone of all m-tuples with nonnegative coordinates. Then the

input voltage vector u and input current vector i are related by the equality

u ∈ NA(K)(i), (14)

where NA(K) denotes the DN-operator generated by A(K).

Proof. Note first that the cone A(K) contains all elements generated by the columns A1, . . . ,Am

of the matrix A, i.e.
A(K) =

{
s1A

1 + . . .+ smA
m : s1, . . . ,sm > 0

}
,

see (13). Fix x and y satisfying (11), which means that y ∈ NK(x), by (5). Let k(j,+) be the
number of the knot which is joined to the anode of the j-th diode, and let k(j,−) be the analogous
number for the cathode. Then

yj = uk(j,+) − uk(j,−) (j = 1,2, . . . ,m).

In the j-th column in (13), only the entries with index k(j,+) or k(j,−) can be different from
zero. If one of these indices is zero, then the corresponding input voltage is also zero. From this
we conclude that y = A∗u, where A∗ is the adjoint matrix to A. So Lemma 2 implies that
u ∈ NA(K)(Ax) = NA(K)(i) as claimed. �

4. Main result. Consider a connected electrical circuit which contains the usual elements:
sources S, resistances R, capacities C, inductances L, and diodes D.

In order to illustrate the Kirchhoff rules in the theory of electrical circuits, it is common to draw
a certain graph tree which contains all knots, but no contour. The branches (elements) which are
not contained in the tree all called connectivity branches; each of them closes precisely one pricipal
contour which includes, apart from the given branch, only branches of the tree. Conversely, every
branch of the tree forms precisely one principal cross-section, i.e., a choice of branches which
contain, apart from the given branch of the tree, all those connectivity branches whose principal
contours include the given branch.

We denote by Ū the voltage vector and by Ī the current vector in the branches of a circuit,
while by U we denote the voltage vector and by I the current vector in the branches of the tree.
Then the principal contour equation Ū =MU and the principal cross-section equation I = −M∗Ī
are related by the same matrix M and its adjoint M∗ (see [2] or [4]).

We denote by D1 the set of all diodes which are connected to the circuit by capacities (i.e.,
which form a contour together with one of the involved capacities), and by k1 the number of
elements of D1. The set of all the other diodes is denoted by D2, the number of its elements by
k2. Enumerating the diodes of D1 and D2 separately in an arbitrary order, we construct a diodic
converter D in the following way. All elements of D1 are considered as branches of D and denoted
by D1, while all elements of D2 are considered as branches of D, and denoted by D2.

Consider the column vector

x := (y1,y2, . . . ,yk1 ,x1,x2, . . . ,xk2)
T (15)

consisting of the k1 anode voltages of the diode D1 and the k2 anode currents of the diode D2,
together with the row vector

y := (x1,x2, . . . ,xk1 ,y1,y2, . . . ,yk2) (16)

consisting of the k1 anode currents of the diode D1 and the k2 anode voltages of the diode D2. The
vector (15) belongs to the cone R

k1
− ×R

k2
+ , the vector (16) belongs to the cone R

k1
+ ×R

k2
− , and each
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of these cones is adjoint to the other. In particular, the elements x and y are mutually orthogonal,
so they are related by means of a didodic nonlinearity operator.

Denote by
v := (u1,u2, . . . ,uk1 ,i1,i2, . . . ,in)

T

the vector consisting of the anode voltages at the diodic converter D1 and the currents at the
inputs of the diodic converter D2, and by

u := (i1,i2, . . . ,ik1 ,u1,u2, . . . ,un)

the vector consisting of the currents at the diodic converter D1 and the voltages at the branches
of the diodic converter D2. Then the dependence of v on x may be expressed through the equation

v =

(
E O

O A

)
x,

with A denoting the (k1 × k1)-matrix with columns (13), E the unit matrix of rank k1, and O the
zero matrix of order k2. Likewise, the dependence of y on u may be expressed through the equation

y =

(
E O

O A∗

)
u.

Consequently, our Proposition implies that u and v are connected through the corresponding
DN-operator. In what follows, we will assume the following crucial

• LC-condition: Every path of the elements S, R, C, and L which joins two inputs from the
part D2 of the didodic converter contains at least one inductivity.

Now we split all elements of the circuit into the 6 groups C, D2, S, R, L and D1. In the group
C we first enumerate the capacities which are parallel-joined to the diodes of D1, then all the other
capacities in arbitrary order. In the groups S, R and L we enumerate all elements in arbitrary
order. Finally, in the groups D2 and D1 we keep the original order imposed in the construction
of D = D2 ∪ D2. Now we construct the circuit tree by resetting the groups and their elements
according to the chosen enumeration, where we connect every time an element to the tree when it
does not form a contour for the previously connected elements.

From this description and the LC-conditions stated above it follows that all elements of D2

belong to the tree, while all elements of D1 are branches which close a contour with one of the
capacities.

To illustrate our construction, we have sketched in Figure 2 two circuits which both satisfy the
LC-condition. According to our algorithm, we have first joined in Figure 2 (a) the branches 1, 2
and 3 of the diode converter on the 4 diodes which are sketched in light grey. Afterwards we have
joined the branch of the voltage source E, and then the branches of the resistances R1 and R2.
The branches L1 and L2 here belong to the circuit, while the sets C and D1 described above are
empty.

The circuit sketched in Figure 2 (b) consists only of one capacity branch C, while all the other
branches are connected. For this circuit the sets L and D2 are empty.

Once we have constructed the tree in this way, we enumerate separately in every group the tree
elements and the connecting elements (not in the tree) in the old order. Moreover, we overline
the voltages and currents of all connecting branches, observing that this does not change the
emumeration in the diodic converter.
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Figure 2.

Then the equations of the principal contours and principal cross-sections of the resulting tree
have the form 




ūC =M11uC ,

ūS =M31uC +M33uS ,

ūR =M41uC +M43uS +M44uR,

ūL =M51uC +M52uD1
+M53uS +M54uR +M55uL,

ūD2
=M61uC ,

(17)

and 



iC = −M∗
11 īC −M∗

31 īS −M∗
41 īR −M∗

51 īL −M∗
61 īD2

,

iS = −M∗
33īS −M∗

43 īR −M∗
53īL,

iR = −M∗
44īR −M∗

54 īL,

iL = −M∗
55 īL,

iD1
= −M∗

52 īL,

(18)

respectively. Here Mij and M∗
ij are stationary (i.e., time-independent) matrices which contain, as

the matrix A with entries (12), only the elements 0, 1 and −1, according to whether or not the
corresponding element belongs to the closed contour, and in which direction. In matrix form the
linear systems (17) and (18) read




ūC

ūS

ūR

ūL

ūD2




=




M11 0 0 0 0

M31 M33 0 0 0

M41 M43 M44 0 0

M51 M53 M54 M55 M52

M61 0 0 0 0







uC

uS

uR

uL

uD1



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and 


iC

iS

iR

iL

iD1




= −




M∗
11 M∗

31 M∗
41 M∗

51 M∗
61

0 M∗
33 M∗

43 M∗
53 0

0 0 M∗
44 M∗

54 0

0 0 0 M∗
55 0

0 0 0 M∗
52 0







īC

īS

īR

īL

īD2



,

respectively. For the sake of completeness of the mathematical description, we also add the
equations for the inductivity, capacity, and resistance of the circuit

{
L̄ ī′L = ūL, C̄ ū

′
C = īC , ūR = R̄ īR,

Li′L = uL, Cu
′
C = iC , uR = RiR,

(19)

where L̄, L, C̄, C, R̄, and R are diagonal matrices with positive entries.
We assume that uS and īS are known. Physically, this means that all voltage sources belong to

the tree, while all current sources are connecting branches; in the opposite case the scheme may
be contradictory.

Let us now study and simplify the transformation of the systems (17) and (18). First we remove
īC and uL. Taking derivatives in the first equation of (17) and multiplying by C̄, we obtain

īC = C̄ ū′C = C̄M11C
−1Cu′C = C̄M11C

−1iC ,

where we have used the second and fifth equality in (19). Putting this expression for īC into the
first equation in (18) yields

iC +M∗
11C̄M11C

−1iC = −M∗
31 īS −M∗

41 īR −M∗
51 īL −M∗

61īD2
. (20)

Similarly, taking derivatives in the fourth equation of (18) and multiplying by L, we obtain

uL = Li′L = −LM∗
55L̄

−1L̄ī′L = −LM∗
55L̄

−1ūL,

we have used the first and fourth equality in (19). Putting this expression for uL into the fourth
equation in (17) yields

ūL +M55LM
∗
55L̄

−1ūL =M51uC +M52uD1
+M53uS +M54uR. (21)

Using the shortcut A := C +M∗
11C̄M11 and B := L̄ +M55LM

∗
55, and applying the operators

AC−1 and BL̄−1 to the inductivity equation (20) and capacity equation (21), respectively, we end
up with

Au′C = AC−1iC = −M∗
31īS −M∗

41īR −M∗
51 īL −M∗

61 īD2
(22)

and
Bī′L = BL̄−1ūL =M51uC +M52uD1

+M53uS +M54uR, (23)

respectively. Now we remove īR and uR from the systems (17) and (18). To determine īR we use
the third equation in (17) and third equation in (18) and obtain

(R̄+M44RM
∗
44)̄iR =M41uC +M43uS −M44RM

∗
54 īL.

Being symmetric and positive definite, the matrix S := R̄+M44RM
∗
44 is invertible, and so

īR = S−1M41uC + S−1M43uS − S−1M44RM
∗
54īL. (24)
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To determine the voltage and the other currents we put (24) into the equation for the resistance
and get

ūR = R̄S−1M41uC + R̄S−1M43uS − R̄S−1M44RM
∗
54īL.

Likewise, putting (24) into the third equation from (18) yields

iR = −M∗
44S

−1M41uC −M∗
44S

−1M43uS + (M∗
44S

−1M44R− E)M∗
54 īL,

where E denotes as before the unit matrix. Finally, applying the matrix R we arrive at

uR = −RM∗
44S

−1M41uC −RM∗
44S

−1M43uS +R(M∗
44S

−1M44R− E)M∗
54 īL,

where we have used the last equality in (19). Introducing the vectors

x :=

(
īL
uC

)
, u :=

(
īD2

uD1

)
, v :=

(
ūD2

iD1

)
, y :=

(
īS
uS

)
(25)

and the matrices

A1 :=

(
B O

O A

)
, A2 :=

(
M54R(M

∗
44S

−1M44R− E)M∗
54 M51 −M54RM

∗
44S

−1M41

M∗
41S

−1M44RM
∗
54 −M∗

51 −M∗
41S

−1M41

)
,

A3 :=

(
O −M52

M∗
61 O

)
, A4 :=

(
O M53 −M54RM

∗
44S

−1M43

−M∗
31 −M∗

41S
−1M43

)
,

we may write (22) and (23) more concisely in the form

A1x
′ = A2x−A3u+A4y, (26)

and the last equations from (17) and (18) more concisely in the form

v = A∗
3x.

Let us recall that the function y = y(t) is known; this function defines the action of the voltage
and current sources. Moreover, we point out that the matrix A1 is symmetric and positive definite,
so the matrices A1/2

1 and A−1/2
1 are well-defined. Putting

X := A
1/2
1 x, U := A

−1/2
1 A3u, f(t,X) := A

−1/2
1 A2A

−1/2
1 X +A

−1/2
1 A4y (27)

we see that v = A∗
3A

−1/2
1 X. Applying A−1/2

1 to both sides of (26) we obtain

X ′ = A
1/2
1 x′ = A

−1/2
1 A1x

′ = A
−1/2
1 A2x−A

−1/2
1 A3u+A

−1/2
1 A4y

= A
−1/2
1 A2A

−1/2
1 X − U +A

−1/2
1 A4y = f(t,X)− U.

(28)

The diode converter vectors u and v are connected, as we already observed, by the corresponding
DN-operator. So from the above Proposition we may conclude that the vector U = A

−1/2
1 A3u in

(28) is related to X through the diode nonlinearity NK generated by some cone K. Consequently,
(28) may be rewritten as DN-system

X ′ ∈ f(t,X)−NK(X), (29)

as we have shown before. We summarize our discussion with the following
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Theorem. Suppose that the physical model for the diode converter of an electrical circuit may
be represented in such a way that it satisfies the LC-condition. Then the mathematical model for
the circuit may be represented as DN-system.

This theorem is not only of theoretical interest. In fact, as soon as we are able to solve the
differential inclusion (29), we may calculate all voltages and currents in the corresponding circuit.

5. Examples. In this final section we first illustrate the previous construction by means of
an example, where the LC-condition which was crucial for deriving the differential inclusion (29)
is satisfied. Afterwards we give an example which shows that this condition is sufficient, but not
necessary.

Example 1. Consider again the circuit sketched in Figure 2 (a). Since this circuit contains two
inductances, two resistances, and one diode, the corresponding vectors occurring in this circuit are

ūL =

(
ūL1

ūL2

)
, īL =

(
īL1

īL2

)
, uR =

(
uR1

uR2

)
, iR =

(
iR1

iR2

)
.

Moreover,

uD2 =




u1
u2
u3


 , iD2 =




i1
i2
i3


 , uS = E(t).

The only principal contour equation occurring here in (17) is

ūL =M52uD2 +M53E(t) +M54uR,

where

M52 =

(
−1 0 1
0 −1 0

)
, M53 =

(
−1
0

)
, M54 =

(
−1 0
0 −1

)
, (30)

while the three principal cross-section equations in (18) occurring here have the form

iS = −M∗
53īL, iR = −M∗

54 īL, iD2 = −M∗
52 īL.

All other matrices in (17) or (18) are zero. Let us now see how the differential equations in (19)
look like in this case. Since

L1 ī
′
L1

= ūL1 , L2 ī
′
L2

= ūL2 , uR1 = R1iR1 , uR2 = R2iR2 ,

the first and last equations in (19) hold with

L̄ =

(
L1 0
0 L2

)
, R =

(
R1 0
0 R2

)
.

The matrix A = C +M∗
11C̄M11 does not occur, but B = L̄ +M55LM

∗
55 = L̄, since M55 = O.

Consequently,
A1 = L̄, A2 = −R, A3 = −M52, A4 =M53,

by (29). Taking into account (26) and the fact that x = īL and y = uS = E(t), the transformation
(27) reads

X = A
1/2
1 x =

(
L
1/2
1 īL1

L
1/2
2 īL2

)
, U = A

−1/2
1 A3u =

(
L
−1/2
1 (u1 − u3)

L
−1/2
2 u2

)
,
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and

f(t,X) = A
−1/2
1 A2A

−1/2
1 X +A

−1/2
1 A4y

=

(
L
−1/2
1 0

0 L
−1/2
2

)(
−R1 0
0 −R2

)(
L
−1/2
1 0

0 L
−1/2
2

)(
L
1/2
1 īL1

L
1/2
2 īL2

)

+

(
L
−1/2
1 0

0 L
−1/2
2

)(
−1
0

)
E(t) =

(
−R1L

−1
1 0

0 −R2L
−1
2

)
X +

(
−E(t)L

−1/2
1

0

)
.

So from our main result we conclude that the circuit in Figure 2 (a) may be described by the
DN-system (29) for given alimentation inputs E(t). The cone K in (29) may be described explicitly.
Let KD be the cone consisting of all elements of the form

z :=




1 −1 0 0
0 1 1 0
0 0 −1 1







ξ1
ξ2
ξ3
ξ4


 =




ξ1 − ξ2
ξ2 − ξ3
ξ4 − ξ3


 ,

where the vector (ξ1,ξ2,ξ3,ξ4) runs over the positive octant R
4. Then K is the adjoint cone to

−A−1/2
1 M52K

∗
D, where M52 is the first matrix in (30). �

Example 2. The circuit sketched in Figure 3 below does not satisfy the LC-condition, because
the three paths which contain the elements J1 and J2 and join the didodic converter from D2 do
not include an inductivity.

Figure 3.

The equations for the voltage drop in the contour {E,R,L,D2,D1} has here the form

uR + uL + uD2 − uD1 = uE , (31)

where uE = uE(t) is some given time-dependent function. We write

i := iR = iL = iD2 − J2 = −iD1 + J1,

with given constants J1 and J2. Expressing the voltages uR and uL in (31) through the relations
uR(t) = i(t)R(t) and uL(t) = i′(t)L(t), we arrive at

iR+ i′L+ uD2 − uD1 = uE . (32)
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Since the anode currents iD1 = J1 − i and iD2 = J2 + i of the diodes D1 and D2, respectively,
assume only nonnegative values, we get −J2 6 i 6 J1; so for the correct performance of the circuit
we require that J1 + J2 > 0 in order guarantee that Q := [−J2,J1] 6= ∅.

Now we distinguish three cases for the position of i in Q. If −J2 < i < J1 then iD1 > 0 and
iD2 > 0, so uD1 = uD2 = 0. If i = −J2 then iD1 > 0, iD2 = 0, uD1 = 0, and uD2 6 0. Finally,
if i = J1 then iD1 = 0, iD2 > 0, uD1 6 0, and uD2 = 0. In any case the vector u := uD2 − uD1

belongs to NQ(i).
Writing (32) in the form

i′(t) =
uE(t)

L(t)
− i(t)

R(t)

L(t)
− u(t)

L(t)
=: f(t,i(t)) − u(t)

L(t)
,

and observing that also u/L belongs to NQ(i), since L is positive, we end up with the differential
inclusion

i′ ∈ f(t,i)−NQ(i)

which is precisely of the form (6) (or (29)). In other words, the mathematical model of the circuit
sketched in Figure 3 may be represented as DN-system. �
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