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Abstract: This paper is concerned with so-called systems with diode nonlinearities.
We discuss such systems first from the mathemical viewpoint and recall some facts from
the theory of cones, projections, and differential inclusions. Afterwards we show that
certain electrical circuits with diode converters may be viewed as natural examples.
In particular, our approach provides a universal and “automatic” description for all
circuits which satisfy a so-called LC-condition. This condition is either fulfilled for a
circuit, or may be achieved by adding small inductivities and capacitiesto a specific
part of the circuit.
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CHUCTEMBI C ANOJHOI HEJIMHENMHOCTBIO
B MOJEJINPOBAHUUN HEKOTOPBIX SJIEKTPMYECKIX
ITETIEN
FO. Ammenn, JI. II. IleTpoBa

AnHOTanuUs: DTa CTATHS MOCBSIIAETCS TAK HA3BIBAEMBIM CHCTEMAM C JHOTHBIMU HeJInHE -
HoctsiMu. OOCYKIAIOTCA TaKHe CHCTEMbBI CHAYAJIA C MATEMATHIECKOM TOYKHU 3PpEHUSsT, TIOBTOPSIST
HEKOTOPBIE PE3YIbTATHI U3 TEOPUU KOHYCOB, NMpOoeKImit u auddepeHnuaJbHbIX BKIOICHUI.
3areM II0Ka3bIBAETCS, KAK HEKOTOPBIE SJIEKTPUYECKUE IIENHU C JUOIHBIMU IPeobpa3soBaTeIsiMu
MOTYT CJIy?KUTh €CTECTBEHHBIMU MMpUMEpaMi. B 4acTHOCTH, HAII TOJIXOJ JIaeT YHUBEPCATHLHOE
u "aBromaTudeckoe" ommcaHue Bcex Tierneil, KOTOPbIE YIOBJIETBOPSAIOT Tak HazbiBaemMomy LC-
YCJIOBHUIO. DTO YCJOBUE JIMOO BBITOTHAETCS JJIsT TIETH, JUOO €ro MOXKHO IMOJIYIUTh, BKIIOYAs B
OTIpEJIIeHHbIE MECTa e MAaJIble HHAYKTUBHOCTH MU EMKOCTH.

KiioueBbie cijioBa: HOPMAJIBHBII KOHYC, KACATEJbHBIN KOHYC, COMPSIKEHHBIN KOHYC, ITH-
OJIHA HEJTMHEHHOCTD, muddepeHImaabHoe BKIYEHNE, SJIeKTPUIECKast IEelb, JUOAHBIN Ipeod-
paszosaresib, LC-ycioBue.

In the theory of electrical circuits there exist various descriptions, both as algebraic and
differential systems, but only in the linear case. A great advantage is here the possibility of
programming this description of a linear circuit which provides a universal method. On the other
hand, for electrical circuits with nonlinear elements no such approach exists and, even worse,
probably cannot exist at all. In the literature a certain variety of methods may be found also for
nonlinear circuits, but each method applies only to one spedific type of circuits individually.
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The aim of this paper is to provide a universal and “automatic” description for all circuits which
satisfy a so-called LC-condition. This condition (a precise definition will be given below) is either
fulfilled for a circuit, or may be achieved by adding to the circuit small inductivities and capacities.
A crucial role is here played by the concept of diode nonlinearity which will be explained below.

After providing the necessary theoretical backgroud, at the end of this paper we will give
two typical examples. The first example illustrates how the LC-condition may be ensured
“automatically” by our algorithm, while the second example is concerned with a circuit which
does not satisfy an LC-condition but nevertheless leads to a diode nonlinearity.

1. Normal and tangent cones. In this section we recall some basic facts about normal and
tangent cones. In what follows, we will always work in the Euclidean space R™ with scalar product
(x,y) = T1y1 + ... + Tpym and corresponding norm ||z||? = (z,z).

A set K C R™is a cone if z,y € K and s,t > 0 implies sx + ty € K; so a cone is always
convex, but not necessarily closed. Standard examples are the positive octant R := {x € R™ :
Z1,...,Zym = 0} and the negative octant R™ := {x € R™ : 1,... .2, < 0}; in particular, R, =
[0,00) and R_ = (—00,0]. The adjoint cone of a cone K C R™ is defined by

K*:={zeR™: (y,z) <0forall y € K}. (1)

The adjoint cone K* is always closed, even if K is not. Moreover, it is easy to see that K** = K
if K is closed.
Given a closed convex set @ C R™ and a point « € @), the normal cone to @) at z is defined by

Ng(z) :={y e R": (y,z —z) <0 for all z € Q}, (2)
while the tangent cone to Q) at x is defined by
To(x) :={z € R™: (y,z) <0 for all y € Ng(x)}. (3)

A comparison with (1) shows that Tg(z) = Ng(z)*, so a tangent cone is always closed.
Moreover, we have Ng(xz) = {0} and Tg(x) = R™ if z is an interior point of Q; therefore the
cones (2) and (3) are interesting only in case z € 9Q, the boundary of Q.

In some cases these cones may be calculated quite easily. For example, in the scalar case Q = [a,b]
we have

Ng(a) =Tp(b) =R-, Ng(b) = Tg(a) =R,

If @ ={x €R™: (z,n) <c} is an affine halfspace, where n € R™ is a normalized vector and
c € R is fixed, a straightforward calculation shows that Ng(z) = {An : A > 0} and Tp(z) = {z €
R™: (z,n) < 0} for any x € 0Q = {z € R™ : (x,n) = c}.

The normal cone N,(Q) and the tangent cone T (x) have some “duality properties”, the most
important one being summarized in the following

Lemma 1. For fized x and Q, denote by v, : R™ — Ng(x) the metric projection onto the
normal cone (2) and by 7, : R™ — Tg(x) the metric projection onto the tangent cone (3). Then
every y € R™ admits an orthogonal decomposition of the form

y=voW) +71Qy),  (roy)mqy)) =0. (4)
Conversely, if y =u+v for some u € Ng(x) and v € To(z), then u = v,(y) and v = 7,(y).

The proof of Lemma 1 is standard and follows from the general fact that, given a convex set
@ C R™ and an element y € R™, the point of best approximation x of y in () may be characterized
by the variational inequality
(y—z,z—12) <0 (z € Q).
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In what follows, we will use the fact that in case of a cone K we have the equivalence
y€ Ng(z) <= zeK,yeK" (xy) =0. (5)

This follows from the maximal monotonicity of the multivalued map = — Nk (z) in case of a
cone. The basic definitions and results of the theory of cones may be found, e.g., in the textbooks
[1] or [3].

2. Diode nonlinearities. Now we are going to define precisely what we mean by a DN-system
and its solutions. Given an interval I C R and a closed convex set  C R™, we will consider
continuous maps f : I x Q — R™ in what follows.

Definition. A system with diode nonlinearity (or DN-system, for short) is a differential inclusion
of the form

& € f(t,x) — No(x) (6)

involving the normal cone (2). A solution of (6) is an absolutely continuous function x = z(t)
satisfying

@(t) € f(tx(t)) — No(x(t)) (7)

for almost all ¢ € 1. O

Interestingly, DN-systems may be also formulated in the following different, but equivalent,
form. Denoting as before by 7, the metric projection onto the cone (3), which means that ||y —
72(y)|| = dist(y,Tg(x)) for y € R™, we may rewrite (6) in the form

T =T1.f(t,x). (8)

Let us briefly explain why (6) and (8) are equivalent. If x = z(t) is absolutely continuous and
satisfies

x(t) = Tx(t)f(tax(t)) (9)

for almost all ¢ € I, from Lemma 1 we conclude that

o) f (6,2(8)) = [t (1) — vo f(E2(1)) € f(E(t)) — No(z(t)),

where v, is the metric projection onto the cone (2). Conversely, suppose that x = x(¢) is absolutely
continuous and satisfies (7) almost everywhere. Choose a point uw € Ng(x(t)) such that &(t) =
f(t,xz(t)) — u. Then &(t) and u are orthogonal, by Lemma 1, since @(t) € Tp(z(t)). Now, the
representation f(t,z(t)) = u+(t) and the orthogonality of u and #(t) shows that u = v, f(t,2(t))
and @(t) = 7, f(t,z(t)), again by Lemma 1, and the last equality is precisely (9).

To treat DN-systems in the representation (6) we have to analyze the properties of the
multivalued map Ng :  — Ng(z) (which is sometimes called the DN-operator generated by
@ in the literature). For instance, one may show that Ng has a closed graph in the sense that, if
x, € Q satisfies z,, — x as n — oo, and y, € Ng(z,,) satisfies y,, = y as n — oo, then y € Ng(x).
We point out, however, that the multivalued map Ty : = +— Tg(x) in general does not have a
closed graph.

The advantage of the representation (8) is of course that it does not involve multivalued maps.
On the other hand, (8) is not an ordinary differential equation, since it contains the projection
operator 7., which makes its treatment surprisingly difficult.

Before starting the application-oriented part of this paper, we need another lemma which shows
how didode nonlinearities behave under linear transformations.

Lemma 2. Let K CR™ be a cone, x € K, u € R", and A : R™ — R"™ a linear operator. Then

the equivalence
u€ Nyg)(Az) <= A'u e Ng(x) (10)
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holds, where A* denotes the adjoint of A.
Proof. The relation on the left hand side of (10) means, by (5), that

Az € A(K), wue A(K)*, (Az,u)=0.
But this is obviously equivalent to
zxeK, AweK*, (z,A*u)=0

which is precisely the right hand side of (10). O

3. Electrical circuits. Consider a diode converter which represents an electrical circuit
consisting of m ideal diods. We will assume that all knots of this circuit are inputs, i.e., contacts
through which the diode converter may be joined with other circuits. We enumerate the knots
(inputs) in a predetermined way by 0,1,...,n. In the j-th diode, we denote the corresponding
current by z; and the corresponding voltage (from the anode to the cathode) by y;. Furthermore,
the incoming current, i.e., the current which flows from an outer circuit to the diode converter,
through the k-th input will be denoted by 7y, the incoming voltage i.e., the voltage between the k-th
input and the O-th input, by ux (k = 1,2,...,n). With this notation, the so-called Volt-Ampére
characteristic of the ideal diode may be written in the form y € Nrp (2), which means by (5) that

zeRT, yeR™, (x,y) =0. (11)

In Figure 1 we have sketched an example of two circuits, where Figure 1 (a) contains only
the diodes, while in Figure 1 (b) the branches of the constructed diode converter are sketched by
dotted lines with arrows.

1 I 1 2
I | o~ M L_,.--“] e | |
T
Dﬂ 32 Dos_:__'--___-____d.It’:l ___________ D:
.l 3 L
<7 gl g e S P
e 1‘*-J M =) | l
4 3

Figure 1.
The relation between the anode current vector x = (1,22, ..., ) and the input current vector
i = (i1,i2,...,in) of a general electrical circuit is given by Az = i, where the (n X m)-matrix

A = (ay;)r,; has the entries

1 if the j-th diode anode is joined with the k-th knot,
ap; = ¢ —1 if the j-th diode cathode is joined with the k-th knot, (12)

0 otherwise.

We do not take into account the rule for the 0-th knot, since it follows from the corresponding
rules for the other knots and our assumption that the sum of all input currents is zero. In the
following Proposition, we denote by

AV = (ayj,a95, - san;)T (G =12,...,m) (13)
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the j-th column of the matrix A = (ax;)i,; with elements (12).

Proposition. Let K = R be the cone of all m-tuples with nonnegative coordinates. Then the
input voltage vector u and input current vector i are related by the equality

u € Ny (3), (14)
where N (k) denotes the DN-operator generated by A(K).

Proof. Note first that the cone A(K) contains all elements generated by the columns A!, ... A™
of the matrix A, i.e.
AK) = {slAl—i—...—l—smAm:sl,...,sm >0},

see (13). Fix x and y satisfying (11), which means that y € Ng(x), by (5). Let k(j,+) be the
number of the knot which is joined to the anode of the j-th diode, and let k(j,—) be the analogous
number for the cathode. Then

Yj = Up(j4) — Uk(j—) (j=12,...,m).

In the j-th column in (13), only the entries with index k(j,+) or k(j,—) can be different from
zero. If one of these indices is zero, then the corresponding input voltage is also zero. From this
we conclude that y = A*u, where A* is the adjoint matrix to A. So Lemma 2 implies that
u € Nyk)(Az) = Ny (i) as claimed. O

4. Main result. Consider a connected electrical circuit which contains the usual elements:
sources S, resistances R, capacities C', inductances L, and diodes D.

In order to illustrate the Kirchhoff rules in the theory of electrical circuits, it is common to draw
a certain graph tree which contains all knots, but no contour. The branches (elements) which are
not contained in the tree all called connectivity branches; each of them closes precisely one pricipal
contour which includes, apart from the given branch, only branches of the tree. Conversely, every
branch of the tree forms precisely one principal cross-section, i.e., a choice of branches which
contain, apart from the given branch of the tree, all those connectivity branches whose principal
contours include the given branch.

We denote by U the voltage vector and by I the current vector in the branches of a circuit,
while by U we denote the voltage vector and by I the current vector in the branches of the tree.
Then the principal contour equation U = MU and the principal cross-section equation I = —M*I
are related by the same matrix M and its adjoint M* (see [2] or [4]).

We denote by D; the set of all diodes which are connected to the circuit by capacities (i.e.,
which form a contour together with one of the involved capacities), and by k; the number of
elements of D;. The set of all the other diodes is denoted by Dy, the number of its elements by
ko. Enumerating the diodes of Dy and Dy separately in an arbitrary order, we construct a diodic
converter D in the following way. All elements of Dy are considered as branches of D and denoted
by D1, while all elements of Dy are considered as branches of D, and denoted by Dao.

Consider the column vector

T
€T = (ylay%---,yk1a$1,$2,---,~"3k2) (15)

consisting of the k; anode voltages of the diode D; and the ko anode currents of the diode D,
together with the row vector

Y= (x171'27...,I’kl,ylyy27--'7yk2) (16)

consisting of the k1 anode currents of the diode D4 and the ky anode voltages of the diode Ds. The
vector (15) belongs to the cone R*! x ]Rff, the vector (16) belongs to the cone RT x R*2 and each
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of these cones is adjoint to the other. In particular, the elements x and y are mutually orthogonal,
so they are related by means of a didodic nonlinearity operator.

Denote by
T

v i= (ul,uQ, Ce ,ukl,il,ig, Ce ,in)
the vector consisting of the anode voltages at the diodic converter Dy and the currents at the
inputs of the diodic converter D2, and by

U= (11,82, -« 50y UL, U, « -« yUnp)

the vector consisting of the currents at the diodic converter D and the voltages at the branches
of the diodic converter Ds. Then the dependence of v on & may be expressed through the equation

(E O
v = OA$,

with A denoting the (k1 X k1)-matrix with columns (13), E the unit matrix of rank k1, and O the
zero matrix of order ky. Likewise, the dependence of y on u may be expressed through the equation

(E O
Y=V o a ™

Consequently, our Proposition implies that u and v are connected through the corresponding
DN-operator. In what follows, we will assume the following crucial

o LC-condition: Every path of the elements S, R, C, and L which joins two inputs from the
part Do of the didodic converter contains at least one inductivity.

Now we split all elements of the circuit into the 6 groups C, D3, S, R, L and Dy. In the group
C we first enumerate the capacities which are parallel-joined to the diodes of D1, then all the other
capacities in arbitrary order. In the groups S, R and L we enumerate all elements in arbitrary
order. Finally, in the groups D2 and D7 we keep the original order imposed in the construction
of D = Do UDs>. Now we construct the circuit tree by resetting the groups and their elements
according to the chosen enumeration, where we connect every time an element to the tree when it
does not form a contour for the previously connected elements.

From this description and the LC-conditions stated above it follows that all elements of Do
belong to the tree, while all elements of D7 are branches which close a contour with one of the
capacities.

To illustrate our construction, we have sketched in Figure 2 two circuits which both satisfy the
LC-condition. According to our algorithm, we have first joined in Figure 2 (a) the branches 1, 2
and 3 of the diode converter on the 4 diodes which are sketched in light grey. Afterwards we have
joined the branch of the voltage source E, and then the branches of the resistances R; and Ra.
The branches L and Lo here belong to the circuit, while the sets C' and D4 described above are
empty.

The circuit sketched in Figure 2 (b) consists only of one capacity branch C, while all the other
branches are connected. For this circuit the sets L and Dy are empty.

Once we have constructed the tree in this way, we enumerate separately in every group the tree
elements and the connecting elements (not in the tree) in the old order. Moreover, we overline
the voltages and currents of all connecting branches, observing that this does not change the
emumeration in the diodic converter.
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Figure 2.

Then the equations of the principal contours and principal cross-sections of the resulting tree

have the form

and

uc = Miuc,

us = Mziuc + Mssus,

i = Myuc + Mizus + Maygug, (17)
ur, = Msiuc + Msaup, + Mssus + Mssur + Mssur,

up, = Mgruc,

ic = —Myic — Mzyis — Mjyig — Mgyip — Mgip,,

ig = —Migis — Mizip — M3ir,

in = —M}jip — MiiL, (18)
i, = —Mg})gL,

iDl = —Mgsz,

respectively. Here M;; and Mi*j are stationary (i.e., time-independent) matrices which contain, as
the matrix A with entries (12), only the elements 0, 1 and —1, according to whether or not the
corresponding element belongs to the closed contour, and in which direction. In matrix form the

linear systems (17) and (18) read

84

Uc M4 0 0 0 0 uUc
Uug Mgy Mss O 0 0 ug
uR = | My Myz Mgy O 0 UR
(173 Msy Ms3 Msy Mss Mso ug,
@D, Mg 0 0 0 0 uD,
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and ~
ic My, Mgz My, Mg, Mg ic
15 0 M3y, Mj; Mgz O is
IR =— 0 0 My M, O iR ,
ir 0 0 0 M O iL
D, 0 0 0 M O Dy

respectively. For the sake of completeness of the mathematical description, we also add the
equations for the inductivity, capacity, and resistance of the circuit

L, =ur, Cul =ic, ugp = Rig,
{ L L C C R R (19)

Li}, =up, Cup =ic, ur = Rig,

where L, L, C, C, R, and R are diagonal matrices with positive entries.

We assume that ug and ig are known. Physically, this means that all voltage sources belong to
the tree, while all current sources are connecting branches; in the opposite case the scheme may
be contradictory.

Let us now study and simplify the transformation of the systems (17) and (18). First we remove
ic and uy. Taking derivatives in the first equation of (17) and multiplying by C, we obtain

EC = C_'T/C = CMHC_lCu’C = 6M11C_1ic,

where we have used the second and fifth equality in (19). Putting this expression for ic into the
first equation in (18) yields

ic+ M{C My C Ve = —Miyis — Mjjig — MZyip, — Mijip,. (20)
Similarly, taking derivatives in the fourth equation of (18) and multiplying by L, we obtain
up = Lily = —LMZ L™ 'Li, = —LMZL ‘ay,

we have used the first and fourth equality in (19). Putting this expression for uy, into the fourth
equation in (17) yields

ur, + M55LM§5I_/_1TLL = M51UC + M52uD1 + M53u5 + M54uR. (21)

Using the shortcut A := C + Mj;CMy; and B := L + Ms;LM?;, and applying the operators
AC~1 and BL™! to the inductivity equation (20) and capacity equation (21), respectively, we end
up with

Aup = AC Vig = —M3yis — Mjyig — MZjip — Myip, (22)
and
Bi}, = BL™ Yy, = Msjuc + Msaup, + Mssus + Msyug, (23)

respectively. Now we remove ig and ug from the systems (17) and (18). To determine ir we use
the third equation in (17) and third equation in (18) and obtain

(R + M44RMI4)ER = Myiuc + Mysug — M44RM§4EL.
Being symmetric and positive definite, the matrix S := R + My RM}, is invertible, and so
ir = S Myuc + S~ Myzus — ST My RMZ iz, (24)
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To determine the voltage and the other currents we put (24) into the equation for the resistance
and get
UR = RSilMﬂuC + R571M43US — R571M44RMQ4EL.

Likewise, putting (24) into the third equation from (18) yields
iR = —MZ4S_1M41UC — MZ4S_1M43US + (MZ4S_1M44R - E)Mg4gL’

where E denotes as before the unit matrix. Finally, applying the matrix R we arrive at

where we have used the last equality in (19). Introducing the vectors

up = —RM},S™ ' Myuc — RM},S™ ' Myzus + R(M;,S™ My R — E)Mir,
x::<EL>, u::<%D2>, v:z(q.“h),
uc Up, 1D,

is
( is ) (25)
and the matrices

A B O 1 MsaR(M}, S~ My R — EYMZ, Mz — M5y RM}, S~ My
1= ? 2= * — * * * — ?

A 0 —M39 A, 0 Ms3 —M54RMI4S_1M43
b Mg O o —Mz, — M, S™ Mas 7

we may write (22) and (23) more concisely in the form
Az’ = Ay — Asu + Ayy, (26)
and the last equations from (17) and (18) more concisely in the form
v = Azx.

Let us recall that the function y = y(t) is known; this function defines the action of the voltage
and current sources. Moreover, we point out that the matrix A; is symmetric and positive definite,

so the matrices A}/ % and Al_l/ % are well-defined. Putting

X =A%, U:=A7"Agqu, f(t,X) = A7 A,A47 X + AT Ay (27)

we see that v = A§A;1/2X. Applying A;1/2 to both sides of (26) we obtain

X' = AP0 = ATV Ay = A7V Agw — ATV Agu+ AT Ay o9
28
= AP A ATPX U+ ATV Ay = F(8X) — UL

The diode converter vectors u and v are connected, as we already observed, by the corresponding

DN-operator. So from the above Proposition we may conclude that the vector U = A;l/ 2A3u in
(28) is related to X through the diode nonlinearity Ny generated by some cone K. Consequently,
(28) may be rewritten as DN-system

Xlef(t’X)_NK(X)a (29)
as we have shown before. We summarize our discussion with the following
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Theorem. Suppose that the physical model for the diode converter of an electrical circuit may
be represented in such a way that it satisfies the LC-condition. Then the mathematical model for
the circuit may be represented as DN-system.

This theorem is not only of theoretical interest. In fact, as soon as we are able to solve the
differential inclusion (29), we may calculate all voltages and currents in the corresponding circuit.

5. Examples. In this final section we first illustrate the previous construction by means of
an example, where the LC-condition which was crucial for deriving the differential inclusion (29)
is satisfied. Afterwards we give an example which shows that this condition is sufficient, but not
necessary.

Example 1. Consider again the circuit sketched in Figure 2 (a). Since this circuit contains two
inductances, two resistances, and one diode, the corresponding vectors occurring in this circuit are

_ U = i U . 1
uL = 7L1 ZL = _.Ll uR = Rl ZR = .Rl .
) ) )
ULy tLy URy LRy

Moreover,
u1 (3
UDy = U2 , iDy = 19 , Ug = E(t)
u3 i3

The only principal contour equation occurring here in (17) is

ar, = Msaup, + Ms3E(t) + Msqup,

-1 0 1 -1 -1 0
M52—< 0 1 0>7 M53—< O)’ M54—< 0 _1>, (30)

while the three principal cross-section equations in (18) occurring here have the form

where

. * = . * = . *
ZS — —M537/L, ZR — —M54ZL, ZD2 — —M527/L

All other matrices in (17) or (18) are zero. Let us now see how the differential equations in (19)
look like in this case. Since

=/ _ =/ _ . .
LIZLl =Ur,, LQZLQ = UL, UR, = RIZRU URy, = R21R27

the first and last equations in (19) hold with

7o L1 0 _ Rl 0
i=(%n) 2= (% m)
The matrix A = C' + M;;CMj; does not occur, but B = L + Mss LMy = L, since Ms5 = O.

Consequently,
Ay =1L, Ay =—R, Ay = —Msy, Ay = Ms3,

by (29). Taking into account (26) and the fact that # = iy, and y = ug = E(t), the transformation
(27) reads

1/2= -1/2,
X=alpo (B} oy oAy a0 ) )
Ly "ig, Ly ""us
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and

FEX) = A7 P A AT X + AT Ay
(Lo < R 0 > L;'? o L%,
0o Ly'? 0 —Ry 0o Ly'? L%,

L1—1/2 0 1 B _R1L1—1 0 —E(t)Ll_l/z

So from our main result we conclude that the circuit in Figure 2 (a) may be described by the
DN-system (29) for given alimentation inputs E(t). The cone K in (29) may be described explicitly.
Let Kp be the cone consisting of all elements of the form

I -1 00 &1 — &
z=(0 1 10 £ |2 E—& |,
0 0 -1 1 3 €4 — &3
€4
where the vector (£1,£2,£3,€4) Tuns over the positive octant R*. Then K is the adjoint cone to
—Al_l/zMg,gK* , where M5y is the first matrix in (30). O

Example 2. The circuit sketched in Figure 3 below does not satisfy the LC-condition, because
the three paths which contain the elements J; and J and join the didodic converter from Do do
not include an inductivity.

E R L
@ s sl
1 2
P~ L1
L1 I~
J: J:
o
&

L
&)

Figure 3.

The equations for the voltage drop in the contour {E,R,L,D5,D1} has here the form
ur +ur +up, —up, = ug, (31)
where ug = ug(t) is some given time-dependent function. We write
i:=14Rp =1 =1ip, — Jo = —ip, + J1,

with given constants J; and Jo. Expressing the voltages ug and wy, in (31) through the relations
ur(t) = i(t)R(t) and ur(t) = ¢ (t)L(t), we arrive at

iR+i/L+uD2 —Uup, = UEg. (32)
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Since the anode currents ip, = J; — ¢ and ¢p, = J2 + ¢ of the diodes Dy and Dy, respectively,
assume only nonnegative values, we get —Js < ¢ < Jp; so for the correct performance of the circuit

we require that J; + Jo > 0 in order guarantee that Q := [—Js,J1] # .
Now we distinguish three cases for the position of ¢ in Q. If —Js < ¢ < Jj then ip, > 0 and
ip, > 0,80 up, = up, = 0. If ¢ = —Jy then ip, > 0, ip, = 0, up, = 0, and up, < 0. Finally,

if i = Jj then ip, =0, ip, > 0, up, < 0, and up, = 0. In any case the vector v := up, — up,

belongs to Ng(1).
Writing (32) in the form

u(t)

- S = i) - T

(t)

and observing that also u/L belongs to Ng(i), since L is positive, we end up with the differential

inclusion

i' € f(ti) — No(i)

which is precisely of the form (6) (or (29)). In other words, the mathematical model of the circuit
sketched in Figure 3 may be represented as DN-system. O
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