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Abstract: the aim of this paper is to demonstrate how the approximating
topological method can be effectively combined with the theory of attractors of
trajectory spaces in problems of fluid mechanics. We consider the model of motion of
weak aqueous polymer solutions and prove that it has the minimal trajectory attractor
and the global one. Then we prove that the attractors of approximating problem
converge to the attractors of the unperturbed one.
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OB30P ATTPAKTOPOB /1JId MOAEJIN JIBN2KEHW {1

CJIABBIX BO/JIHBIX PACTBOPOB IIOJIMMEPOB
B. I'. 3sarun, C. K. KosaparbeB

AHHOTAIUS: TIEIBIO JTAHHONW PabOTHI SABJISETCs IEMOHCTPAIMS COBMECTHOIO HCIIO/IH30Ba~
HUsl allIPOKCUMAIIMOHHO-TOTIOJIOMMTYIECKOTO METOJ/Ia U TEOPUU ATTPAKTOPOB TPAECKTOPHBIX MTPO-
CTPAHCTB B 33/ia9aX HEHHIOTOHOBCKO M'MIPOJMHAMUKA. B cTaThe pacCMaTpUBaETCs OJ[HA MaTe-
MaTHUu4deCKad MO/IeJIb HEHBIOTOHOBCKOI TUAPONMHAMUKHI - MOJIEJIb JIBU2KEHU A Cﬂa60 KOHIIEHTPpH-
POBaHHBIX BOJHBIX PACTBOPOB IOJUMEPOB. JLjisT uccjeoBaHus pacCMaTPUBAEMOM MOJIEIN Pac-
CMaTPUBAETCS AIMTPOKCUMAIINOHHAS 33/1a9a, PA3PEININMOCTh KOTOPOil JTOKA3BIBAETCS HA OCHOBE
teopun crenenu Jlepe-Illaynepa n anpuopHbix oreHoOK perrrernit. Ha 910it ocHOBe m0Ka3bIBaeTCHA
CyIIECTBOBAHIE MUHUMAJBLHOTO TPAEKTOPHOTO U IJI00AIHLHOIO aTTPAKTOPOB UCXOMHON 3a/1atu.
Takke JJOKA3BIBACTCS, ITO ATTPAKTOPBI AIIPOKCUMAIIMOHHOM 38/1a491 CXO/ATCS K ATTPAKTOPAM
UCXOJIHOI MOJIeJIn.

KuroyeBbie cioBa: HEHBIOTOHOBA YKUJIKOCTH, AMMPOKCUMAIMOHHO-TOIIOJIOTUIECKUI Me-
TOJ, TPAEKTOPHBIE TPOCTPAHCTBA, TPAEKTOPHBII aTTPAKTOP, IVIO0AJBHBIA aTTPAKTOD, CXOIH-
MOCTH aTTPAKTOPOB.

1. EQUATIONS OF MOTION

We illustrate the application of the approximating topological approach to problems of fluid
mechanics with the autonomous initial boundary problem for the mathematical model of motion of
weak aqueous polymer solutions. We prove that this problem has trajectory and global attractors.

(© Zvyagin V. G., Kondratyev S. K., 2014
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Review of attractors for a model of motion of weak aqueous polymer solutions

Let © C R™ be a bounded domain with a smooth boundary (n = 2,3). Consider the initial
boundary problem

ov ) 0Av
Z_UA i
at " ”+;”axi *or
—23Div (Z vﬁéi@) +gradp = f, (x,t) € 2 x(0,400), (1.1)
i=1 ¢
divo =0, (z,t) € Qx (0,400), (1.2)
U‘aQ =0, te(0,400), (1.3)
v‘ =a, x€l (1.4)

t=0

Here v(x,t) is the vector of velocity of the particle that is situated at the point x at the moment
of time ¢; p(z,t) is the preassure of the fluid at the point z at the moment of time ¢; f(x,t) is the
vector of body force; £ = (&;;) is the strain velocity tensor, i. e. a symmetric matrix of order n
with the components

avi 8Uj> .

1
by = &) =5 (axj o

v > 0 is the kinematic coefficient of viscosity , s > 0 is the retardation time, a is a vector field on
), which belongs to a functional space to be specified below. Unknown functions are v and p.

Equations (1.1) and (1.2) constitute the mathematical model of motion of weak aqueous polymer
solutions. Equation (1.1) coresponds to the constitutive law

d€
_ -1
UQV(E—I—%V dt)’

which establishes a relation between the deviator of the rate-of-strain tensor ¢ and the strain
velocity tensor €. This constitutive law was suggested in [1| on the basis of research [2].

Equation (1.3) is the boundary non-slip condition. We regard the coefficients involved in (1.1)-
(1.3) and the external force f as fixed. On the contrary, the function a defining the initial
condition (1.4) can be arbitrarily chosen in a functional space. Thus we obtain a set of weak
solutions and use them so as to construct the trajectory space.

The solvability of problem (1.1)—(1.4) is treated in [3] and [4]. In the case of this problem neither
the global solvability in the strong sense nor the uniqueness of the weak solution have been proved.
Consequently, it is impossible to use the classical semigroup approach to attractors.

2. FUNCTIONAL SPACES AND NOTATIONS

We use standard notations for the spaces of integrable functions and the Sobolev spaces.

Now we describe the scale of spaces V* (see [6], [5]).

Let V denote the set of smooth nondivergent fector fields whose supports lie in (2.

Let V? and V! be the closures of V in (L2(Q2))" and (H(Q))" = (W4(£2))" correspondingly.
Then V endowed with the Lo product (-, -) is a Hilbert space. Let || - o denote the Hilbert norm.
The space V! is Banach with respect to the norm

n

lully = 1Vull, = | Y

1,j=1

2
8ui

8.%']'

La ()
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Here Vu denotes the Jacobi matrix of the vector function u. The norm (2.1) is equivalent to the
norm induced by (H'(2))". This follows from the Friedrich’s inequality

ully0) < KollVull oy (v e Hg(R)), (2.2)

where the constant K does not depend on u. Note that for n = 2, 3 the embedding V! C (L4(£2))"
is compact. This follows from Sobolev’s embedding theorems.

Put V2 = V1IN (H?(Q)"

Consider the well-known Weyl decomposition (see |7]) of (L2(£2))"™ into the orthogonal sum

(La(2)" =V @ VH(Q).
Let m: (L(2))™ — V° be the orthoprojector. Consider the operator
A=—-7A (2.3)

defined on V2. It is known that A can be extended to a positive self-addjoint operator in V° with
the compact inverse operator. Hence A has countably many eigenvalues

0</\1<)\2<...;

Let e denote associated eigenfunctions. The vector functions e; (k =1,2,...) are smooth.

Consider the set
m
Ey = {v:kaek: m € N, vy ER}

k=1
(here m depends on v) and for any o € R define the space V¢ as the completion of E. with

respect to the norm
e o 2\ 1/2
ol = (- Agluel?) (2.4)
k=1

This norm is generated by the scalar product (-,-),. The space V¢ is Hilbert with respect to this
scalar product.

It can be shown that for a = 0,1, 2 the construction described above leads to the same spaces
VO V! and V2 and norms || - ||o and || - ||; as introduced at the beginning.

If @ > 0, the space V® consists of square-integrable functions belonging to V°. If a < 0, the
space V® is wider than VY, i. e. it contains ideal elements. Let 8 > 0 and let (VB )* be the conjugate
space of V2. Then the space (V?)* is isometric to V2. We identify these spaces.

In case a > 0 we have continuous embedding V¢ C (H*(€2))", and the norm || - ||, is equivalent
to the norm induced in V* by (H®(Q))" (see [6]). For @ > 8 > 0 the embedding V< C V¥ is
compact.

We shall be mostly concerned with the spaces V°, V1, V3 and their conjugates. It can be proved
[6] that for & =1 the norm (2.4) is given by (2.1), and for & = 3 we have

1/2
lolls = /V(Av)  V(Av) da
Q

n
(for matrices A = (a;;) and B = (b;j) of order n we put A: B = > a;;bi;).
ij=1
The operator A is a topological isomorphism between V® and V=2 for any o € R. The operator
A: V! — V1 acts according to the formula,

(Au,v) = /Vu : Vodx (u,v € V1.
Q
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Review of attractors for a model of motion of weak aqueous polymer solutions

We use standard notation for the spaces of integrable function with values in Banach spaces.
Time derivatives are in the sense of distributions D(0,T;V~1).
We need the following Banach spaces in order to define weak solutions:

W0, T]) = {v: v € Lo (0, T; V1), v/ € Lo (0, T; V1))
with the norm

lollwior) = 10l e vty + 1V | Lo 0w 1)

and
Ws([0,T] = {v: v e C([0,T]; V?), v/ € Loo(0,T;V3)}

with the norm
lvllwaio,m) = 0l eqo,mvey + 10 o 0,mv3)s

Also let W{°¢(R.) be the class of functions v: R, — V1! such that the restriction of v to
any segment [0,7] belongs to W;[0,T]; likewise, let Wi°¢(R,) denote the class of functions
v € C(Ry,V3) such that the restriction of v to any segment [0,7] belongs to W2[0,T]. These
classes are needed for defining solutions on the nonnegative semiaxis.

The following compactness theorem is very important. Suppose that Xg C F C X; be Banach
spaces, where the first embedding is compact and X is reflexive; further, let 77> 0 and 1 < p; < 00
(1 =1,2). Consider the space

W(O,T;pg,pl;Xo,Xl) = {u: u e LpO(O,T;X()), = Lp1 (O,T;Xl)}

(the time derivative is in the sense of distributions on (0,7) with values in Xj);
W(0,T;p1,p2; Xo, X1) is endowed with the norm

|ullw = HUHLPO(O,T;XO) + HU,HLP1 (0,T;X1)-
Theorem 2.1. If pg < oo, the following embedding is compact:
W(0, T po, p1; Xo, X1) C Ly (0, T; F);
If pg = 00 and p1 > 1, the following embedding is compact:
W(0,T; po, p1; Xo, X1) C C([0,T]; F).
The proof can be found e. g. in [7].
3. THE PROBLEM DEFINITION AND MAIN RESULTS

Let the body force f € (L2(€2))™ be fixed.

Definition 3.1. A function v € W1[0,T] is called a weak solution of problem (1.1)—(1.4) on [0, T]
with the initial condition a € V! if it satisfies the identity

d

d
T v(t) - (pdm—i—%dt/Vv(t) : thdx—i-l//Vv(t) : Vodx
Q Q Q

84,0‘ n (")vi 8280'
-2 /vi(t)vj(%x]-d“"_” 2 /”’“(t)ax-(t)axa;:kdx
<~ i . J g

l,jZIQ 1, kzlﬂ
= o . 0%p;
> /vk(t)ax{(t)axg; dx:/f-godx. (3.1)
igk=1 ‘ ok o
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a. e.on (0,7) for any p € V3 and satisfies the initial condition
v(0) = a. (3.2)

A function v € W]°(R,) is called a weak solution of problem (1.1)—(1.4) on Ry if for any 7 > 0
the function v is a weak solution of the problem on [0, 7.

Remark 3.1. If v € W1[0,T], then v(t) € V C (L4(2))™ and gTU;- € Ly(Q) for almost all t € (0,1).
For ¢ € V3 C (H3(Q))" we have 82@£k € HY(Q) C L4(f2). Consequently, all the integrals in the

0x; 0.
left-hand side of (3.1) exist. Moreover,

5 10 oo = L0000 = @ phy- e,
Q

d d

G [[Fo0: Vede = S0 = 00 ey
Q

in the sense of scalar distributions.

Remark 3.2. By the following theorem

Theorem 3.1. Let E and Ey be Banach spaces, and let E be continuously embedded in Ey. If a
function u belongs to Loo(0, M; E) and is continuous as a function with values in Ey, then u is
weakly continuous as a function with values in E.

we have W1[0,T] C Cy([0,7]; V). Thus the initial condition (3.2) is sensible for functions
belonging to the class W1[0,77] .

The identity (3.1) is derived from equations (1.1)—(1.3) in a standard way: under the assumption
that a classical solution exists, multiply equation (1.1) by an aribtrary function ¢ € V3 and
integrate by parts certain terms; since ¢ is solenoidal, the term grad p is eliminated.

The following existence theorem holds.

Theorem 3.2. For any a € V! the problem (1.1)~(1.4) has a solution on the semiaxis Ry that
satisfies the inequality

[o@ls + V' (B)][-1 < Ro (1 + [laffe™)  a. a. ¢

WV

0 (3.3)
where the constants Ry > 0 and o > 0 are independent of v.

Definition 3.2. A function v € WI°¢(R,) N Lo (Ry; E) is called a a trajectory of problem (1.1)-
(1.4) if it is a solution of this problem with some a € V! and the following inequality holds:

o)+ V@)l < Ro (14 013y ymye™)  aa.t>0. (34)

The set of trajectories is called its trajectory space of the problem and is denoted by H™.

Remark 3.3. Weak solutions of problem (1.1)-(1.4) are weakly continuous in V!, whence ||a||y1 =
[v(0)[[v1 < |lvllL.. (v, v1)- Thus inequality (3.4) follows from inequality (3.3), and by Theorem 3.2
we see that any point @ € V! is the beginning of a trajectory.

Consider a number ¢ € (0,1) and suppose that f € (L2(92))".
These are the main results concerning the existence of attractors.

Theorem 3.3. The trajectory space H' has the minimal trajectory attractor U. The attractor is
bounded in Loo(Ry; V1) and compact in C(Ry; V179); it attracts sets of trajectories bounded in
Loo(Ry; VY with respect to the topology of C(Ry; V1=0).
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Review of attractors for a model of motion of weak aqueous polymer solutions

Theorem 3.4. The trajectory space H has the global trajectory attractor A. The attractor is
bounded in V', compact in V70, it attracts sets of trajectories bounded in Lo (R ; V') with respect
to the topology of V179,

These theorems are proved in Section after certain auxiliary results have been stated.
4. APPROXIMATING PROBLEM

Take £ > 0. Consider the following identity as an approximation of (3.1):

% o dey e /V (Bolt (M)d““/w thdx+l//vv(t):vtpd:r
) Q
90] aUZ gpj
) Z nloe dil?—% Z vt &E 83: Ox dz
wi=lg igk=1% j Oz,
8’1)] 82s0] B 5
- Z / ) B t)mdx—/ﬁpdx (peV?. (41)
i,4,k= IQ o

This identity transforms into (3.1) as ¢ — 0.
In what follows we consider an operator equation generated by identity (4.1) rather than the
identity itself. Consider the following operators:

N:V3 V3 (Nug) = /V(Au) : V(Ap)dz;

n

9o
By: (Ly(Q)" = V7Y (Bi(u), ) = > uluja—?dx,
1,]= 1Q v
ou; 0%p;
Ryl -3 i j
Ba: Vo= VI Z / * 0w ; Oz 0z
8u- 0%,
Rval -3 ouj j

It will be convenient to have a notation for the exponential function. By definition, for any
8 € R put
— Pt
€p (t) = e .

Identity (4.1) generates the following operator equation:
(I 4 ce_oN + 2 A + vAv — By (v) — %By(v) — %Bs(v) = f, (4.2)

where fv: nf € VO c V71, & is the Leray projector and thus

R Z/f-sodwz/f-@dﬂf (p e V?),
Q Q

A function v € W3[0, T is called a solution of equation (4.2) on [0, 7] if it yields a true equality in
L1(0,T;V~3) when substitued into (4.2). A function v € Wi°¢(R) is called a solution of (4.2) on
Ry if it is a solution of (4.2) on each finite segment [0, 7).
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Since we look for solutions of (4.2) in the class Wa, which consists of continuous functions with
values in V3, it is sensible to provide an initial condition of the form

v(0) = b (4.3)

with b € V3.
The existence theorem for solutions of the approximating problem is considered in Section .

5. A PRIORI ESTIMATES

Put
v

o=—".
Kg +
We shall use this notation throughout the entire section.

We use topological methods in order to prove that problem (4.2), (4.3) has solutions. Given
e > 0, consider the family of problems depending on the parameter A € [0, 1]:

(I + ce_xaN 4 A + A (vAv — By(v) — 5B (v) — 2Bs(v)) = Af, (5.1)
v(0) = \b.

The notion of solution has the same sense for (5.1) as for (4.2).

In problem (5.1), (5.2) A is the parameter of a nonlinear deformation. If A = 1, problem (5.1),
(5.2) yields the original problem (4.2), (4.3). If A = 0, problem (5.1), (5.2) is reduced to a simpler
linear problem whose solvability can be established by standard methods. The deformation is
considered in more detail below.

Let v € W3[0, T] be a solution of (5.1) on [0,7] for certain A € [0,1]. It can be proved that in
this case the left-hand side of (5.1) belongs to Le(0,T;V ~3), and a fortiori the equation holds in
Lo(0,T;V~3). Apply both sides to v(¢) and observe that

(W'(8), (1)) = (v'(2),v(t))o = 2dt” v(®)|3,

(TN (1), 0(8)) = e 8), w(t))s = S L) B,
(A6 0(6) = (0 (0) o)1 = 5 IR,

moreover, it is known that (B;(v(t)),v(t)) =0 (i = 1,2,3) [8]. Thus we obtain:

S @I+ Se e SIE + £ S} + Aot |1—/f (53)

Now we demonstrate how a dissipative estimate with a decaying exponential can be derived
from (5.3). We estimate the right-hand side of the latter equation using the Cauchy inequality:

~ 1 - v
/ Fro(t)at = (Fo®)y-vern < I Flallo@ls < oo 112+ 2@l
Combining this with (5.3), we get

d d s d A+
SOOI + 523 (@) 13 + e L (@) 3 + Mllo@)]E < SIFI (54)
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Review of attractors for a model of motion of weak aqueous polymer solutions

Consider an auxiliary norm on V! defined by the formula ||ul|? = ||ul|3 + s¢||u||?. This norm is
equivalent to || - ||;. We have:
d d d v
FPON6 + s lv@)1T = IO vt > Kot _ll®1* = afo(®)]*.

Thus it follows from (5.4) that
d o d A
C@I? + e ()1 + Ao < SIFI2:

Substitute v(t) = v(t) exp(—Aat/2) in the first and the third terms in the left-hand side of the last
inequality. We get

d d A
—hae (1) + e lo(0)|? + e L [o(0) | + Aae (o) 2 < S
Multiplying both sides by exp(Aat), we obtain

d A, =
Z PO +ello®lIE) < —[1F12re. (5.5)

Integrating the last inequality, we have
_ L%
[o@) + ello @15 < [l(O)[I* + ello(0)[5 + @Ilfllzl (@at - 1) ,

for all ¢ (this is true both for A > 0 and for A = 0). Now multiply both parts of the last inequality
by exp(—Aat), whence we obtain

_ 1= _
(@I +ee o) < — 1 FI2 + ([ + o)) e,
mce the norms || - || an - ||1 are equivalent, 1t tollows from the last equality that
Since th |- and || - | quivalent, it follows from the last equality th
le(®) 1} + e~ [o@I3 < € (1+ (IO +lw(O)]F) ) (5.6)

with a constant C independent of A, £, and v.
Using (5.1) it is possible to estimate the derivative v’ in terms of v. Combining the estimate
obtained in this way with (5.6), we obtain

(@)l + Vee ™2 [lu(t)lls + [v'(t)| -1 + e[/ (t)]|3
< By (14 ()3 + elo@3) ¢ ) . (5.7)
with a constant R; that does not depend on €, A, and v.

6. EXISTENCE OF SOLUTIONS

Now we state the main existence theorem for the approximating problem.

Theorem 6.1. For any b € V3 problem (4.2), (4.3) has a solution on the semiaxis Ry. Any
solution of this problem satisfies

lo(®) 1+ vz 2 u(e) s + [ (1)1 + e~ o' (D)l
<Ry (14 (0O + o) 3) e™)  (6.1)

a. e. on Ry with a constant Ry independent of €, A, and v.
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The proof of Theorem 6.1 involves two steps. First we prove the solvability on a finite segment
[0, 7] with an arbitrary 7' > 0 and then we prove that there exists a solution on R .

Step I. Let T > 0. Let us prove that problem (4.2), (4.3) has a solution on [0, 7.

Consider the following family of operators depending on A € [0, 1]:

Ly: Wa[0,T] — Loo(0,T;V73) x V3,
La(v) = ((I +ee_xaN + A, v(0)) ;

and the operator

K:W5[0,T] = Loo(0,T;V73) x V3,
K(v) = (vAv — B1(v) — #B2(v) — %#B2(v),0).

It can be proved [4] that for any A € [0,1] the linear operator
Ly: W5 0,T] — Loo(0,T;V73) x V3

is bounded and invertible, and the inverse operator depends continuously on A in the operator
norm. (The proof is based on the fact that the inverse operator can be expressed explicitly) [3]. It
can be proved that K: W3[0, T] — Loo(0,T;V=3) x V3 is compact.

Consider the family of equations dependent on X € [0, 1].

Lyv + MK (v) = A(f, b), (6.2)

For any A equation (6.2) is equivalent to problem (5.1), (5.2). In particular, equation (6.2) with
A = 1 corresponds to (4.2), (4.3). Note that it follows from (5.7) that solutions of (6.2) (if they
exist) satisfy the following a priori estimate:

vl eo,myvs) + 5e_aTHU/HLoo(O,T;V3) <C, (6.3)

where C' does not depend on A (but generally speaking, it can depend on other parameters of the
equation). Indeed, it follows from (5.7) that for a. a. t € [0, T the norms ||v(¢)||3 and e=T||v/(¢)]|3
do not exceed

Ri(1+ (X*[lallf + eA?lal3))e* < Ri(1+ ([a]? + ellal3)),

and the right-hand part of the last inequality does not depend on ¢ and A. Also it follows from 6.3
that solutions of (6.2) satisfy

[vllwapor < R, (6.4)

where R does not depend on .
Apply L;l to both sides of (6.2) and write the equation thus obtained in the form

v— ALY ((f,a) — K(v)) = 0. (6.5)

The mapping ®(\,v) = ALy '((f,a) — K(v)) is continuous with respect to (\,v), so it is a
deformation between vector fields ®1v = v — L7 ((f,a) — K(v)) and ®ov = v. It can be proved
that ®(\,v) regarded as a function of v is uniformly continuous with respect to A\. Moreover, it
follows from (6.4) that ®(\,v) does not vanish on the boundary of the ball Br4i. Hence ®(\, v)
is a homotopy between ®1v and ®ov on Bpyi.

Since the deformation ®(\,v) is nondegenerate on the boundary of Br41, the Leray—Schauder
degree of the completely continuous vector fields ®;v and ®gv on Bpry1 is well defined. By the
homotopic invariance of the Leray—Schauder degree we have

degg(id — LT ((f,a) — K(-)), Br41,0) = degyg(id, Br41,0) = 1.
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Since the field id — L7'((f,a) — K(-)) has non-zero degree, there exists a solution v € W5[0, T] of
the operator equation

v—Li'((f,a) — K(v)) = 0.

This equation is equivalent to equation (6.2) with A = 1, and the latter equation is in turn
equivalent to problem (4.2), (3.2). We have thus proved that problem (4.2), (4.3) has a solution
on [0,7] .

Step II. Let v, be a solution of problem (4.2), (4.3) on [0,m] (m = 1,2,...). Consider the
extension of the functions v, to Ry defined by the formula

N B v(t), O
U (t) = { .

It is obvious that the functions o, belong to Wi°¢(R,).

Suppose that 0 < § < 1. Take an arbitrary T > 0. All but finitely many terms of the sequence
{vm} are solutions of (4.2), (4.3) on [0, 7. Since the functions vy, take the same value b at 0, by
Theorem 6.1 it follows that they satisfy the estimate

t<m,
m

AVARW/N

10l Lo 0,001y + Ol Lo 0.1y + 100l oo 075v3) + 10l oo 0,73 -1) < Ce, T), (6.6)

where C(g,T) does not depend on m. Thus the sequence {¥y,} is bounded in Lo (0,T; V1) and
the sequence of derivatives {v],} is bounded with respect to the norm of L..(0,T;V~1). By
Theorem 2.1 we have that the sequence {%,,} is precompact in C([0,T]; V1?). Since this is true
for arbitrary T', the sequence is precompact in C'(R; V179).

Thus the sequence {¥,,} has a subsequence {v,,, } that converges to some function v, in the
space C(Ry,V'79). Tt can be proved [4] that this limit function is the the sought for solution of
problem (4.2), (4.3) on R;.

Proof of Theorem 3.2. Since V3 is dense in V1!, there exists a sequence {b,} in V3 such that
|bm, — all1 — 0. Suppose the sequence {e,,} tends to zero and

eonllbl3 < 1. (6.7)
One can put e. g.

1
m max{||bm|[3, 1}

Em —

to obtain such a sequence.
Substitute &, for € in (4.2) and consider the initial condition

Um(0) = b

for this equation. By Theorem 6.1 this initial value problem has a solution v, on R;.
Inequalities (6.1) and (6.7) yield the following estimate:

lom @1+ lom Ol -1 + eme™ [vh,(O)ls < Ry (14 (lamlf +1) e™) (6.8)

a. e. on R;. More precisely, for each m the last inequality holds for all t € Ry \ Q,, where Qp,
is a set of zero measure. Hence for any ¢ € R, \ @, where Q = U,,,@,, is a set of zero measure,
inequality (6.8) holds for all m.

Suppose that 0 < § < 1. According to (6.8) we have that for any 7' > 0 the sequence {v,,} is
bounded in Ls(0,T; V) and the sequence {v/,} is bounded in Loo(0,7;V ~1). By Theorem 2.1 it
follows that the sequence {v,,} is compact in C([0,7]; V179). Since T is arbitrary, it follows that
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the latter sequence is precompact in C'(R, V1*5) and thus has a subsequence {v,, } converging
in C(Ry,V179) to a function v,. It is proved in [4] (cf. [3], [8]) that v, is a solution of problem
(3.1), (3.2).

Now we demonstrate (3.3). Discarding certain nonnegative terms in the left-hand side of (6.8)
we obtain

[vmy, (D)1 < Ry (1+ (lam|f +1) e™) . (6.9)

Given k, this inequality holds for any ¢ belonging to a subset of R, of full measure that does not
depend on k. Take such a t. First observe that vy, (£) — v.(t) in V179 since the convergence
in C(R., V') implies pointwise convergence. Further, it follows from (6.9) that the sequence
{vm, (t)} is bounded in V!. Consequently, it has a subsequence ©,(t) that converges to v.(t)
weakly in V1. Therefore

ve ()]l < lim [[7,(8)]1 < B (1 + (lalf +1) e ).

HU—00

Thus for a. a. t € Ry we have
loa(®) 11 < Ry (14 (Jlall3 +1) e=). (6.10)

Moreover, one can use (3.1) and estimate v} in terms of v. Combining such an estimate with (6.10),
we get (3.3). O

7. TRAJECTORY SPACE AND ATTRACTORS

In this subsection we fix a number § € (0,1).

Consider E = V! and Ey = V179 as the pair of Banach spaces needed to introduce a trajectory
space. This choice is justified by the fact that V! is reflexive and is continuously embedded in
yi-9,

By Remark 3.3 the trajectory space introduced by Definition 3.2 is nonempty. Thus it suffices
to check the inclusion

HY C C(Ry; By) N Loo(Ry; ).

so as to make sure that the trajectory space is well defined.

The inclusion H* C Loo(R4; E) directly follows from the definition of the trajectory space.
We use Theorem 2.1 in order to prove that the trajectories are continuous. Consider three spaces
VI c V170 ¢ V=L Let v be an arbitrary trajectory. It follows from (3.4) that for any segment
[0, T] we have v € Loo(0,T; V1) and v' € Loo(0,T; V1), Hence by Theorem 2.1 we obtain that v
belongs to C([0,T]; V1=9). This is true for any T, so v € C(Ry; V179), q. e. d.

Let R > 4Ry. Consider the set

P={veCR;V'"™)N Leo(Ry; V)i v/ € Loo(Ry, VT,
ol @evty + 1V L@y v-1y < R} (7.1)
Let us establish several properties of this set.

Lemma 7.1. The set P is bounded in Loo(R; VYY), compact in C(Ry; V™9, and the following
inclusion holds: o
T(h)PCc P (h>0). (7.2)

Horasameavcmeo. It follows from the definition of P that it is bounded in Log (Ry; V1) .
It is not hard to prove that the set P is precompact in C (Ry; Vlf‘g). Indeed, take T' > 0. It
follows easily from the construction that P is bounded in L. (0,7;V?!) and the set {v': v € P} is
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bounded in L (0, T V~1). By Theorem 2.1 the set P is precompact in C([0,T); VI=?). Since T is
arbitrary, Pis precompact in C(Ry; V1-9),

Now let us show that P is closed and therefore compact in C(Ry; V1~ 5) Suppose that the
sequence {vy,} C P converges to vg in C(Ry; V1=9). This sequence is bounded in Lo (Ry; V1), so
it converges to its limit function x-weakly in Lo (R; V). Moreover, the sequence of derivatives
{v],} converges to vj, in the sense of distributions and also *-weakly in Lo (R4; V1), since it is
bounded in Lo, (R ; V1), Therefore

0ol Lo w1y + 100]| Lo (R4 5v-1)
< lim ||Um||Loo(R+;Vl)+ lim ||U;n||Loo(R+;V_1)

m—00 m— 00

< Hm - ([Jomllno @) + ol Lo @ v-1)) < R
m—00

This proves that P contains the limit function V. S0 P is closed. B
Finally, let us prove the inclusion (7.2). Take h > 0. For any v € P we have

TRl Ly vty + IT(R)OI L (i1
< ”v||Loo(R+;V1) + ”U,HLOO(RJr;v—l) < R,
whence T'(h)v € P, q. e. d. 0

Proof of Theorem 3.3. Let us prove that P is a semi-attractor of H+. By Lemma 7.1 we have that
P satisfies conditions (i) and (ii) of the trajectory semi-attractor definition:

Definition 7.1. A nonempty set P C C(Ry; Ep) N Loo(Ry; E) is called a trajectory semi-attractor
of the trajectory space H™, if the following conditions hold:

(i) P is compact in C(R4; Ey) and bounded in L (R4 ; E);
(ii) the inclusion T(¢)P C P holds for all ¢t > 0;

(iii) P is an attracting set, i. e. for any nonempty set B C H ™ bounded with respect to the norm
of Loo(Ry; E) we have
lim sup inf ||T(t)u — vllc®,;m) =0 (7.3)

t—)oou Bve

or equivalently
lim sup mf |T(#)w —vlleqom;E) =0 ¥V M > 0. (7.4)

t—o0 weBVE

Let us prove that Pis absorbing. Consider an arbitrary set B C HT bounded in Lo (Ry;V?);
to be definite, assume that |[v||;_ (&, ,v1) < R for any v € B. Take ho > 0 such that R2e—ho L 1.
Let v be an arbitrary function belonging to B. Since v satisfies inequality (3.4), for all b > hy we
have

IT(R)o(®)ll + IT(R)V" (#) |1 = [[lo(t + Rl + [[V'(E + R) |1 <
< Ro(1+ R%e M) < Ro(1 + R%e M) < 2R,
Hence || T(h)v| 1 (&, v1) < 2Ro, |T(R)V'||L vy < 2Ro, and therefore

IT(h)vll Lo vty + IT(R)V| Loy ;v—1) < 4Ro < R.

Thus T(h)v € P. Since v is arbitrary, we have T(h)B C P for all h > hg. Consequently P is
absorbing. _
We have proved that P is a semi-attractor of H*. By the following theorem
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Theorem 7.1. Suppose the trajectory space H' has a trajectory semi-attractor P. Then HT has
the minimal trajectory attractor U, the following relations hold:

I C(HY) cU =TI KU) cTTLK(P) C P, (7.5)

and the kernel K(H™1) is compact in C(R; Ey) and bounded with respect to the norm of Loo(R; E).

the trajectory space H™ has the minimal trajectory attractor. O

Proof of Theorem 8.4. According to the following theorem

Theorem 7.2. Suppose the trajectory space H has the minimal trajectory attractor H*. Then
the global attractor A of HT exists and the following relations hold:

A=U®), t>0; (7.6)

KHD) () € A= KU)(¢), teR. (7.7)

the global attractor of a trajectory space exists if the trajectory space has the minimal trajectory
attractor. Theorem 3.3 implies that the trajectory space HT satisfies this requirement. ]

8. SUFFICIENT CONDITIONS OF CONVERGENCE

This section deals with the convergence of attractors. Suppose we are given a family of trajectory
spaces 7‘-[;r C C(R4; Ey) N Loo(R4; E) depending on a parameter A that ranges over a metric space
A (as before, we assume that E C Ej are Banach spaces and that F is reflexive). Further, suppose
that each trajectory space Hj has the minimal trajectory attractor i, and the global attractor
A (the latter is the section of the former, according to the general theory). We want to establish
sufficient conditions for Uy to tend to Uy, and Ay to tend to Ay, as A — Ao.

From the point of view of applications Uy, and Ay, are the attractors of an unperturbed problem,
while Uy and Ay for A # Ay are the attractors of the approximating problem corresponding to
possible values of the approximation parameter.

We consider the convergence in the sense of Hausdorff semi-distance in corresponding metric
spaces. Recall that the Hausdorff semi-distance from a set A to a set B in a metric space (X, d)
is given by

hx (A, B) = sup inf d(a,b) = supdistx(a, B),
acAbEB a€A
where dist x (a, B) denotes the distance between a point a and a set B. In our case we consider the
Hausdorff semi-distances hg (g, ;g,) in the space C (R4; Ep) and hp, in the space Ej.

As before, suppose that E and Ey are Banach spaces, F is continuously embedded in Ey, and
FE is reflexive.

The following proposition offers a sufficient condition for minimal trajectory attractors to
converge in the sense of the Hausdorff semi-distance.

Proposition 8.1. Suppose that a trajectory space
i C C(Ry; Eo) N Loo(Ry; B), (8.1)

1s assigned to every A belonging to a metric space A. Suppose that each space H;\r has the minimal
trajectory attractor Ay, which is contained in a set

P C C(Ry; Ep) N Lo(Ry; B),
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P is precompact in C(Ry; Ey) and independent of X. Moreover, suppose that the following condition
holds:

(C) if A = o, Um € Uy, and uy, — ug in C(Ry; Ey), then ug € Uy, .

Then

hc(R+;EO)(U)\,u,\O) = Ssup inf Hu — v“C(R+;EO) —0 ()\ — /\0). (8.2)
u€Uy, VEUNg

Jlokazamenavcmeo. Assume that (8.2) does not hold. This means that there exist a § > 0 and
sequences {Ap, } and {uy,} such that A\,, = Ao, um € Uy, and

diStC(R;EO)(umau)\o) > 6. (8.3)

Since the sequence {u,,} is contained in the precompact set P we can assume without loss
of generality that it converges in C'(Ry; Ep) to a limit function ug. Passing to the limit in
inequality (8.3), we obtain

diStC(R;EO)(UUau)\o) = 0.

However, by condition (C) we have uy € U,,, which contradicts the last inequality. This
contradiction concludes the proof. O

The global attractor is a section of the minimal trajectory attractor. Hence it is not hard to
prove that the convergence of minimal trajectory attractors implies the convergence of the global
ones. Specifically, we have the following assertion.

Proposition 8.2. Suppose that a trajectory space
HI C C(Ry; Ep) N Loo(Ry; E),

1s assigned to every A\ belonging to a metric space A. Suppose that each space H}\L A possesses the
minimal trajectory attractor Uy and the global attractor Ay = Ux(0), and suppose that (8.2) holds.
Then

hg,(Ax, Ay,) = sup inf |lu—v|g, — 0 (A= o). (8.4)

u€A, UE.A,\O

Jlokazameavcmeso. Condition (8.2) is equivalent to the following relation:

lim sup inf |lu—v oy =0 vM > 0.
Am sup inf I (0, M1 B0)

In particular, letting M = 0 we get (8.4), since Ay = U\(0). O

Proposition (8.1) is not efficient enough, since it requires checking condition (C), which involves
not trajectories, but whatever functions belonging to the minimal trajectory attractor. In what
follows we consider an effective method of checking (C) in a certain class of trajectory spaces whose
attractors can be represented as w-limit sets.

From now on brackets denote the closure in C(R; Ep).

Definition 8.1. The w-limit set for a set
P C C(Ry4; Ep) N Loo(R4; E), (8.5)
bounded in Lo (Ry; E) is the set

w(P) =

t=0

TP

s>t

. (8.6)
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Proposition 8.3. Suppose that the set (8.5) is bounded in Lo (R4 ; E). Then a function u belongs
to w(P) if and only if there exist sequences {uy,} C P and {t,,} C Ry such that t,, — oo and
T () tum — u in C(Ry; Ep).

Jlokazameavcmeso. Necessity. Take a positive integer m. It follows from (8.6) that

w(P) C

U T(s)P

s=m

I

whence there exists a function u,, € P and a number t¢,, > m such that

1
T () tm — u||C(R+;E0) < g

The last inequality implies that T(¢,,)un, — uin C(R4; Ep), whence the sequences {un, } and {t,, }
are suitable.

Sufficiency. Take ¢t > 0. We have t,, > ¢ whenever m is great enough. Hence all but finitely
many terms of the sequence {T(t,,)um} lie in the set {J,, T(s)P. Consequently, the limit u of the
sequence belongs to the closure [ -, T(s)P]. This is true for any ¢ > 0, so u € w(P). O

Corollary 8.1. If the set (8.5) is bounded in Loo(R4; E), the set w(P) is contained in C(R4; Eg)N
Loo(Ry: E).

Jloxasamesvcmeo. Let u € w(P), then there exist sequences t,,, — oo and {u,,} C P such that
T(tm)tm — uwin C(Ry; Ep). The set P is bounded in Lo (R4 ; E), so there exists a number R > 0
such that |lv]|_ (k. ;p) < R for any v € P. The functions of class C(R4; Ep) N Loo(R4; E) are
weakly continuous in E, so we have ||v(t)||z < R for all ¢ > 0 and v € P. In particular it follows
that the sequence {T(t,,)unm } is bounded in Lo (R4 ; E). Consequently, it converges to u x-weakly
in Lo (R4 E). Thus u € Loo(Ry; E). This is true for any u € w(P), i. e. we have proved the
inclusion

w(P) C C(Ry; Ep) N Loo(Ry; E).

Remark 8.1. If the set P is translation invariant, i. e. T(h)P C P (h > 0), then for s >t > 0 we
have T(s)P = T(t)T(s —t)P C T(t)P, so by formula (8.6) we get

t=20

Proposition 8.4. Suppose that a trajectory space
Hy C C(Ry; Eg) N Loo(Ry; E), (8.7)

is assigned to every A belonging to a metric space A. Suppose that each space ’HI has the minimal
tragectory attractor of the form Uy = w(Py), where the set Py is translation invariant (i. e. T(h)P C
P for all h > 0) and besides Py C Hy N P where P is precompact in C(Ry; Ey) and bounded in
Lo (R4 E). Finally, suppose that the following condition holds:

(C") if Ap = Xo, Um € Py,,, and vy, — v in C(Ry; Ey), then vy € [Py,]-

Then condition (C) of Proposition 8.1 holds.
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Joxazamenvcmeo. Let Ay, — Ao, U € Uy,,, Um — up in C(Ry; Ep); we claim that ug € Uy, .
Since u,, € Uy, = w(Py,,), by Proposition 8.3 we see that there exist w,, € Py, and t, > m

such that '
HT(tm)wm - Um|’C(R+;E0) < %

Then
[T (Em)wm — wollow,;z) < ITER)wWm — umllow,;z) + lum — vollcr,;z) — 0,
that is we have the following convergence in C'(R4; Ep):
T (L )W — up. (8.8)

Let us show that up € w(Py,). Take ¢t > 0. Since t,,, — oo, we eventually have ¢,, —t > 0. Put
U = T(tym — t)wpm, then vy, € Py, since wy, € Py, and the set P  is translation invariant. The
sequence {v,,} lies in the set P, so it has a subsequence {vy,,} that converges in C'(R; Ep) to a

function vy. According to condition (C’) we have vy € [Py,]. Translation operators are continuous
in C(Ry; Ep), so
T(t)vm, — T(t)vo (k — o0).

On the other hand, it follows from (8.8) that
T(t)vm, = T)T(tm, — t)wm, = T(tm,)wr — uo.

Therefore we have ug = T(t)vg € T(¢) [Py,]. Since t is arbitrary, we get

ug € () T(t) [Pao] -

t20

By Remark 8.1, the right-hand side of the last inclusion coincides with the set w(Py,) = U),, 1. e.
ug € Uy,. This completes the proof. O

Corollary 8.2. Under the hypothesis of Proposition 8.4 the limit relations (8.2) and (8.4) hold.

The following assertion provides a sufficient condition for the minimal trajectory attractor of a
trajectory space to be represented as an w-limit set.

Proposition 8.5. Suppose that a trajectory space
HT C C(Ry; Fy) N Loo(Ry: E)

has an absorbing set P C HT that is precompact in C(Ry;Ey), bounded in Loo(Ry;E) and
translation invariant, i. e. T(t)P C P for allt > 0. Then the set w(P) is the minimal trajectory
attractor of HT.

Joxazameavcmeo. We claim that the set w(P) is a semi-attractor of H*.
According to Remark 8.1 we have

w(P) = ([T®)P). (8.9)

t>0

Since P is translation invariant and precompact, the right-hand side of (8.9) is the intersection of
a centered family of nonempty closed subsets of the compact set [P], whence w(P) is a nonempty
compact set in C(Ry; Ep).
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Now let us prove that w(P) is bounded in Lo (R4 ; E). By (8.9) we have w(P) C [P], so it suffices
to show that [P] is bounded. Let u € [P] and let a sequence {u,,} C P converge in C'(R4; Ep)
to u. Since P is bounded in Loo(Ry; E), there exists R > 0 such that |[v]|;_(r,.r) < R for any
v € P. Consequently, the sequence {u,,} is bounded in Lo (Ry; E), so it converges in the *-weak
topology of Lo (R4 ; E) as well. By a property of weak convergence we have

||UHLOO(R+;E) < lim ||um||Loo(R+;E) < R
m—0o0

This holds for any u € [P], so [P] is bounded in Lo (R4 ; E). Therefore w(P) is bounded, too.
The translation invariance of w(P) follows from the fact that the translation operators are
continuous in C'(R4; Ep). Indeed, for any h > 0 we have

T(h)w(P) = T(h) (\[T()P] € (T[T P] C [\[T(R)T(t)P]

=0 >0 >0

>0 =0

Finally let us show that w(P) is attracting. Assume the contrary. Then there exist ¢ > 0, a
bounded set B C H™, a sequence {u,,} C B, and a sequence of numbers t,, — oo such that

dist(T () um, w(P)) > €. (8.10)

Since P is absorbing and precompact, without loss of generality we can assume that {T (¢, )um} C
P and T(tp,)um, — v. It is readily seen that v € w(P) since for any ¢ > 0 we eventually have ¢, > ¢
and therefore
T(tm)um € | JT(s)P,
s>t

and thus

NS

UTs)P

s>t

The latter inclusion holds for any ¢ > 0, so v € w(P). On the other hand, passing to the limit
in (8.10), we arrive at a contradiction:

dist(v,w(P)) > e.

This constradiction proves that w(P) is attracting.
We have proved that w(P) is a semi-attractor. By Theorem 7.1 the minimal trajectory attractor
U of the trajectory space H™ exists.
It is known (see |9]) that the minimal trajectory attractor is the least trajectory semi-attractor
with respect to inclusion, whence
U C w(P). (8.11)

Since U attracts P and the latter is translation invariant, we have

sup inf ||lv —u . < su inf ||lv —u .
vegueu H ||C(R+’EO) h ’UGT(E))P ueU H HC(R*’EO)

< inf || T(¢)w — . -0 (t— ,
Zlé%réu” (tw — ullcmr, k) (t — o0)

i. e. P C [U] =U and consequently [P] C U. However, w(P) C [P], so
w(P) CU.

Combining the last inclusion with (8.11) we see that w(P) is the minimal trajectory attractor.
O
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Remark 8.2. Proposition 8.5 gives a hint how to construct trajectory spaces in such a way that
their minimal trajectory attractors are w-limit sets. Suppose we are given an evolutionary equation

and we have introduced the notion of its solution on R, . Following the usual approach, consider
a set of solutions satisfying an estimate that makes it possible to construct an absorbing set P
bounded in Lo (Ry; E) and precompact in C(R; Ey). Add to this ‘preliminary’ trajectory space all
the solutions belonging to P and denote by H* the enhanced trajectory space. Since the equation
at issue is autonomous, we expect that the function T(h)v (h > 0) is its solution if so is v. Hence
H™ satisfies the hypothesis of Proposition 8.5 with P = H™ N P.

8.1. Convergence of attractors of approximating problems in the polymer
solution model

In this section we introduce trajectory spaces for the approximating problems in the model of
polymer solutions and prove that their trajectory and global attractors converge to correspondent
attractors of the unperturbed problem.

As before, we use the spaces E = V! Ey = V79 in order to introduce trajectory spaces.

Let us modify the definition of the trajectory space of problem (1.1)—(1.4) according to
Remark 8.2. Let R > max{4Ry,6R;}, where Ry Ry are the constants involved in (3.3) and (6.1).

Definition 8.2. A function v € Wi°¢(Ry)NLoo(Ry; E) is called a trajectory of problem (1.1)(1.4)
if it is a solution of the problem with certain a € V! and satisfies either the estimate

Il + Il Ol < Ro (14 [0l _m, viye ™) aa >0 (8.12)

or the estimate
[0l o ®yvty + 1V L@y S B aca t >0. (8.13)

The set of trajectories is called the trajectory space and denoted Har .

Remark 8.3. It is clear that the trajectory space ’HE)F differs from the space H™ introduced by
Definition 3.2 in the way that it contains all the solutions that satisfy (8.13). It follows that for
any a € V! there exists a trajectory v € Hg such that v(0) = a.

Now we introduce trajectory spaces for equation (4.2). Note that it is not autonomous, since
its left-hand side involves the coefficient e, which is independent of time. However, the theory of
attractors of non-invariant spaces is versatile enough to be appied to non-autonomous equations.

Definition 8.3. The trajectory space HI of equation (4.2) is the set that consists of solutions of
this equation that belong to L. (R4, 00) and satisfy the estimate

ellv(0)[I <1, (8.14)

as well as of functions T(h)v, where v is a solution of equation (4.2) on Ry, h > 0 and T(h)v
satisfies the estimate

IT ()0l ooy vy + TR | o (v 1) < R (8.15)

Remark 8.4. Note that the construction of trajectories used in the proof of Theorem 3.2 involves
solutions of the approximating problem whose initial value satisfies (8.14). This justifies inequality
(8.14) in Definition 8.3.
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The standard approach to attractors of nonautonomous equations involves families of trajectory
spaces (see 9], [10]). Specifically, suppose we are given an evolutionary equation

V= Ap)  (ceD),

where the operator A depends on time via the intermediate function o (¢) defined for a. a. t > 0 (such
a function is called the symbol of the equation). Given a set X of possible ¢’s, a trajectory space
Hi C C(Ry; Eg)NLoo(R4; E) is introduced for each o, so that we have a family of trajectory spaces
{HS: o0 € ©}. Consider the united space Hy: = U, ey, He . (Minimal) trajectory/global attractors
of the latter space are called uniform attractors of the family {H}: o € X}. In the particular case
of one point set ¥ this construction yields a single trajectory space and its attractors. For the sake
of simplicity we formulate Definition 8.3 for an ordinary trajectory space.
Let the set P be defined by equation (7.1). Put Py = PN H{.

Lemma 8.1. The trajectory space Har has the minimal trajectory attractor
Z/l() = w(Po). (816)

Hoxaszameavcemso. Let us show that Py satisfies the hypothesis of Proposition 8.5.

The set Py is bounded in Lo (R4 ; V1) and precompact in C(Ry; V179), since it lies in the set
P, which has these properties (Lemma 7.1).

Now let us prove that Py is translation invariant. Take h > 0 and v € Py. The function v satisfies
identity (3.1). This identity is autonomous, so the function T(h)v satisfies it as well. Besides,

1T oo @evty F T Lo @pv—1) < Mll@evty + 110 L@ v-1) < R,

and thus T(h)v € F.
Finally let us prove that Py is absorbing. Let the set B C Hg be bounded in Loo(Ry; V1) and
let R be so large that ||v||;_ (&, .1y for any v € B. Take tg such that R*e~*% < 1.

If v e Band v ¢ Py, then v ¢ P, and by definition of the trajectory space we see that v
satisfies (8.14). It follows that for ¢ > ¢y we have

lo@)llx + 10" (#) ]| -1 < 2R,

whence for any h > ty we obtain

1Tl Lo svry + 1TV | Loy v—1) < 4Ro < R.

This means that T(h)v € P, and since the function T(h)v satisfies identity (3.1), we have T(h)v €
Hd and thus T(h)v € Py.

On the other hand, if v € B and v € Py, we have T(h)v € Py for any h > 0 since Py is
translation invariant.

This argument shows that for any v € B the inclusion T(¢)v € Py holds at least for t > t. In
other words, Py is absorbing.

To summarize, the set P satisfies the hypothesis of Proposition 8.5. By virtue of this proposition
we see that 7—[3 has the minimal trajectory attractor given by (8.16). O

Now consider the attractors of the trajectory space generated by the approximating equation.
First of all notice that this trajectory space is well defined. Indeed, since the solutions of
equation (4.2) belong to C(R;;V3) and we require that the trajectories should belong to
Loo(Ry; V1Y), the inclusion

HE C C(Ry; V)N Loo(Ry; VY

holds. Further, the space HZ is nonempty, since by Theorem 6.1 any function a € V3 such that
ellall3 < 1 is the beginning of a trajectory. Thus the trajectory space HJ is well defined.
Put P. = HI NP.
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Lemma 8.2. The trajectory space HF (¢ > 0) has the minimal trajectory attractor
U = w(P). (8.17)

oxasameavemeo. Let us show that the set P satisfies the hypothesis of Proposition 8.5. Clearly,
P. is bounded in Lo (R ; V') and precompact in C(Ry; V179), since P. lies in P and the latter set
has these properties. Any trajectory belonging to P is of the form T(h)v, where v is a solution of
equation (4.2). Since P is translation invariant, it contains the function T(s)T(h)v. Consequently
this function belongs to HF N P = P.. Thus P. is translation invariant. Let us prove that it is
absorbing. Take a set B C HZ bounded in Loo (R ; V?'); to be definite, assume that [Jull g, ;v1) <
R for each u € B. Let tg be such that R%2e~ 2 < 1.

Consider an arbitrary trajectory v € B. According to the definition of HI there are two
possibilites.

1) Suppose that v is a solution of equation (4.2) and satisfies (8.14). By Theorem 6.1 it satisfies
the inequality

o)l + Ve o)l + [/ (#) -1 +ee™ " (D)5 < Ri (1+ ([[o(O)]F + ell(0)[5) =) ,
for a. a. t > 0. Combining it with (8.14), we obtain
@)l + [0 (@)l -1 < Ry (2 + [o(0)[[fe™) .
It follows that for t > ¢y we have
lo@llx + 10" (@)l -1 < 3Ry,

so for any s > ty we get

IT(s)0ll Lo ®ysvty + I T($)V | my -1y < 6R1 < R.

This means that T(s)v € HS and since T(s)v € P, we have the inclusion T(s)v € P. for any
s = 1g.
2) If v is a function of the form T(h)w and satisfies

10l 2oy vy + 10 Loy vy < R,

then v € P. and therefore T(s)v € P. for any s > 0, since P is translation invariant.

Thus in any case T(s)v € P. if s > tg. This means that P. is absorbing.

By Proposition 8.5 the trajectory space HI has the minimal trajectory attractor, and
formula (8.17) holds. O

Now we state the main result concerning the convergence of attractors.

Theorem 8.1. Minimal trajectory attractors U. of equation (4.2) converge to the minimal
tragectory attractor Uy of the trajectory space Har of equation (3.1) in the sense of the Hausdorff
semi-distance in C(Ry; V170 . e.

inf |lu— -5y = 0 —0).
sup fnf llu—vllo,-s) (=0
Global attractors A. of approximating equation (4.2) converge to the global attractor Ay of the
trajectory space /Hg of equation (3.1) in the sense of the Hausdorff semi-distance in the space
V1= i e

sup inf |y — z|ly1-s — 0 (e —=0).
yEA. #€A0
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Jloxasamenavcmeo. Both assertions will follow from Corollary 8.2 if we prove that condition (C')
of Proposition 8.4 holds in our case. Specifically, we must prove that if ,, = 0, v,,, € P, ,, and
U — vo in C(Ry; V179), then vy belongs to the closure of Py with respect to the topology of
C(Ry; V™Y, N

Since P: C P, the sequence {vp,} lies in the set P, which is compact in C(Ry; V1=9). Tt follows
that vy € P.

The fact that vy is a solution of equation (3.1) is proved in much the same way as the passage
to the limit in the proof of Theorem 3.2. Since vy € P, then vy satisfies inequality (8.13) and thus
vy € Har. We have that vg € "Hg NP = Py, and (C') holds. This concludes the proof. O
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