УДК 534.16+539.3

МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ НАГРУЖЕНИЙ РАСЧЕТА ДИНАМИЧЕСКОГО ДЕФОРМИРОВАНИЯ ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКИ РАСПРОСТРАНЯЮЩИМСЯ ВНУТРЕННИМ ДАВЛЕНИЕМ

Н. Д. Вервейко, М. В. Егоров

Воронежский государственный университет

Поступила в редакцию 26.02.2015 г.

Аннотация. В работе представлено исследование динамического деформирования тонких изотропных оболочек распространяющимся внутренним давлением в предположении малости перемещений и деформаций. Проведено исследование распространения одномерных гармонических волн, волн разрыва напряжений и деформаций. Построены квазистатические и динамические конечно - элементные 3D модели расчета напряженно - деформированного состояния. Проведены расчеты квазистатических (ANSYS Static Structural) и динамических (ANSYS Transient Structural) моделей. Получен оптимальный расчетный алгоритм исследования волновых процессов в тонких оболочках в ANSYS Mechanical. Исследования аналитическими и численными методами согласуются друг с другом.

Ключевые слова: тонкие оболочки, динамическое деформирование, квазистатические модели.

CONSECUTIVE LOADING METHOD OF AXISYMMETRIC SHELL DYNAMIC DEFORMATION CALCULATION DISTRIBUTED INTERNAL PRESSURE

N. D. Verveyko, M. V. Yegorov

Abstract. In this paper axisymmetric thin shell dynamic deformation distributed internal pressure investigation is submitted. Harmonic waves, strain and stress rupture waves distribution are conducted. Quasi - static and dynamic finite - element models of stress - strain condition are developed. An optimization computational algorithm of wave processes research in thin shell obtained.

Keywords: thin shell, dynamic deformation, quasi - static models.

ВВЕДЕНИЕ

Динамическое напряженное состояние предполагает распространение волн возмущения и статический расчет напряженного состояния под действием давления на некотором участке оболочки не учитывает убегающих вперед возмущений. Учет убежавших возмущений позволяет дополнить последовательность статических нагружений. Ниже предлагается к рассмотрению математическая модель осесимметричной оболочки в приближении С. П. Тимошенко, нагружаемая подвижным вдоль оси оболочки внутренним давлением. Расчет динамического напряженного состояния которой проводится в статическом приближении с добавлением динамического распространения волн в оболочке.

[©] Вервейко Н. Д., Егоров М. В., 2015

ПОСТАНОВКА ЗАДАЧИ ДИНАМИЧЕСКОГО ДЕФОРМИРОВАНИЯ ТОНКИХ ОСЕСИММЕТРИЧНЫХ ОБОЛОЧЕК

Динамическое напряженное состояние оболочки вращения в модели С. П. Тимошенко определяется системой трех уравнений в частных производных 2-го порядка по r и t для перемещений $u_x = u$, $u_y = v$ и угла поворота срединной поверхности ψ (рис. 1).

Рис. 1. Схематичное изображение срединной поверхности S оболочки, вектора перемещений (u, v) элемента оболочки и угла наклона ψ срединной поверхности к оси x.

В цилиндрической системе координат компоненты тензора деформаций в случае осесимметричного движения оболочки имеют вид:

$$e_{xx} = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial v}{\partial x}\right)^2, e_{\varphi\varphi} = \frac{v}{R+y} + \frac{v^2}{2(R+y)^2}, \ e_{xy} = \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \frac{1}{2} \frac{\partial v}{\partial x} \frac{\partial v}{\partial y}, e_{xy} = e_{yy} = 0.$$
(1)

u(x, y, t) — смещение вдоль образующей оболочки, v(x, y, t) — смещение вдоль нормали к оболочке, R — радиус срединной поверхности, y — расстояние по нормали от срединной поверхности оболочки.

В предположении закона Гука для тонких оболочек имеем выражения для компонентов тензора напряжений:

$$\sigma_{xx} = \frac{E}{1-\nu^2} \left(e_{xx} + \nu e_{\varphi\varphi} \right), \ \sigma_{\varphi\varphi} = \frac{E}{1-\nu^2} \left(e_{\varphi\varphi} + \nu e_{xx} \right), \ \tau = \frac{E}{1+\nu} e_{xy}.$$
 (2)

В предположении выполнения гипотезы плоских сечений будем искать перемещения в виде:

$$u(x, y, t) = u(x, t) + \left(y - \frac{h^2}{12R}\right)\psi(x, t), \ v(x, y, t) = v(x, t).$$
(3)

Функции u(x,t)
и v(x,t) можно рассматривать как смещения некоторой цилиндрической поверхност
и $y-h^2/(12R),\,\psi-$ угол поворота нормали к срединной поверхности.

Напряжения (2) при выполнении гипотезы плоских сечений могут быть представлены через перемещения u, v и угол ψ (3):

$$\sigma_{xx} = \rho c_1^2 \left[\frac{\partial u}{\partial x} + \left(y - \frac{h^2}{12R} \right) \frac{\partial \psi}{\partial x} + \frac{1}{2} \left(\frac{\partial v}{\partial x} \right)^2 \right] + \rho c_1^2 \nu \left[\frac{v}{R+y} + \frac{v^2}{2(R+y)^2} \right];$$

$$\sigma_{\varphi\varphi} = \rho c_1^2 \nu \left[\frac{\partial u}{\partial x} + \left(y - \frac{h^2}{12R} \right) \frac{\partial \psi}{\partial x} + \frac{1}{2} \left(\frac{\partial v}{\partial x} \right)^2 \right] + \rho c_1^2 \left[\frac{v}{R+y} + \frac{v^2}{2(R+y)^2} \right]; \quad (4)$$

$$\tau = \rho c_2^2 \left(\frac{\partial v}{\partial x} + \psi \right), \quad c_1^2 = \frac{E}{\rho(1-\nu^2)}, \quad c_2^2 = \frac{E}{2\rho(1+\nu)}.$$

Уравнения движения элемента оболочки удобно получить из вариационного принципа Гамильтона - Остроградского минимума свободной энергии $\Pi = T - V$ [2]:

$$\delta \int \Pi dt = \delta \int_{t_0}^{t_1} (T - V) \, dt = 0.$$
 (5)

T — кинетическая энергия оболочки, V — потенциальная энергий деформации.

При выводе вышеописанных выражений предполагалось, что можно пренебречь нелинейными членами, содержащими функцию u и ее производные, а также нелинейными членами, в которые входит смещение v и его производные, если степень этих членов больше второй. Третий интеграл приводит к естественным граничным условиям, а из второго интеграла можно получить начальные условия. Учитывая, что вариации функций $\delta u, \delta \psi, \delta v$ являются независимыми величинами, уравнения осесимметричного движения оболочки для перемещений u, vи угла поворота ψ имеют вид [1]:

$$\frac{\partial^2 u}{\partial t^2} = c_1^2 \frac{\partial^2 u}{\partial x^2} + \frac{c_1^2 \nu}{R} \frac{\partial v}{\partial x} + c_1^2 \frac{\partial v}{\partial x} \frac{\partial^2 v}{\partial x^2} + c_1^2 \frac{\nu}{Rh} \ln \frac{2R+h}{2R-h} v \frac{\partial v}{\partial x};$$

$$\frac{\partial^2 \psi}{\partial t^2} \left(\frac{h^3}{12} R - \frac{h^5}{144R} \right) = c_1^2 \left(\frac{h^3}{12} R - \frac{h^5}{144R} \right) \frac{\partial^2 \psi}{\partial x^2} - \left(c_1^2 \nu h^3 \frac{1}{12R} + c_2^2 k^2 h R \right) \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} \left[c_1^2 \nu \left(h - R \ln \frac{2R+h}{2R-h} \right) - c_1^2 \nu \frac{h^2}{12R} \ln \frac{2R+h}{2R-h} \right] - c_2^2 k^2 h R \psi; \quad (6)$$

$$\begin{aligned} \frac{\partial^2 v}{\partial t^2} &= c_2^2 k^2 \frac{\partial^2 v}{\partial x^2} + \frac{c_1^2 \nu}{R} v \frac{\partial^2 v}{\partial x^2} - \frac{c_1^2}{Rh} \ln \frac{2R+h}{2R-h} v + \\ &+ \left(c_2^2 k^2 + \frac{c_1^2 \nu h^2}{12R^2} \right) \frac{\partial \psi}{\partial x} - \frac{c_1^2 \nu}{R} \frac{\partial u}{\partial x} + \frac{c_1^2 \nu}{2R} \left(\frac{\partial v}{\partial x} \right)^2 - \frac{6c_1^2 h v^2}{4R^2 - h^2}. \end{aligned}$$

Уравнения (6) (уравнения типа Тимошенко) учитывают деформацию сдвига и инерцию вращения. Разложение коэффициентов в системе (6) по степеням h/R и сохранение в разложении только старших членов, дает следующие уравнения:

$$\frac{\partial^2 u}{\partial t^2} = c_1^2 \frac{\partial^2 u}{\partial x^2} + c_1^2 \frac{\nu}{R} \frac{\partial v}{\partial x} + c_1^2 \frac{\partial v}{\partial x} \frac{\partial^2 v}{\partial x^2} + \frac{c_1^2 \nu}{R^2} v \frac{\partial v}{\partial x};$$

$$\frac{\partial^2 \psi}{\partial t^2} = c_1^2 \frac{\partial^2 \psi}{\partial x^2} - \frac{12c_2^2 k^2}{h^2} \frac{\partial v}{\partial x} - \frac{12c_2^2}{h^2} k^2 \psi - \frac{2c_1^2 \nu}{R^3} v^2 \frac{\partial v}{\partial x};$$
(7)

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2015. № 4

113

Н. Д. Вервейко, М. В. Егоров

$$\frac{\partial^2 v}{\partial t^2} = c_2^2 k^2 \frac{\partial^2 v}{\partial x^2} + c_2^2 k^2 \frac{\partial \psi}{\partial x} - \frac{c_1^2}{R^2} v - \frac{c_1^2 \nu}{R} \frac{\partial u}{\partial x} + \frac{c_1^2 \nu}{2R} \left(\frac{\partial v}{\partial x}\right)^2 + \frac{c_1^2 \nu}{R} v \frac{\partial^2 v}{\partial x^2} - \frac{3c_2^2}{2R^3} v^2.$$

где k — коэффициент, характеризующий распределение касательных напряжений в нормальном сечении.

В системе (7) устремление $R \to \infty$, дает приближение осесимметричной оболочки в виде панели(слоя), и ограничиваясь линейным приближением, приравнивая к нулю третий член первого уравнения $c_1^2 \frac{\partial v}{\partial x} \frac{\partial^2 v}{\partial x^2} = 0$ [4], для случая малых деформаций и перемещений приводит (7) к виду:

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} = c_1^2 \frac{\partial^2 u}{\partial x^2}; \\
\frac{\partial^2 \psi}{\partial t^2} = c_1^2 \frac{\partial^2 \psi}{\partial x^2} - \frac{12c_2^2 k^2}{h^2} \frac{\partial v}{\partial x} - \frac{12c_2^2}{h^2} k^2 \psi; \\
\frac{\partial^2 v}{\partial t^2} = c_2^2 k^2 \frac{\partial^2 v}{\partial x^2} + c_2^2 k^2 \frac{\partial \psi}{\partial x}.
\end{cases}$$
(8)

Отметим, что для тонкого слоя $h \to 0$ угол ψ определяется $\psi = -\partial v / \partial x$. Приведем систему (8) к безразмерному виду, используя следующие соотношения:

$$u = \bar{u} \cdot u_{0}, \ v = \bar{v} \cdot v_{0}, \ x = \bar{x} \cdot x_{0}, \ t = \bar{t} \cdot t_{1}, \ c_{2}^{2} = \bar{c}_{2}^{2} \cdot \frac{v_{0}^{2}}{t_{0}^{2}},$$

$$c_{1}^{2} = \bar{c}_{1}^{2} \cdot \frac{u_{0}^{2}}{t_{0}^{2}}, \ h = \bar{h} \cdot h_{0}, \ u_{0} = v_{0} = x_{0} = h_{0}, \ \bar{k}^{2} = 12k^{2}/\bar{h}^{2}.$$

$$\begin{cases} \frac{\partial^{2}\bar{u}}{\partial t^{2}} = \bar{c}_{1}^{2}\frac{\partial^{2}\bar{u}}{\partial \bar{x}^{2}}; \\ \frac{\partial^{2}\psi}{\partial t^{2}} = \bar{c}_{1}^{2}\frac{\partial^{2}\psi}{\partial \bar{x}^{2}} - \bar{c}_{2}^{2}\bar{k}^{2}\left(\frac{\partial\bar{v}}{\partial \bar{x}} + \psi\right); \\ \frac{\partial^{2}\bar{v}}{\partial t^{2}} = \bar{c}_{2}^{2}\bar{k}^{2}\left(\frac{\partial^{2}\bar{v}}{\partial \bar{x}^{2}} + \frac{\partial\psi}{\partial \bar{x}}\right). \end{cases}$$
(9)

В уравнениях (9) и дальнейшем знак безразмерности опустим.

РАСПРОСТРАНЕНИЕ ГАРМОНИЧЕСКИХ ВОЛН

Рассмотрим распространение волн, представив функции $u(x,t), \psi(x,t), v(x,t)$ в виде простой бегущей вдоль оси x волны с пространственной частотой Ω :

$$u(x,t) = u(x) e^{i\Omega(x-ct)}, \ \psi(x,t) = \psi(x) e^{i\Omega(x-ct)}, \ v(x,t) = v(x) e^{i\Omega(x-ct)}.$$
 (10)

После подстановки выражений (10) в систему (9), получим:

$$\begin{cases} (c^{2} - c_{1}^{2}) u(x) = 0, \ u(x) \neq 0, \ c_{I} = c_{1}; \\ \psi(x) (c_{2}^{2}k^{2} + c_{1}^{2}\Omega^{2} - \Omega^{2}c^{2}) + v(x) (c_{2}^{2}k^{2}i\Omega) = 0 \\ \psi(x) (c_{2}^{2}k^{2}i\Omega) + v(x) (\Omega^{2}c^{2} - c_{2}^{2}k^{2}\Omega^{2}) = 0. \end{cases}$$

$$(11)$$

Система трех линейных однородных уравнений для интенсивностей волн u, v, ψ позволяет найти скорости волн, приравняв определитель системы (11) к нулю.

Из (11) следует биквадратное уравнение относительно скорости с:

$$c^{4} - c^{2} \left(c_{1}^{2} + \frac{c_{2}^{2}}{\Omega^{2}} k^{2} + c_{2}^{2} k^{2} \right) + c_{2}^{2} c_{1}^{2} k^{2} = 0.$$
(12)

Решение уравнения (12) дает два значения скорости c_{II}, c_{III} :

$$c_{II} = \frac{1}{\sqrt{2}} \sqrt{c_1^2 + \frac{c_2^2 k^2}{\Omega^2} + c_2^2 k^2} + \sqrt{c_1^4 + 2\frac{c_1^2 c_2^2 k^2}{\Omega^2} - 2c_1^2 c_2^2 k^2 + \frac{c_2^4 k^4}{\Omega^4} + 2\frac{c_2^4 k^4}{\Omega^2} + c_2^4 k^4}; \quad (13)$$

Метод последовательных нагружений расчета динамического деформирования...

$$c_{III} = \frac{1}{\sqrt{2}} \quad c_1^2 + \frac{c_2^2 k^2}{\Omega^2} + c_2^2 k^2 - \frac{1}{\alpha_1^4 + 2\frac{c_1^2 c_2^2 k^2}{\Omega^2} - 2c_1^2 c_2^2 k^2 + \frac{c_2^4 k^4}{\Omega^4} + 2\frac{c_2^4 k^4}{\Omega^2} + c_2^4 k^4}{\Omega^2}.$$
 (14)

В вышеописанных выражениях множитель k — это постоянная величина, зависящая от распределения касательных напряжений в сечении. Примем k = 0,833 (для прямоугольника), где Ω — пространственная круговая частота, λ — длина волны. Скорости гармонических волн в оболочке относительно скорости c_1 волн растяжения в неограниченном пространстве представимы в виде (15)–(16).

$$c_I/c_1 = 1;$$

$$c_{II}/c_{1} = \pm \frac{1}{\sqrt{2}} \sqrt{1 + \frac{c_{2}^{2}k^{4}\lambda^{2}}{c_{1}^{2}4\pi^{2}} + \frac{c_{2}^{2}k^{2}}{c_{1}^{2}} + \frac{1 + \frac{2c_{2}^{2}k^{2}\lambda^{2}}{c_{1}^{2}4\pi^{2}} - \frac{2c_{2}^{2}k^{2}}{c_{1}^{2}} + \frac{c_{2}^{4}k^{4}\lambda^{4}}{c_{1}^{4}16\pi^{4}} + \frac{2c_{2}^{4}k^{4}\lambda^{2}}{c_{1}^{4}4\pi^{2}} + \frac{c_{2}^{4}k^{4}}{c_{1}^{4}};} (15)$$

$$c_{III}/c_{1} = \pm \frac{1}{\sqrt{2}} \sqrt{1 + \frac{c_{2}^{2}k^{4}\lambda^{2}}{c_{1}^{2}4\pi^{2}} + \frac{c_{2}^{2}k^{2}}{c_{1}^{2}} - \frac{1 + \frac{2c_{2}^{2}k^{2}\lambda^{2}}{c_{1}^{2}4\pi^{2}} - \frac{2c_{2}^{2}k^{2}}{c_{1}^{2}} + \frac{c_{2}^{4}k^{4}\lambda^{4}}{c_{1}^{4}16\pi^{4}} + \frac{2c_{2}^{4}k^{4}\lambda^{2}}{c_{1}^{4}4\pi^{2}} + \frac{c_{2}^{4}k^{4}}{c_{1}^{4}}}.$$

$$(16)$$

На рис. 2 представлены графики относительных скоростей в зависимости от пространственной длины волны λ для следующих физических параметров материала:

$$\rho = 7850 \text{ Kr/m}^3, E = 2, 1 \cdot 10^{11} \text{ Ha}, \nu = 0, 3, k^2 = 0, 01.$$

Из графиков на рис. 2 для зависимости скорости распространения волн от длины волны следует:

1. Скорость распространения волн c_I не зависит от длины волны λ .

2. В тонкой оболочке распространяется два типа совместных волн сдвига — поворота, причем одна из этих волн распространяется быстрее скорости *c*₁ классических волн сдвига, а

Рис. 2. График зависимости скоростей $c_{I,II,III}/c_1$ от длины волны λ

вторая с очень маленькой скоростью, т.е. практически вторая волна оказывается неподвижной для длинных волн.

Из уравнений (11) следует непосредственный вывод: волны поперечные v(x) = 0 и поворота $\psi(x) = 0$ могут распространяться изолированно от других волн. При v(x) = 0 и $\psi(x) = 0$ следует $c = c_1 k$, т.е. волна поперечного сдвига распространяется со скоростью близкой к скорости волны растяжения в неограниченном пространстве.

При v(x) = 0 и $\psi(x) = 0$ следует: $c^2 = k^2 c_2^2 / \Omega^2 + c_1^2$, $(c/c_1)^2 = \lambda^2 k^2 c_2^2 / 4\pi^2 c_1^2 + 1$ что скорость волны поворота срединной поверхности бежит со скоростью большей скорости продольных волн.

РАСПРОСТРАНЕНИЕ ВОЛН РАЗРЫВА НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ

Представим систему уравнений (8) в виде:

$$u_{,tt} = c_1^2 u_{,xx}; \psi_{,tt} = c_1^2 \psi_{,xx} - Av_{,x} - B\psi; v_{,tt} = c_2^2 k^2 (v_{,xx} + \psi_{,x}).$$
(17)

Перейдем в системе (17) к производным относительно подвижной системы координат перемещающейся со скоростью c вдоль оси x, используя соотношения для производных первого и второго порядка [3]:

$$\frac{\partial}{\partial t} = \frac{\delta}{\delta t} - c \frac{\partial}{\partial x}.$$
(18)

где $\frac{\delta}{\delta t}$ — частная производная по времени в подвижной системе координат.

Вторые производные по времени примут вид:

$$(u_{,t})_{,t} = \frac{\delta(u_{,t})}{\delta t} - c\frac{\partial}{\partial x}(u_{,t}), \ (\psi_{,t})_{,t} = \frac{\delta(\psi_{,t})}{\delta t} - c\frac{\partial}{\partial x}(\psi_{,t}), \ (v_{,t})_{,t} = \frac{\delta(\psi_{,t})}{\delta t} - c\frac{\partial}{\partial x}(v_{,t}).$$
(19)

Проинтегрировав уравнения (17) по нормали к распространению фронта возмущений, вводя скачок функции согласно выражению:

$$^{+\Delta} \frac{\partial f}{\partial n} dn = f|_{-}^{+} = [f], \qquad (20)$$

где *n* — нормаль к фронту, [*f*] - скачок функции *f*, получим систему уравнений для скачков скорости и деформаций

$$-c[u_t] = c_1^2[u_x];
-c[\psi_t] = c_1^2[\psi_x] - A[v];
-c[v_t] = c_2^2k^2([v_x] + [\psi]).$$
(21)

Переходя от производных в неподвижной к подвижной системе координат, получим систему уравнений, связывающую скачки функции и скачки их производных:

$$-c\frac{\delta[u]}{\delta t} + c^{2} [u_{x}] = c_{1}^{2} [u_{x}]; -c\frac{\delta[\psi]}{\delta t} + c^{2} [\psi_{x}] = c_{1}^{2} [\psi_{x}]; -c\frac{\delta[\psi]}{\delta t} + c^{2} [v_{x}] = c_{2}^{2} k^{2} ([v_{x}] + [\psi]).$$
(22)

Из условия непрерывности перемещений следует что [u] = 0; [v] = 0. Тогда из первого уравнения системы (22) следует, что продольные волны $[u_{,x}] = 0$ в оболочке распространяются со скоростью таких же волн в неограниченном пространстве $c_I = c_1$. Формально возможный кинетический поворот срединной линии $[\psi] = 0$ не может реализоваться, т.к. для этого необходим неограниченный момент сил в точке излома срединной поверхности за счет малости толщины h оболочки, так что $[\psi] = 0$. Второе уравнение системы (22) допускает распространение волн градиента угла поворота сечения оболочки $[\psi_{,x}] = 0$ со скоростью продольных волн в неограниченном пространстве

$$c = c_{II} = c_1. \tag{23}$$

Третье уравнение системы (22) допускает распространение в оболочке вол
н сдвига $[v_{,x}] = 0$ со скоростью

$$c = c_{III} = kc_2, \tag{24}$$

где $k \in [0, 1]$.

Система уравнений (22) для скачков деформаций $[e_x] = [u_{,x}] = 0$, $[e_y] = [v_{,x}] = 0$ градиента угла ψ $[\psi_{,x}] = 0$ допускает их возможность на фронтах волн бегущих со скоростями: $c = c_1$ — для продольных волн; $c = c_2$ — для волн изменения кривизны срединной поверхности; $c = c_3 = c_2$, k — для волн поперечного сдвига. Таким образом, продольная деформация оболочки ведет к изгибу поверхности на фронте волны \sum_1 .

Выражения (22) позволяет для случая идеально упругого материала при задании начальных значений σ_{xx} оценить величину убегающих вперед деформаций и уточнить квазистатических методов расчета динамического деформирования оболочки.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ НАПРЯЖЕННО -ДЕФОРМИРОВАННОГО СОСТОЯНИЯ В ДИНАМИЧЕСКОЙ И КВАЗИСТАТИЧЕСКОЙ ПОСТАНОВКЕ

В качестве примера сравнительного анализа была выбрана 3D модель тонкостенной оболочки возрастающего радиуса срединной поверхности и постоянной толщины. Расчет статического напряженно - деформированного состояния проводился в Ansys 14.5 Static Structural методом конечных элементов. Использовалась сетка конечных элементов размером 50 мм. При квазистатическом расчете предполагается, что движение нагрузки моделируется последовательным ее приложением к последовательности поверхностей, то есть история нагру-

Рис. 3. Кривые распределения продольного перемещения для разных моделей

Рис. 4. Распределение поперечного перемещения для разных моделей

жения не учитывается. Расчет динамического напряженно - деформированного состояния проводился в ANSYS 14.5 Transient Structural методом конечных элементов. В динамической задаче движение нагрузки моделировалось плавным переходом от одной зоны приложения к другой со скоростью ≈ 270 м/с. Для решения задач СЛАУ использовался итерационный метод решения. Общее время протекания процесса $3, 5 \cdot 10^{-3}$ с. Для выбора оптимального шага по времени использовался критерий Куранта $\Delta t < a \cdot \sqrt{\rho (1 - \nu^2)/E} \approx 10^{-5} c$. Общее количество шагов составило 800.

Сравнительные кривые изменения продольного и поперечного перемещения для квазистатического и динамического анализа на временном шаге 400 представлены на рис. 3, 4. На рис. 3, 4 видно, в отличие от квазистатической модели динамическая предсказывает распространение волн в обе стороны от возмущения.

ЗАКЛЮЧЕНИЕ

Анализ динамического деформирования оболочки, проведенный путем распространения гармонических волн длины λ показал, что продольные волны бегут в оболочке со скоростью, независимой от длины волны и продольное возмущение распространяется самостоятельно. Представление решения систем уравнений в частных производных (9) в виде ряда Фурье, т.е. в виде ряда сдвиговых и изгибающих волн не позволяет выделить отдельно волны сдвига - поворота, так что возмущение сдвига - поворота распространяется совместно со скоростью $c_4 = c_2$. Анализ распространения разрывов позволяет уточнять статическое представление решения добавлением ушедшими вперед продольными и сдвиговым(поворотными) возмущениями.

СПИСОК ЛИТЕРАТУРЫ

1. Тимошенко, С. П. Пластины и оболочки / С. П. Тимошенко, С. Войновский–Кригер. — М.: Наука, 1966. — 632 с.

2. Сагомонян, А. Я. Волны напряжения в сплошных средах / А. Я. Сагомонян. — М.: Издательство МГУ, 1985. — 416 с.

3. Вервейко, Н. Д. Лучевая теория упруговязкопластических волн и волн гидроудара / Н. Д. Вервейко. — Воронеж: Издательство ВГУ, 1997. — 203 с.

4. Ковалев, А. В. Об определении напряжений и перемещений в упругом пространстве,

ослабленном сферической полостью, с учетом температуры / А. В. Ковалев, И. Г. Хвостов // Вестник ЧГПУ им. Яковлева. Серия: Механика предельного состояния. — 2014. — № 20. — С. 29–35.

5. Баев, А. Д. О некоторых свойствах одного класса псевдодифференциальных операторов с вырождением / А. Д. Баев, П. А. Кобылинский // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. — 2014. — № 2. — С. 66–73.

6. О единственности классического решения математической модели вынужденных колебаний стержневой системы с особенностями / А. Д. Баев, С. А. Шабров, Ф. В. Голованёва, Меач Мон // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. — 2014. — № 2. — С. 74–80.

7. Баев, А. Д. О свойствах коммутации одного класса вырождающихся псевдодифференциальных операторов с операторами дифференцирования / А. Д. Баев, П. А. Кобылинский, М. Б. Давыдова // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. — 2014. — № 4. — С. 102–108.

8. Функция влияния дифференциальной модели четвертого порядка / А. Д. Баев, С. А. Шабров, Ф. В. Голованёва, Меач Мон // Вестник Воронежского института ГПС МЧС России. — 2014. — № 3 (12). — С. 65–73.

9. Шабров, С. А. Об одной математической модели малых деформаций стержневой системы с внутренними особенностями / С. А. Шабров // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. — 2013. — № 1. — С. 232–250.

10. Баев, А. Д. Теоремы об ограниченности и композиции для одного класса весовых псевдодифференциальных операторов / А. Д. Баев, Р. А. Ковалевский // Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. — 2014. — № 1. — С. 39–49.

REFERENCES

1. Timoshenko S. P., Woynowskiy–Krieger S. Plates and Shell. [Timoshenko S. P., Vojnovskij– Kriger S. Plastiny i obolochki]. Moscow: Nauka, 1966, 632 p.

2. Samogonyan A. Y. Stress waves in continuous environment. [Sagomonyan A. Ya. Volny napryazheniya v sploshnyx sredax]. Moscow: MSU, 1985, 416 p.

3. Verveyko N. D. Ray theory of elastoviscoplastic waves and hydroimpact waves. [Vervejko N. D. Luchevaya teoriya uprugovyazkoplasticheskix voln i voln gidroudara]. Voronezh: VSU, 1997, 203 p.

4. Kovalev A. V., Khvostov I. T. Determination of stresses and displacements in an elastic space weakened by spherical cavity for temperature. [Kovalev A. V., Xvostov I. G. Ob opredelenii napryazhenij i peremeshhenij v uprugom prostranstve, oslablennom sfericheskoj polosťyu, s uchetom temperatury]. Vestnik ChGPU im. Yakovleva. Seriya: Mexanika predel'nogo sostoyaniya – I. Yakovlev Chuvash State Pedagogical University Bulletin. Series: Mechanics of a limit state, 2014, no. 20, pp. 29–35.

5. Baev A. D., Kobylinskii P. A. Some properties of a class of pseudodifferential operators with degeneration. [Baev A. D., Kobylinskij P. A. O nekotoryx svojstvax odnogo klassa psevdodifferencial'nyx operatorov s vyrozhdeniem]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika — Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 2, pp. 66–73.

6. Baev A. D., Shabrov S. A., Golovaneva F. V., Meach Mon About unique classical solution mathematical model of forced vibrations rod system with singularities. [Baev A. D., Shabrov S. A., Golovanyova F. V., Meach Mon O edinstvennosti klassicheskogo resheniya matematicheskoj modeli vynuzhdennyx kolebanij sterzhnevoj sistemy s osobennostyami]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika — Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 2, pp. 74–80.

7. Baev A. D., Kobylinskii P. A., Davidova M. B. On the Properties of Switching a

Class of Degenerate Pseudo-Differential Operators with the Operators Of Differentiation. [Baev A. D., Kobylinskij P. A., Davydova M. B. O svojstvax kommutacii odnogo klassa vyrozhdayushhixsya psevdodifferencial'nyx operatorov s operatorami differencirovaniya]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika — Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 4, pp. 102–108.

8. Baev A.D., Shabrov S.A., Golovaneva F.V., Meach Mon The Function Of The Differential Impact Model Fourth Order. [Baev A.D., Shabrov S.A., Golovanyova F.V., Meach Mon Funkciya vliyaniya differencial'noj modeli chetvertogo poryadka]. Vestnik Voronezhskogo instituta GPS MChS Rossii — Herald of the Voronezh Institute of Russian Ministry for Emergency Situations, 2014, iss. 3 (12), pp. 65–73.

9. Shabrov S. A. Mathematical model for small deformations of the rod system with internal features. [Shabrov S. A. Ob odnoj matematicheskoj modeli malyx deformacij sterzhnevoj sistemy s vnutrennimiosobennostyami]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika — Proceedings of Voronezh State University, 2013, no. 1, pp. 232–250.

10. Baev A. D., Kovalevsky R. A. Theorems on boundedness and composition for a class of weighted pseudodifferential operators. [Baev A. D., Kovalevskij R. A. Teoremy ob ogranichennosti i kompozicii dlya odnogo klassa vesovyx psevdodifferencial'nyx operatorov]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika — Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 1, pp. 39–49.

Вервейко Н. Д., доктор технических наук, профессор кафедры Механики и Компьютерного моделирования Воронежского государственного университета, г. Воронеж, Российская Федерация E-mail: ver38@mail.ru Teл.: +7(473) 267-46-58 Verveyko N. D., dr. tech. sci., prof., of Mechanics and Computer modelling department of Voronezh State university, Voronezh, Russian Federation E-mail: ver38@mail.ru Tel.: +7(473) 267-46-58

Егоров М. В., аспирант кафедры Механики и Компьютерного моделирования Воронежского государственного университета, г. Воронеж, Российская Федерация E-mail: egorovmv89@mail.ru Teл.: +7(980) 242-54-97 Yegorov M. V., post-graduate student, Mechanics and Computer modelling department of Voronezh State university, Voronezh, Russian Federation E-mail: egorovmv89@mail.ruTel.: +7(980) 242-54-97