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Abstract: the aim of this paper is to demonstrate how the approximating
topological method can be effectively combined with the theory of attractors of
trajectory spaces in problems of fluid mechanics. We consider the model of motion of
weak aqueous polymer solutions and prove that it has the minimal trajectory attractor
and the global one. Then we prove that the attractors of approximating problem
converge to the attractors of the unperturbed one.

Key words and phrases: Non-Newtonian fluids, approximating topological
method, trajectory space, trajectory attractor, global attractor, convergence of
attractors.

ОБЗОР АТТРАКТОРОВ ДЛЯ МОДЕЛИ ДВИЖЕНИЯ
СЛАБЫХ ВОДНЫХ РАСТВОРОВ ПОЛИМЕРОВ

В. Г. Звягин, С. К. Кондратьев

Аннотация: целью данной работы является демонстрация совместного использова-
ния аппроксимационно-топологического метода и теории аттракторов траекторных про-
странств в задачах неньютоновской гидродинамики. В статье рассматривается одна мате-
матическая модель неньютоновской гидродинамики - модель движения слабо концентри-
рованных водных растворов полимеров. Для исследования рассматриваемой модели рас-
сматривается аппроксимационная задача, разрешимость которой доказывается на основе
теории степени Лере-Шаудера и априорных оценок решений. На этой основе доказывается
существование минимального траекторного и глобального аттракторов исходной задачи.
Также доказывается, что аттракторы аппроксимационной задачи сходятся к аттракторам
исходной модели.

Ключевые слова: неньютонова жидкость, аппроксимационно-топологический ме-
тод, траекторные пространства, траекторный аттрактор, глобальный аттрактор, сходи-
мость аттракторов.

1. EQUATIONS OF MOTION

We illustrate the application of the approximating topological approach to problems of fluid
mechanics with the autonomous initial boundary problem for the mathematical model of motion of
weak aqueous polymer solutions. We prove that this problem has trajectory and global attractors.

c⃝ Zvyagin V. G., Kondratyev S. K., 2014
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Let Ω ⊂ Rn be a bounded domain with a smooth boundary (n = 2, 3). Consider the initial
boundary problem

∂v

∂t
− ν∆v +

n∑
i=1

vi
∂v

∂xi
− κ

∂∆v

∂t

−2κDiv

(
n∑

i=1

vi
∂E(v)
∂xi

)
+ grad p = f, (x, t) ∈ Ω× (0,+∞), (1.1)

div v = 0, (x, t) ∈ Ω× (0,+∞), (1.2)

v
∣∣∣
∂Ω

= 0, t ∈ (0,+∞), (1.3)

v
∣∣∣
t=0

= a, x ∈ Ω. (1.4)

Here v(x, t) is the vector of velocity of the particle that is situated at the point x at the moment
of time t; p(x, t) is the preassure of the fluid at the point x at the moment of time t; f(x, t) is the
vector of body force; E = (Eij) is the strain velocity tensor, i. e. a symmetric matrix of order n
with the components

Eij = Eij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
;

ν > 0 is the kinematic coefficient of viscosity , κ > 0 is the retardation time, a is a vector field on
Ω, which belongs to a functional space to be specified below. Unknown functions are v and p.

Equations (1.1) and (1.2) constitute the mathematical model of motion of weak aqueous polymer
solutions. Equation (1.1) coresponds to the constitutive law

σ = 2ν

(
E + κν−1dE

dt

)
,

which establishes a relation between the deviator of the rate-of-strain tensor σ and the strain
velocity tensor E . This constitutive law was suggested in [1] on the basis of research [2].

Equation (1.3) is the boundary non-slip condition. We regard the coefficients involved in (1.1)–
(1.3) and the external force f as fixed. On the contrary, the function a defining the initial
condition (1.4) can be arbitrarily chosen in a functional space. Thus we obtain a set of weak
solutions and use them so as to construct the trajectory space.

The solvability of problem (1.1)–(1.4) is treated in [3] and [4]. In the case of this problem neither
the global solvability in the strong sense nor the uniqueness of the weak solution have been proved.
Consequently, it is impossible to use the classical semigroup approach to attractors.

2. FUNCTIONAL SPACES AND NOTATIONS

We use standard notations for the spaces of integrable functions and the Sobolev spaces.
Now we describe the scale of spaces V α (see [6], [5]).
Let V denote the set of smooth nondivergent fector fields whose supports lie in Ω.
Let V 0 and V 1 be the closures of V in (L2(Ω))

n and (H1(Ω))n = (W 1
2 (Ω))

n correspondingly.
Then V 0 endowed with the L2 product (·, ·) is a Hilbert space. Let ∥ · ∥0 denote the Hilbert norm.
The space V 1 is Banach with respect to the norm

∥u∥1 = ∥∇u∥L2 :=

 n∑
i,j=1

∥∥∥∥∂ui∂xj

∥∥∥∥2
L2(Ω)

 1
2

, (2.1)
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Here ∇u denotes the Jacobi matrix of the vector function u. The norm (2.1) is equivalent to the
norm induced by (H1(Ω))n. This follows from the Friedrich’s inequality

∥u∥L2(Ω) ⩽ K0∥∇u∥(L2(Ω))n (u ∈ H1
0 (Ω)), (2.2)

where the constant K0 does not depend on u. Note that for n = 2, 3 the embedding V 1 ⊂ (L4(Ω))
n

is compact. This follows from Sobolev’s embedding theorems.
Put V 2 = V 1 ∩ (H2(Ω))n.
Consider the well-known Weyl decomposition (see [7]) of (L2(Ω))

n into the orthogonal sum

(L2(Ω))
n = V 0 ⊕∇H1(Ω).

Let π : (L2(Ω))
n → V 0 be the orthoprojector. Consider the operator

A = −π∆ (2.3)

defined on V 2. It is known that A can be extended to a positive self-addjoint operator in V 0 with
the compact inverse operator. Hence A has countably many eigenvalues

0 < λ1 ⩽ λ2 ⩽ . . . ;

Let ek denote associated eigenfunctions. The vector functions ek (k = 1, 2, . . .) are smooth.
Consider the set

E∞ =

{
v =

m∑
k=1

vkek : m ∈ N, vk ∈ R

}
(here m depends on v) and for any α ∈ R define the space V α as the completion of E∞ with
respect to the norm

∥v∥α =
( ∞∑

k=1

λαk |vk|2
)1/2

. (2.4)

This norm is generated by the scalar product (·, ·)α. The space V α is Hilbert with respect to this
scalar product.

It can be shown that for α = 0, 1, 2 the construction described above leads to the same spaces
V 0, V 1, and V 2 and norms ∥ · ∥0 and ∥ · ∥1 as introduced at the beginning.

If α ⩾ 0, the space V α consists of square-integrable functions belonging to V 0. If α < 0, the
space V α is wider than V 0, i. e. it contains ideal elements. Let β ⩾ 0 and let (V β)∗ be the conjugate
space of V β . Then the space (V β)∗ is isometric to V −β . We identify these spaces.

In case α ⩾ 0 we have continuous embedding V α ⊂ (Hα(Ω))n, and the norm ∥ · ∥α is equivalent
to the norm induced in V α by (Hα(Ω))n (see [6]). For α > β ⩾ 0 the embedding V α ⊂ V β is
compact.

We shall be mostly concerned with the spaces V 0, V 1, V 3 and their conjugates. It can be proved
[6] that for α = 1 the norm (2.4) is given by (2.1), and for α = 3 we have

∥v∥3 =

∫
Ω

∇(∆v) : ∇(∆v) dx

1/2

(for matrices A = (aij) and B = (bij) of order n we put A : B =
n∑

i,j=1
aijbij).

The operator A is a topological isomorphism between V α and V α−2 for any α ∈ R. The operator
A : V 1 → V −1 acts according to the formula

⟨Au, v⟩ =
∫
Ω

∇u : ∇v dx (u, v ∈ V 1).
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We use standard notation for the spaces of integrable function with values in Banach spaces.
Time derivatives are in the sense of distributions D(0, T ;V −1).

We need the following Banach spaces in order to define weak solutions:

W1[0, T ] = {v : v ∈ L∞(0, T ;V 1), v′ ∈ L∞(0, T ;V −1)}

with the norm
∥v∥W1[0,T ] = ∥v∥L∞(0,T ;V 1) + ∥v′∥L∞(0,T ;V −1);

and
W2[0, T ] = {v : v ∈ C([0, T ];V 3), v′ ∈ L∞(0, T ;V 3)}

with the norm
∥v∥W2[0,T ] = ∥v∥C([0,T ];V 3) + ∥v′∥L∞(0,T ;V 3),

Also let W loc
1 (R+) be the class of functions v : R+ → V 1 such that the restriction of v to

any segment [0, T ] belongs to W1[0, T ]; likewise, let W loc
2 (R+) denote the class of functions

v ∈ C(R+, V
3) such that the restriction of v to any segment [0, T ] belongs to W2[0, T ]. These

classes are needed for defining solutions on the nonnegative semiaxis.
The following compactness theorem is very important. Suppose that X0 ⊂ F ⊂ X1 be Banach

spaces, where the first embedding is compact and X0 is reflexive; further, let T > 0 and 1 ⩽ pi ⩽ ∞
(i = 1, 2). Consider the space

W (0, T ; p0, p1;X0, X1) = {u : u ∈ Lp0(0, T ;X0), u
′ ∈ Lp1(0, T ;X1)}

(the time derivative is in the sense of distributions on (0, T ) with values in X1);
W (0, T ; p1, p2;X0, X1) is endowed with the norm

∥u∥W = ∥u∥Lp0 (0,T ;X0) + ∥u′∥Lp1 (0,T ;X1).

Theorem 2.1. If p0 <∞, the following embedding is compact:

W (0, T ; p0, p1;X0, X1) ⊂ Lp0(0, T ;F );

If p0 = ∞ and p1 > 1, the following embedding is compact:

W (0, T ; p0, p1;X0, X1) ⊂ C([0, T ];F ).

The proof can be found e. g. in [7].

3. THE PROBLEM DEFINITION AND MAIN RESULTS

Let the body force f ∈ (L2(Ω))
n be fixed.

Definition 3.1. A function v ∈W1[0, T ] is called a weak solution of problem (1.1)–(1.4) on [0, T ]
with the initial condition a ∈ V 1 if it satisfies the identity

d

dt

∫
Ω

v(t) · φ dx+ κ
d

dt

∫
Ω

∇v(t) : ∇φdx+ ν

∫
Ω

∇v(t) : ∇φdx

−
n∑

i,j=1

∫
Ω

vi(t)vj(t)
∂φj

∂xi
dx− κ

n∑
i,j,k=1

∫
Ω

vk(t)
∂vi
∂xj

(t)
∂2φj

∂xi∂xk
dx

− κ
n∑

i,j,k=1

∫
Ω

vk(t)
∂vj
∂xi

(t)
∂2φj

∂xi∂xk
dx =

∫
Ω

f · φ dx. (3.1)
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a. e. on (0, T ) for any φ ∈ V 3 and satisfies the initial condition

v(0) = a. (3.2)

A function v ∈ W loc
1 (R+) is called a weak solution of problem (1.1)–(1.4) on R+ if for any T > 0

the function v is a weak solution of the problem on [0, T ].

Remark 3.1. If v ∈ W1[0, T ], then v(t) ∈ V ⊂ (L4(Ω))
n and ∂vi

∂xj
∈ L2(Ω) for almost all t ∈ (0, 1).

For φ ∈ V 3 ⊂ (H3(Ω))n we have ∂2φj

∂xi∂xk
∈ H1(Ω) ⊂ L4(Ω). Consequently, all the integrals in the

left-hand side of (3.1) exist. Moreover,

d

dt

∫
Ω

v(t) · φ dx =
d

dt
(v(t), φ)0 = ⟨v′(t), φ⟩V −1×V 1 ,

d

dt

∫
Ω

∇v(t) : ∇φ dx =
d

dt
(v(t), φ)3 = ⟨v′(t), φ⟩V −3×V 3

in the sense of scalar distributions.

Remark 3.2. By the following theorem

Theorem 3.1. Let E and E0 be Banach spaces, and let E be continuously embedded in E0. If a
function u belongs to L∞(0,M ;E) and is continuous as a function with values in E0, then u is
weakly continuous as a function with values in E.

we have W1[0, T ] ⊂ Cw([0, T ];V
1). Thus the initial condition (3.2) is sensible for functions

belonging to the class W1[0, T ] .

The identity (3.1) is derived from equations (1.1)–(1.3) in a standard way: under the assumption
that a classical solution exists, multiply equation (1.1) by an aribtrary function φ ∈ V 3 and
integrate by parts certain terms; since φ is solenoidal, the term grad p is eliminated.

The following existence theorem holds.

Theorem 3.2. For any a ∈ V 1 the problem (1.1)–(1.4) has a solution on the semiaxis R+ that
satisfies the inequality

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ R0

(
1 + ∥a∥21e−αt

)
a. a. t ⩾ 0 (3.3)

where the constants R0 > 0 and α > 0 are independent of v.

Definition 3.2. A function v ∈W loc
1 (R+) ∩ L∞(R+;E) is called a a trajectory of problem (1.1)–

(1.4) if it is a solution of this problem with some a ∈ V 1 and the following inequality holds:

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ R0

(
1 + ∥v∥2L∞(R+,V 1)e

−αt
)

a. a. t ⩾ 0. (3.4)

The set of trajectories is called its trajectory space of the problem and is denoted by H+.

Remark 3.3. Weak solutions of problem (1.1)–(1.4) are weakly continuous in V 1, whence ∥a∥V 1 =
∥v(0)∥V 1 ⩽ ∥v∥L∞(R+,V 1). Thus inequality (3.4) follows from inequality (3.3), and by Theorem 3.2
we see that any point a ∈ V 1 is the beginning of a trajectory.

Consider a number δ ∈ (0, 1) and suppose that f ∈ (L2(Ω))
n.

These are the main results concerning the existence of attractors.

Theorem 3.3. The trajectory space H+ has the minimal trajectory attractor U . The attractor is
bounded in L∞(R+;V

1) and compact in C(R+;V
1−δ); it attracts sets of trajectories bounded in

L∞(R+;V
1) with respect to the topology of C(R+;V

1−δ).
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Theorem 3.4. The trajectory space H+ has the global trajectory attractor A. The attractor is
bounded in V 1, compact in V 1−δ; it attracts sets of trajectories bounded in L∞(R+;V

1) with respect
to the topology of V 1−δ.

These theorems are proved in Section after certain auxiliary results have been stated.

4. APPROXIMATING PROBLEM

Take ε > 0. Consider the following identity as an approximation of (3.1):

d

dt

∫
Ω

v(t)φ dx+ εe−αt d

dt

∫
Ω

∇(∆v(t)) : ∇(∆φ) dx+ κ
d

dt

∫
Ω

∇v(t) : ∇φdx+ ν

∫
Ω

∇v(t) : ∇φ dx

−
n∑

i,j=1

∫
Ω

vi(t)vj(t)
∂φj

∂xi
dx− κ

n∑
i,j,k=1

∫
Ω

vk(t)
∂vi
∂xj

(t)
∂2φj

∂xi∂xk
dx

− κ
n∑

i,j,k=1

∫
Ω

vk(t)
∂vj
∂xi

(t)
∂2φj

∂xi∂xk
dx =

∫
Ω

fφ dx (φ ∈ V 3). (4.1)

This identity transforms into (3.1) as ε→ 0.
In what follows we consider an operator equation generated by identity (4.1) rather than the

identity itself. Consider the following operators:

N : V 3 → V −3, ⟨Nu,φ⟩ =
∫
Ω

∇(∆u) : ∇(∆φ)dx;

B1 : (L4(Ω))
n → V −1, ⟨B1(u), φ⟩ =

n∑
i,j=1

∫
Ω

uiuj
∂φj

∂xi
dx;

B2 : V
1 → V −3, ⟨B2(u), φ⟩ =

n∑
i,j,k=1

∫
Ω

uk
∂ui
∂xj

∂2φj

∂xi∂xk
dx;

B3 : V
1 → V −3, ⟨B2(u), φ⟩ =

n∑
i,j,k=1

∫
Ω

uk
∂uj
∂xi

∂2φj

∂xi∂xk
dx.

It will be convenient to have a notation for the exponential function. By definition, for any
β ∈ R put

eβ(t) = eβt.

Identity (4.1) generates the following operator equation:

(I + εe−αN + κA)v′ + νAv −B1(v)− κB2(v)− κB3(v) = f̃ , (4.2)

where f̃ = πf ∈ V 0 ⊂ V −1, π is the Leray projector and thus

⟨f̃ , φ⟩V −1·V 1 =

∫
Ω

f̃ · φdx =

∫
Ω

f · φdx (φ ∈ V 3),

A function v ∈W2[0, T ] is called a solution of equation (4.2) on [0, T ] if it yields a true equality in
L1(0, T ;V

−3) when substitued into (4.2). A function v ∈W loc
2 (R+) is called a solution of (4.2) on

R+ if it is a solution of (4.2) on each finite segment [0, T ].
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Since we look for solutions of (4.2) in the class W2, which consists of continuous functions with
values in V 3, it is sensible to provide an initial condition of the form

v(0) = b (4.3)

with b ∈ V 3.
The existence theorem for solutions of the approximating problem is considered in Section .

5. A PRIORI ESTIMATES

Put
α =

ν

K2
0 + κ

.

We shall use this notation throughout the entire section.
We use topological methods in order to prove that problem (4.2), (4.3) has solutions. Given

ε > 0, consider the family of problems depending on the parameter λ ∈ [0, 1]:

(I + εe−λαN + κA)v′ + λ (νAv −B1(v)− κB2(v)− κB3(v)) = λf̃ , (5.1)
v(0) = λb. (5.2)

The notion of solution has the same sense for (5.1) as for (4.2).
In problem (5.1), (5.2) λ is the parameter of a nonlinear deformation. If λ = 1, problem (5.1),

(5.2) yields the original problem (4.2), (4.3). If λ = 0, problem (5.1), (5.2) is reduced to a simpler
linear problem whose solvability can be established by standard methods. The deformation is
considered in more detail below.

Let v ∈ W2[0, T ] be a solution of (5.1) on [0, T ] for certain λ ∈ [0, 1]. It can be proved that in
this case the left-hand side of (5.1) belongs to L∞(0, T ;V −3), and a fortiori the equation holds in
L2(0, T ;V

−3). Apply both sides to v(t) and observe that

⟨v′(t), v(t)⟩ = (v′(t), v(t))0 =
1

2

d

dt
∥v(t)∥20,

⟨e−λαtNv′(t), v(t)⟩ = e−λαt(v′(t), v(t))3 = e−λαt 1

2

d

dt
∥v(t)∥23,

⟨Av′(t), v(t)⟩ = (v′(t), v(t))1 =
1

2

d

dt
∥v(t)∥21,

moreover, it is known that ⟨Bi(v(t)), v(t)⟩ = 0 (i = 1, 2, 3) [8]. Thus we obtain:

1

2

d

dt
∥v(t)∥20 +

ε

2
e−λαt d

dt
∥v(t)∥23 +

κ
2

d

dt
∥v(t)∥21 + λν∥v(t)∥21 =

∫
Ω

f̃ · v(t) dt. (5.3)

Now we demonstrate how a dissipative estimate with a decaying exponential can be derived
from (5.3). We estimate the right-hand side of the latter equation using the Cauchy inequality:∫

Ω

f̃ · v(t) dt = ⟨f̃ , v(t)⟩V −1×V 1 ⩽ ∥f̃∥−1∥v(t)∥1 ⩽
1

2ν
∥f̃∥2−1 +

ν

2
∥v(t)∥21.

Combining this with (5.3), we get

d

dt
∥v(t)∥20 + κ

d

dt
∥v(t)∥21 + εe−λαt d

dt
∥v(t)∥23 + λν∥v(t)∥21 ⩽

λ

ν
∥f̃∥2−1. (5.4)

106 ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2014. № 3



Review of attractors for a model of motion of weak aqueous polymer solutions

Consider an auxiliary norm on V 1 defined by the formula ∥u∥2 = ∥u∥20 + κ∥u∥21. This norm is
equivalent to ∥ · ∥1. We have:

d

dt
∥v(t)∥20 + κ

d

dt
∥v(t)∥21 =

d

dt
∥v(t)∥2; ν∥v(t)∥21 ⩾

ν

K0 + κ
∥v(t)∥2 = α∥v(t)∥2.

Thus it follows from (5.4) that

d

dt
∥v(t)∥2 + εe−λαt d

dt
∥v(t)∥23 + λα∥v(t)∥2 ⩽ λ

ν
∥f̃∥2−1.

Substitute v(t) = v̄(t) exp(−λαt/2) in the first and the third terms in the left-hand side of the last
inequality. We get

−λαe−λαt∥v̄(t)∥2 + e−λαt d

dt
∥v̄(t)∥2 + εe−λαt d

dt
∥v(t)∥23 + λαe−λαt∥v̄(t)∥2 ⩽ λ

ν
∥f̃∥2−1.

Multiplying both sides by exp(λαt), we obtain

d

dt
(∥v̄(t)∥2 + ε∥v(t)∥23) ⩽

λ

ν
∥f̃∥2−1e

λαt. (5.5)

Integrating the last inequality, we have

∥v̄(t)∥2 + ε∥v(t)∥23 ⩽ ∥v(0)∥2 + ε∥v(0)∥23 +
1

αν
∥f̃∥2−1

(
eλαt − 1

)
,

for all t (this is true both for λ > 0 and for λ = 0). Now multiply both parts of the last inequality
by exp(−λαt), whence we obtain

∥v(t)∥2 + εe−λαt∥v(t)∥23 ⩽
1

αν
∥f̃∥2−1 +

(
∥v(0)∥2 + ε∥v(0)∥23

)
e−λαt.

Since the norms ∥ · ∥ and ∥ · ∥1 are equivalent, it follows from the last equality that

∥v(t)∥21 + εe−αt∥v(t)∥23 ⩽ C
(
1 +

(
∥v(0)∥21 + ε∥v(0)∥23

)
e−λαt

)
(5.6)

with a constant C independent of λ, ε, and v.
Using (5.1) it is possible to estimate the derivative v′ in terms of v. Combining the estimate

obtained in this way with (5.6), we obtain

∥v(t)∥1 +
√
εe−αt/2∥v(t)∥3 + ∥v′(t)∥−1 + εe−αt∥v′(t)∥3

⩽ R1

(
1 +

(
∥v(0)∥21 + ε∥v(0)∥23

)
e−λαt

)
. (5.7)

with a constant R1 that does not depend on ε, λ, and v.

6. EXISTENCE OF SOLUTIONS

Now we state the main existence theorem for the approximating problem.

Theorem 6.1. For any b ∈ V 3 problem (4.2), (4.3) has a solution on the semiaxis R+. Any
solution of this problem satisfies

∥v(t)∥1 +
√
εe−αt/2∥v(t)∥3 + ∥v′(t)∥−1 + εe−αt∥v′(t)∥3

⩽ R1

(
1 +

(
∥v(0)∥21 + ε∥v(0)∥23

)
e−λαt

)
(6.1)

a. e. on R+ with a constant R1 independent of ε, λ, and v.
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The proof of Theorem 6.1 involves two steps. First we prove the solvability on a finite segment
[0, T ] with an arbitrary T > 0 and then we prove that there exists a solution on R+.

Step I. Let T > 0. Let us prove that problem (4.2), (4.3) has a solution on [0, T ].
Consider the following family of operators depending on λ ∈ [0, 1]:

Lλ : W2[0, T ] → L∞(0, T ;V −3)× V 3,

Lλ(v) =
(
(I + εe−λαN + κA)v′, v(0)

)
;

and the operator

K : W2[0, T ] → L∞(0, T ;V −3)× V 3,

K(v) = (νAv −B1(v)− κB2(v)− κB2(v), 0) .

It can be proved [4] that for any λ ∈ [0, 1] the linear operator

Lλ : W2[0, T ] → L∞(0, T ;V −3)× V 3

is bounded and invertible, and the inverse operator depends continuously on λ in the operator
norm. (The proof is based on the fact that the inverse operator can be expressed explicitly) [3]. It
can be proved that K : W2[0, T ] → L∞(0, T ;V −3)× V 3 is compact.

Consider the family of equations dependent on λ ∈ [0, 1].

Lλv + λK(v) = λ(f, b), (6.2)

For any λ equation (6.2) is equivalent to problem (5.1), (5.2). In particular, equation (6.2) with
λ = 1 corresponds to (4.2), (4.3). Note that it follows from (5.7) that solutions of (6.2) (if they
exist) satisfy the following a priori estimate:

∥v∥C([0,T ];V 3) + εe−αT ∥v′∥L∞(0,T ;V 3) ⩽ C, (6.3)

where C does not depend on λ (but generally speaking, it can depend on other parameters of the
equation). Indeed, it follows from (5.7) that for a. a. t ∈ [0, T ] the norms ∥v(t)∥3 and e−αT ∥v′(t)∥3
do not exceed

R1(1 + (λ2∥a∥21 + ελ2∥a∥23))e−λαt ⩽ R1(1 + (∥a∥21 + ε∥a∥23)),

and the right-hand part of the last inequality does not depend on t and λ. Also it follows from 6.3
that solutions of (6.2) satisfy

∥v∥W2[0,T ] ⩽ R, (6.4)

where R does not depend on λ.
Apply L−1

λ to both sides of (6.2) and write the equation thus obtained in the form

v − λL−1
λ ((f, a)−K(v)) = 0. (6.5)

The mapping Φ(λ, v) = λL−1
λ ((f, a) − K(v)) is continuous with respect to (λ, v), so it is a

deformation between vector fields Φ1v = v − L−1
1 ((f, a) −K(v)) and Φ0v = v. It can be proved

that Φ(λ, v) regarded as a function of v is uniformly continuous with respect to λ. Moreover, it
follows from (6.4) that Φ(λ, v) does not vanish on the boundary of the ball BR+1. Hence Φ(λ, v)
is a homotopy between Φ1v and Φ2v on BR+1.

Since the deformation Φ(λ, v) is nondegenerate on the boundary of BR+1, the Leray–Schauder
degree of the completely continuous vector fields Φ1v and Φ0v on BR+1 is well defined. By the
homotopic invariance of the Leray–Schauder degree we have

degLS(id− L−1
1 ((f, a)−K(·)), BR+1, 0) = degLS(id, BR+1, 0) = 1.
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Since the field id− L−1
1 ((f, a)−K(·)) has non-zero degree, there exists a solution v ∈W2[0, T ] of

the operator equation
v − L−1

1 ((f, a)−K(v)) = 0.

This equation is equivalent to equation (6.2) with λ = 1, and the latter equation is in turn
equivalent to problem (4.2), (3.2). We have thus proved that problem (4.2), (4.3) has a solution
on [0, T ] .

Step II. Let vm be a solution of problem (4.2), (4.3) on [0,m] (m = 1, 2, . . .). Consider the
extension of the functions vm to R+ defined by the formula

v̂m(t) =

{
v(t), 0 ⩽ t ⩽ m,

v(m), t ⩾ m.

It is obvious that the functions ṽm belong to W loc
2 (R+).

Suppose that 0 < δ < 1. Take an arbitrary T > 0. All but finitely many terms of the sequence
{v̂m} are solutions of (4.2), (4.3) on [0, T ]. Since the functions v̂m take the same value b at 0, by
Theorem 6.1 it follows that they satisfy the estimate

∥v̂m∥L∞(0,T ;V 1) + ∥v̂m∥L∞(0,T ;V 3) + ∥v̂′m∥L∞(0,T ;V 3) + ∥v̂′m∥L∞(0,T ;V −1) ⩽ C(ε, T ), (6.6)

where C(ε, T ) does not depend on m. Thus the sequence {v̂m} is bounded in L∞(0, T ;V 1) and
the sequence of derivatives {v̂′m} is bounded with respect to the norm of L∞(0, T ;V −1). By
Theorem 2.1 we have that the sequence {v̂m} is precompact in C([0, T ];V 1−δ). Since this is true
for arbitrary T , the sequence is precompact in C(R+;V

1−δ).
Thus the sequence {v̂m} has a subsequence {v̂mk

} that converges to some function v∗ in the
space C(R+, V

1−δ). It can be proved [4] that this limit function is the the sought for solution of
problem (4.2), (4.3) on R+.

Proof of Theorem 3.2. Since V 3 is dense in V 1, there exists a sequence {bm} in V 3 such that
∥bm − a∥1 → 0. Suppose the sequence {εm} tends to zero and

εm∥bm∥23 ⩽ 1. (6.7)

One can put e. g.

εm =
1

mmax{∥bm∥23, 1}
to obtain such a sequence.

Substitute εm for ε in (4.2) and consider the initial condition

vm(0) = bm

for this equation. By Theorem 6.1 this initial value problem has a solution vm on R+.
Inequalities (6.1) and (6.7) yield the following estimate:

∥vm(t)∥1 + ∥v′m(t)∥−1 + εme−αt∥v′m(t)∥3 ⩽ R1

(
1 +

(
∥am∥21 + 1

)
e−αt

)
, (6.8)

a. e. on R+. More precisely, for each m the last inequality holds for all t ∈ R+ \ Qm, where Qm

is a set of zero measure. Hence for any t ∈ R+ \ Q, where Q = ∪mQm is a set of zero measure,
inequality (6.8) holds for all m.

Suppose that 0 < δ ⩽ 1. According to (6.8) we have that for any T > 0 the sequence {vm} is
bounded in L∞(0, T ;V 1) and the sequence {v′m} is bounded in L∞(0, T ;V −1). By Theorem 2.1 it
follows that the sequence {vm} is compact in C([0, T ];V 1−δ). Since T is arbitrary, it follows that
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the latter sequence is precompact in C(R+, V
1−δ) and thus has a subsequence {vmk

} converging
in C(R+, V

1−δ) to a function v∗. It is proved in [4] (cf. [3], [8]) that v∗ is a solution of problem
(3.1), (3.2).

Now we demonstrate (3.3). Discarding certain nonnegative terms in the left-hand side of (6.8)
we obtain

∥vmk
(t)∥1 ⩽ R1

(
1 +

(
∥am∥21 + 1

)
e−αt

)
. (6.9)

Given k, this inequality holds for any t belonging to a subset of R+ of full measure that does not
depend on k. Take such a t. First observe that vmk

(t) → v∗(t) in V 1−δ, since the convergence
in C(R+, V

1−δ) implies pointwise convergence. Further, it follows from (6.9) that the sequence
{vmk

(t)} is bounded in V 1. Consequently, it has a subsequence ṽµ(t) that converges to v∗(t)
weakly in V 1. Therefore

∥v∗(t)∥1 ⩽ lim
µ→∞

∥ṽµ(t)∥1 ⩽ R1

(
1 +

(
∥a∥21 + 1

)
e−αt

)
.

Thus for a. a. t ∈ R+ we have

∥v∗(t)∥1 ⩽ R1

(
1 +

(
∥a∥21 + 1

)
e−αt

)
. (6.10)

Moreover, one can use (3.1) and estimate v′∗ in terms of v. Combining such an estimate with (6.10),
we get (3.3).

7. TRAJECTORY SPACE AND ATTRACTORS

In this subsection we fix a number δ ∈ (0, 1).
Consider E = V 1 and E0 = V 1−δ as the pair of Banach spaces needed to introduce a trajectory

space. This choice is justified by the fact that V 1 is reflexive and is continuously embedded in
V 1−δ.

By Remark 3.3 the trajectory space introduced by Definition 3.2 is nonempty. Thus it suffices
to check the inclusion

H+ ⊂ C(R+;E0) ∩ L∞(R+;E).

so as to make sure that the trajectory space is well defined.
The inclusion H+ ⊂ L∞(R+;E) directly follows from the definition of the trajectory space.

We use Theorem 2.1 in order to prove that the trajectories are continuous. Consider three spaces
V 1 ⊂ V 1−δ ⊂ V −1. Let v be an arbitrary trajectory. It follows from (3.4) that for any segment
[0, T ] we have v ∈ L∞(0, T ;V 1) and v′ ∈ L∞(0, T ;V −1). Hence by Theorem 2.1 we obtain that v
belongs to C([0, T ];V 1−δ). This is true for any T , so v ∈ C(R+;V

1−δ), q. e. d.
Let R̃ ⩾ 4R0. Consider the set

P̃ = {v ∈ C(R+;V
1−δ) ∩ L∞(R+;V

1) : v′ ∈ L∞(R+, V
−1),

∥v∥L∞(R+;V 1) + ∥v′∥L∞(R+;V −1) ⩽ R̃}. (7.1)

Let us establish several properties of this set.

Lemma 7.1. The set P̃ is bounded in L∞(R+;V
1), compact in C(R+;V

1−δ), and the following
inclusion holds:

T(h)P̃ ⊂ P̃ (h ⩾ 0). (7.2)

Доказательство. It follows from the definition of P̃ that it is bounded in L∞(R+;V
1) .

It is not hard to prove that the set P̃ is precompact in C(R+;V
1−δ). Indeed, take T > 0. It

follows easily from the construction that P̃ is bounded in L∞(0, T ;V 1) and the set {v′ : v ∈ P̃} is
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bounded in L∞(0, T ;V −1). By Theorem 2.1 the set P̃ is precompact in C([0, T ];V 1−δ). Since T is
arbitrary, P̃ is precompact in C(R+;V

1−δ).
Now let us show that P̃ is closed and therefore compact in C(R+;V

1−δ). Suppose that the
sequence {vm} ⊂ P̃ converges to v0 in C(R+;V

1−δ). This sequence is bounded in L∞(R+;V
1), so

it converges to its limit function ∗-weakly in L∞(R+;V
1). Moreover, the sequence of derivatives

{v′m} converges to v′0 in the sense of distributions and also ∗-weakly in L∞(R+;V
−1), since it is

bounded in L∞(R+;V
−1). Therefore

∥v0∥L∞(R+;V 1) + ∥v′0∥L∞(R+;V −1)

⩽ lim
m→∞

∥vm∥L∞(R+;V 1) + lim
m→∞

∥v′m∥L∞(R+;V −1)

⩽ lim
m→∞

(
∥vm∥L∞(R+;V 1) + ∥v′m∥L∞(R+;V −1)

)
⩽ R̃.

This proves that P̃ contains the limit function v0. So P̃ is closed.
Finally, let us prove the inclusion (7.2). Take h ⩾ 0. For any v ∈ P̃ we have

∥T(h)v∥L∞(R+;V 1) + ∥T(h)v∥L∞(R+;V −1)

⩽ ∥v∥L∞(R+;V 1) + ∥v′∥L∞(R+;V −1) ⩽ R̃,

whence T(h)v ∈ P̃ , q. e. d.

Proof of Theorem 3.3. Let us prove that P̃ is a semi-attractor of H+. By Lemma 7.1 we have that
P̃ satisfies conditions (i) and (ii) of the trajectory semi-attractor definition:

Definition 7.1. A nonempty set P ⊂ C(R+;E0)∩L∞(R+;E) is called a trajectory semi-attractor
of the trajectory space H+, if the following conditions hold:

(i) P is compact in C(R+;E0) and bounded in L∞(R+;E);

(ii) the inclusion T(t)P ⊂ P holds for all t ⩾ 0;

(iii) P is an attracting set, i. e. for any nonempty set B ⊂ H+ bounded with respect to the norm
of L∞(R+;E) we have

lim
t→∞

sup
u∈B

inf
v∈P

∥T(t)u− v∥C(R+;E0) = 0 (7.3)

or equivalently
lim
t→∞

sup
u∈B

inf
v∈P

∥T(t)u− v∥C([0,M ];E0) = 0 ∀ M > 0. (7.4)

Let us prove that P̃ is absorbing. Consider an arbitrary set B ⊂ H+ bounded in L∞(R+;V
1);

to be definite, assume that ∥v∥L∞(R+;V 1) ⩽ R for any v ∈ B. Take h0 ⩾ 0 such that R2e−αh0 ⩽ 1.
Let v be an arbitrary function belonging to B. Since v satisfies inequality (3.4), for all h ⩾ h0 we
have

∥T(h)v(t)∥1 + ∥T(h)v′(t)∥−1 = ∥v(t+ h)∥1 + ∥v′(t+ h)∥−1 ⩽
⩽ R0(1 +R2e−α(t+h)) ⩽ R0(1 +R2e−αh0) ⩽ 2R0.

Hence ∥T(h)v∥L∞(R+;V 1) ⩽ 2R0, ∥T(h)v′∥L∞(R+;V −1) ⩽ 2R0, and therefore

∥T(h)v∥L∞(R+;V 1) + ∥T(h)v′∥L∞(R+;V −1) ⩽ 4R0 ⩽ R̃.

Thus T(h)v ∈ P̃ . Since v is arbitrary, we have T(h)B ⊂ P̃ for all h ⩾ h0. Consequently P̃ is
absorbing.

We have proved that P̃ is a semi-attractor of H+. By the following theorem
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Theorem 7.1. Suppose the trajectory space H+ has a trajectory semi-attractor P . Then H+ has
the minimal trajectory attractor U , the following relations hold:

Π+K(H+) ⊂ U = Π+K(U) ⊂ Π+K(P ) ⊂ P, (7.5)

and the kernel K(H+) is compact in C(R;E0) and bounded with respect to the norm of L∞(R;E).

the trajectory space H+ has the minimal trajectory attractor.

Proof of Theorem 3.4. According to the following theorem

Theorem 7.2. Suppose the trajectory space H+ has the minimal trajectory attractor H+. Then
the global attractor A of H+ exists and the following relations hold:

A = U(t), t ⩾ 0; (7.6)

K(H+)(t) ⊂ A = K(U)(t), t ∈ R. (7.7)

the global attractor of a trajectory space exists if the trajectory space has the minimal trajectory
attractor. Theorem 3.3 implies that the trajectory space H+ satisfies this requirement.

8. SUFFICIENT CONDITIONS OF CONVERGENCE

This section deals with the convergence of attractors. Suppose we are given a family of trajectory
spaces H+

λ ⊂ C(R+;E0)∩L∞(R+;E) depending on a parameter λ that ranges over a metric space
Λ (as before, we assume that E ⊂ E0 are Banach spaces and that E is reflexive). Further, suppose
that each trajectory space H+

λ has the minimal trajectory attractor Uλ and the global attractor
Aλ (the latter is the section of the former, according to the general theory). We want to establish
sufficient conditions for Uλ to tend to Uλ0 and Aλ to tend to Aλ0 as λ→ λ0.

From the point of view of applications Uλ0 and Aλ0 are the attractors of an unperturbed problem,
while Uλ and Aλ for λ ̸= λ0 are the attractors of the approximating problem corresponding to
possible values of the approximation parameter.

We consider the convergence in the sense of Hausdorff semi-distance in corresponding metric
spaces. Recall that the Hausdorff semi-distance from a set A to a set B in a metric space (X, d)
is given by

hX(A,B) = sup
a∈A

inf
b∈B

d(a, b) ≡ sup
a∈A

distX(a,B),

where distX(a,B) denotes the distance between a point a and a set B. In our case we consider the
Hausdorff semi-distances hC(R+;E0) in the space C(R+;E0) and hE0 in the space E0.

As before, suppose that E and E0 are Banach spaces, E is continuously embedded in E0, and
E is reflexive.

The following proposition offers a sufficient condition for minimal trajectory attractors to
converge in the sense of the Hausdorff semi-distance.

Proposition 8.1. Suppose that a trajectory space

H+
λ ⊂ C(R+;E0) ∩ L∞(R+;E), (8.1)

is assigned to every λ belonging to a metric space Λ. Suppose that each space H+
λ has the minimal

trajectory attractor Aλ, which is contained in a set

P ⊂ C(R+;E0) ∩ L∞(R+;E),
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P is precompact in C(R+;E0) and independent of λ. Moreover, suppose that the following condition
holds:

(C) if λm → λ0, um ∈ Uλm , and um → u0 in C(R+;E0), then u0 ∈ Uλ0 .
Then

hC(R+;E0)(Uλ,Uλ0) = sup
u∈Uλ

inf
v∈Uλ0

∥u− v∥C(R+;E0) → 0 (λ→ λ0). (8.2)

Доказательство. Assume that (8.2) does not hold. This means that there exist a δ > 0 and
sequences {λm} and {um} such that λm → λ0, um ∈ Uλm and

distC(R;E0)(um,Uλ0) ⩾ δ. (8.3)

Since the sequence {um} is contained in the precompact set P we can assume without loss
of generality that it converges in C(R+;E0) to a limit function u0. Passing to the limit in
inequality (8.3), we obtain

distC(R;E0)(u0,Uλ0) ⩾ δ.

However, by condition (C) we have u0 ∈ Uλ0 , which contradicts the last inequality. This
contradiction concludes the proof.

The global attractor is a section of the minimal trajectory attractor. Hence it is not hard to
prove that the convergence of minimal trajectory attractors implies the convergence of the global
ones. Specifically, we have the following assertion.

Proposition 8.2. Suppose that a trajectory space

H+
λ ⊂ C(R+;E0) ∩ L∞(R+;E),

is assigned to every λ belonging to a metric space Λ. Suppose that each space H+
λ λ possesses the

minimal trajectory attractor Uλ and the global attractor Aλ = Uλ(0), and suppose that (8.2) holds.
Then

hE0(Aλ,Aλ0) = sup
u∈Aλ

inf
v∈Aλ0

∥u− v∥E0 → 0 (λ→ λ0). (8.4)

Доказательство. Condition (8.2) is equivalent to the following relation:

lim
λ→λ0

sup
u∈Uλ

inf
v∈Uλ0

∥u− v∥C([0,M ];E0) = 0 ∀M ⩾ 0.

In particular, letting M = 0 we get (8.4), since Aλ = Uλ(0).

Proposition (8.1) is not efficient enough, since it requires checking condition (C), which involves
not trajectories, but whatever functions belonging to the minimal trajectory attractor. In what
follows we consider an effective method of checking (C) in a certain class of trajectory spaces whose
attractors can be represented as ω-limit sets.

From now on brackets denote the closure in C(R+;E0).

Definition 8.1. The ω-limit set for a set

P ⊂ C(R+;E0) ∩ L∞(R+;E), (8.5)

bounded in L∞(R+;E) is the set

ω(P ) =
∩
t⩾0

[∪
s⩾t

T(s)P

]
. (8.6)
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Proposition 8.3. Suppose that the set (8.5) is bounded in L∞(R+;E). Then a function u belongs
to ω(P ) if and only if there exist sequences {um} ⊂ P and {tm} ⊂ R+ such that tm → ∞ and
T(tm)um → u in C(R+;E0).

Доказательство. Necessity. Take a positive integer m. It follows from (8.6) that

ω(P ) ⊂

[∪
s⩾m

T(s)P

]
,

whence there exists a function um ∈ P and a number tm ⩾ m such that

∥T(tm)um − u∥C(R+;E0) <
1

m
.

The last inequality implies that T(tm)um → u in C(R+;E0), whence the sequences {um} and {tm}
are suitable.

Sufficiency. Take t ⩾ 0. We have tm ⩾ t whenever m is great enough. Hence all but finitely
many terms of the sequence {T(tm)um} lie in the set

∪
s⩾tT(s)P . Consequently, the limit u of the

sequence belongs to the closure
[∪

s⩾tT(s)P
]
. This is true for any t ⩾ 0, so u ∈ ω(P ).

Corollary 8.1. If the set (8.5) is bounded in L∞(R+;E), the set ω(P ) is contained in C(R+;E0)∩
L∞(R+;E).

Доказательство. Let u ∈ ω(P ), then there exist sequences tm → ∞ and {um} ⊂ P such that
T(tm)um → u in C(R+;E0). The set P is bounded in L∞(R+;E), so there exists a number R > 0
such that ∥v∥L∞(R+;E) ⩽ R for any v ∈ P . The functions of class C(R+;E0) ∩ L∞(R+;E) are
weakly continuous in E, so we have ∥v(t)∥E ⩽ R for all t ⩾ 0 and v ∈ P . In particular it follows
that the sequence {T(tm)um} is bounded in L∞(R+;E). Consequently, it converges to u ∗-weakly
in L∞(R+;E). Thus u ∈ L∞(R+;E). This is true for any u ∈ ω(P ), i. e. we have proved the
inclusion

ω(P ) ⊂ C(R+;E0) ∩ L∞(R+;E).

Remark 8.1. If the set P is translation invariant, i. e. T(h)P ⊂ P (h ⩾ 0), then for s ⩾ t ⩾ 0 we
have T(s)P = T(t)T(s− t)P ⊂ T(t)P , so by formula (8.6) we get

ω(P ) =
∩
t⩾0

[T(t)P ].

Proposition 8.4. Suppose that a trajectory space

H+
λ ⊂ C(R+;E0) ∩ L∞(R+;E), (8.7)

is assigned to every λ belonging to a metric space Λ. Suppose that each space H+
λ has the minimal

trajectory attractor of the form Uλ = ω(Pλ), where the set Pλ is translation invariant (i. e. T(h)P ⊂
P for all h ⩾ 0) and besides Pλ ⊂ H+

λ ∩ P where P is precompact in C(R+;E0) and bounded in
L∞(R+;E). Finally, suppose that the following condition holds:

(C ′) if λm → λ0, vm ∈ Pλm, and vm → v0 in C(R+;E0), then v0 ∈ [Pλ0 ].
Then condition (C) of Proposition 8.1 holds.
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Доказательство. Let λm → λ0, um ∈ Uλm , um → u0 in C(R+;E0); we claim that u0 ∈ Uλ0 .
Since um ∈ Uλm = ω(Pλm), by Proposition 8.3 we see that there exist wm ∈ Pλm and tm ⩾ m

such that
∥T(tm)wm − um∥C(R+;E0) <

1

m
.

Then

∥T(tm)wm − u0∥C(R+;E0) ⩽ ∥T(tm)wm − um∥C(R+;E0) + ∥um − u0∥C(R+;E0) → 0,

that is we have the following convergence in C(R+;E0):

T(tm)wm → u0. (8.8)

Let us show that u0 ∈ ω(Pλ0). Take t ⩾ 0. Since tm → ∞, we eventually have tm − t ⩾ 0. Put
vm = T(tm − t)wm, then vm ∈ Pλm since wm ∈ Pλm and the set Pλm is translation invariant. The
sequence {vm} lies in the set P , so it has a subsequence {vmk

} that converges in C(R+;E0) to a
function v0. According to condition (C′) we have v0 ∈ [Pλ0 ]. Translation operators are continuous
in C(R+;E0), so

T(t)vmk
→ T(t)v0 (k → ∞).

On the other hand, it follows from (8.8) that

T(t)vmk
= T(t)T(tmk

− t)wmk
= T(tmk

)wk → u0.

Therefore we have u0 = T(t)v0 ∈ T(t) [Pλ0 ]. Since t is arbitrary, we get

u0 ∈
∩
t⩾0

T(t) [Pλ0 ] .

By Remark 8.1, the right-hand side of the last inclusion coincides with the set ω(Pλ0) = Uλ0 , i. e.
u0 ∈ Uλ0 . This completes the proof.

Corollary 8.2. Under the hypothesis of Proposition 8.4 the limit relations (8.2) and (8.4) hold.

The following assertion provides a sufficient condition for the minimal trajectory attractor of a
trajectory space to be represented as an ω-limit set.

Proposition 8.5. Suppose that a trajectory space

H+ ⊂ C(R+;E0) ∩ L∞(R+;E)

has an absorbing set P ⊂ H+ that is precompact in C(R+;E0), bounded in L∞(R+;E) and
translation invariant, i. e. T(t)P ⊂ P for all t ⩾ 0. Then the set ω(P ) is the minimal trajectory
attractor of H+.

Доказательство. We claim that the set ω(P ) is a semi-attractor of H+.
According to Remark 8.1 we have

ω(P ) =
∩
t⩾0

[T(t)P ]. (8.9)

Since P is translation invariant and precompact, the right-hand side of (8.9) is the intersection of
a centered family of nonempty closed subsets of the compact set [P ], whence ω(P ) is a nonempty
compact set in C(R+;E0).
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Now let us prove that ω(P ) is bounded in L∞(R+;E). By (8.9) we have ω(P ) ⊂ [P ], so it suffices
to show that [P ] is bounded. Let u ∈ [P ] and let a sequence {um} ⊂ P converge in C(R+;E0)
to u. Since P is bounded in L∞(R+;E), there exists R > 0 such that ∥v∥L∞(R+;E) ⩽ R for any
v ∈ P . Consequently, the sequence {um} is bounded in L∞(R+;E), so it converges in the ∗-weak
topology of L∞(R+;E) as well. By a property of weak convergence we have

∥u∥L∞(R+;E) ⩽ lim
m→∞

∥um∥L∞(R+;E) ⩽ R.

This holds for any u ∈ [P ], so [P ] is bounded in L∞(R+;E). Therefore ω(P ) is bounded, too.
The translation invariance of ω(P ) follows from the fact that the translation operators are

continuous in C(R+;E0). Indeed, for any h ⩾ 0 we have

T(h)ω(P ) = T(h)
∩
t⩾0

[T(t)P ] ⊂
∩
t⩾0

T(h)[T(t)P ] ⊂
∩
t⩾0

[T(h)T(t)P ]

=
∩
t⩾0

[T(t)T(h)P ] =
∩
t⩾0

[T(t)P ] = ω(P ).

Finally let us show that ω(P ) is attracting. Assume the contrary. Then there exist ε > 0, a
bounded set B ⊂ H+, a sequence {um} ⊂ B, and a sequence of numbers tm → ∞ such that

dist(T(tm)um, ω(P )) ⩾ ε. (8.10)

Since P is absorbing and precompact, without loss of generality we can assume that {T(tm)um} ⊂
P and T(tm)um → v. It is readily seen that v ∈ ω(P ) since for any t ⩾ 0 we eventually have tm > t
and therefore

T(tm)um ∈
∪
s⩾t

T(s)P,

and thus

v ∈

[∪
s⩾t

T(s)P

]
.

The latter inclusion holds for any t ⩾ 0, so v ∈ ω(P ). On the other hand, passing to the limit
in (8.10), we arrive at a contradiction:

dist(v, ω(P )) ⩾ ε.

This constradiction proves that ω(P ) is attracting.
We have proved that ω(P ) is a semi-attractor. By Theorem 7.1 the minimal trajectory attractor

U of the trajectory space H+ exists.
It is known (see [9]) that the minimal trajectory attractor is the least trajectory semi-attractor

with respect to inclusion, whence
U ⊂ ω(P ). (8.11)

Since U attracts P and the latter is translation invariant, we have

sup
v∈P

inf
u∈U

∥v − u∥C(R+;E0) ⩽ sup
v∈T(t)P

inf
u∈U

∥v − u∥C(R+;E0)

⩽ sup
w∈P

inf
u∈U

∥T(t)w − u∥C(R+;E0) → 0 (t→ ∞),

i. e. P ⊂ [U ] = U and consequently [P ] ⊂ U . However, ω(P ) ⊂ [P ], so

ω(P ) ⊂ U .

Combining the last inclusion with (8.11) we see that ω(P ) is the minimal trajectory attractor.
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Remark 8.2. Proposition 8.5 gives a hint how to construct trajectory spaces in such a way that
their minimal trajectory attractors are ω-limit sets. Suppose we are given an evolutionary equation

v′ = A(v),

and we have introduced the notion of its solution on R+. Following the usual approach, consider
a set of solutions satisfying an estimate that makes it possible to construct an absorbing set P̃
bounded in L∞(R+;E) and precompact in C(R+;E0). Add to this ‘preliminary’ trajectory space all
the solutions belonging to P̃ and denote by H+ the enhanced trajectory space. Since the equation
at issue is autonomous, we expect that the function T(h)v (h ⩾ 0) is its solution if so is v. Hence
H+ satisfies the hypothesis of Proposition 8.5 with P = H+ ∩ P̃ .

8.1. Convergence of attractors of approximating problems in the polymer
solution model

In this section we introduce trajectory spaces for the approximating problems in the model of
polymer solutions and prove that their trajectory and global attractors converge to correspondent
attractors of the unperturbed problem.

As before, we use the spaces E = V 1 E0 = V 1−δ in order to introduce trajectory spaces.
Let us modify the definition of the trajectory space of problem (1.1)–(1.4) according to

Remark 8.2. Let R̃ ⩾ max{4R0, 6R1}, where R0 R1 are the constants involved in (3.3) and (6.1).

Definition 8.2. A function v ∈W loc
1 (R+)∩L∞(R+;E) is called a trajectory of problem (1.1)–(1.4)

if it is a solution of the problem with certain a ∈ V 1 and satisfies either the estimate

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ R0

(
1 + ∥v∥2L∞(R+,V 1)e

−αt
)

a. a. t ⩾ 0 (8.12)

or the estimate
∥v∥L∞(R+;V 1) + ∥v′∥L∞(R+;V −1) ⩽ R̃ a. a. t ⩾ 0. (8.13)

The set of trajectories is called the trajectory space and denoted H+
0 .

Remark 8.3. It is clear that the trajectory space H+
0 differs from the space H+ introduced by

Definition 3.2 in the way that it contains all the solutions that satisfy (8.13). It follows that for
any a ∈ V 1 there exists a trajectory v ∈ H+

0 such that v(0) = a.

Now we introduce trajectory spaces for equation (4.2). Note that it is not autonomous, since
its left-hand side involves the coefficient eα, which is independent of time. However, the theory of
attractors of non-invariant spaces is versatile enough to be appied to non-autonomous equations.

Definition 8.3. The trajectory space H+
ε of equation (4.2) is the set that consists of solutions of

this equation that belong to L∞(R+,∞) and satisfy the estimate

ε∥v(0)∥23 ⩽ 1, (8.14)

as well as of functions T(h)v, where v is a solution of equation (4.2) on R+, h ⩾ 0 and T(h)v
satisfies the estimate

∥T(h)v∥L∞(R+;V 1) + ∥T(h)v′∥L∞(R+;V −1) ⩽ R̃. (8.15)

Remark 8.4. Note that the construction of trajectories used in the proof of Theorem 3.2 involves
solutions of the approximating problem whose initial value satisfies (8.14). This justifies inequality
(8.14) in Definition 8.3.
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The standard approach to attractors of nonautonomous equations involves families of trajectory
spaces (see [9], [10]). Specifically, suppose we are given an evolutionary equation

v′ = Aσ(t)(v) (σ ∈ Σ),

where the operatorA depends on time via the intermediate function σ(t) defined for a. a. t ⩾ 0 (such
a function is called the symbol of the equation). Given a set Σ of possible σ’s, a trajectory space
H+

σ ⊂ C(R+;E0)∩L∞(R+;E) is introduced for each σ, so that we have a family of trajectory spaces
{H+

σ : σ ∈ Σ}. Consider the united space H+
Σ =

∪
σ∈ΣH+

σ . (Minimal) trajectory/global attractors
of the latter space are called uniform attractors of the family {H+

σ : σ ∈ Σ}. In the particular case
of one point set Σ this construction yields a single trajectory space and its attractors. For the sake
of simplicity we formulate Definition 8.3 for an ordinary trajectory space.

Let the set P̃ be defined by equation (7.1). Put P0 = P̃ ∩H+
0 .

Lemma 8.1. The trajectory space H+
0 has the minimal trajectory attractor

U0 = ω(P0). (8.16)

Доказательство. Let us show that P0 satisfies the hypothesis of Proposition 8.5.
The set P0 is bounded in L∞(R+;V

1) and precompact in C(R+;V
1−δ), since it lies in the set

P̃ , which has these properties (Lemma 7.1).
Now let us prove that P0 is translation invariant. Take h ⩾ 0 and v ∈ P0. The function v satisfies

identity (3.1). This identity is autonomous, so the function T(h)v satisfies it as well. Besides,

∥T(h)∥L∞(R+;V 1) + ∥T(h)∥L∞(R+;V −1) ⩽ ∥v∥L∞(R+;V 1) + ∥v′∥L∞(R+;V −1) ⩽ R̃,

and thus T(h)v ∈ P0.
Finally let us prove that P0 is absorbing. Let the set B ⊂ H+

0 be bounded in L∞(R+;V
1) and

let R be so large that ∥v∥L∞(R+;V 1) for any v ∈ B. Take t0 such that R2e−αt0 ⩽ 1.
If v ∈ B and v /∈ P0, then v /∈ P̃ , and by definition of the trajectory space we see that v

satisfies (8.14). It follows that for t ⩾ t0 we have

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ 2R0,

whence for any h ⩾ t0 we obtain

∥T(h)v∥L∞(R+;V 1) + ∥T(h)v′∥L∞(R+;V −1) ⩽ 4R0 ⩽ R̃.

This means that T(h)v ∈ P̃ , and since the function T(h)v satisfies identity (3.1), we have T(h)v ∈
H+

0 and thus T(h)v ∈ P0.
On the other hand, if v ∈ B and v ∈ P0, we have T(h)v ∈ P0 for any h ⩾ 0 since P0 is

translation invariant.
This argument shows that for any v ∈ B the inclusion T(t)v ∈ P0 holds at least for t ⩾ t0. In

other words, P0 is absorbing.
To summarize, the set P̃ satisfies the hypothesis of Proposition 8.5. By virtue of this proposition

we see that H+
0 has the minimal trajectory attractor given by (8.16).

Now consider the attractors of the trajectory space generated by the approximating equation.
First of all notice that this trajectory space is well defined. Indeed, since the solutions of
equation (4.2) belong to C(R+;V

3) and we require that the trajectories should belong to
L∞(R+;V

1), the inclusion
H+

ε ⊂ C(R+;V
1−δ) ∩ L∞(R+;V

1)

holds. Further, the space H+
ε is nonempty, since by Theorem 6.1 any function a ∈ V 3 such that

ε∥a∥23 ⩽ 1 is the beginning of a trajectory. Thus the trajectory space H+
ε is well defined.

Put Pε = H+
ε ∩ P̃ .
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Lemma 8.2. The trajectory space H+
ε (ε > 0) has the minimal trajectory attractor

Uε = ω(Pε). (8.17)

Доказательство. Let us show that the set Pε satisfies the hypothesis of Proposition 8.5. Clearly,
Pε is bounded in L∞(R+;V

1) and precompact in C(R+;V
1−δ), since Pε lies in P̃ and the latter set

has these properties. Any trajectory belonging to Pε is of the form T(h)v, where v is a solution of
equation (4.2). Since P̃ is translation invariant, it contains the function T(s)T(h)v. Consequently
this function belongs to H+

ε ∩ P̃ = Pε. Thus Pε is translation invariant. Let us prove that it is
absorbing. Take a set B ⊂ H+

ε bounded in L∞(R+;V
1); to be definite, assume that ∥u∥L∞(R+;V 1) ⩽

R for each u ∈ B. Let t0 be such that R2e−αt0 ⩽ 1.
Consider an arbitrary trajectory v ∈ B. According to the definition of H+

ε there are two
possibilites.

1) Suppose that v is a solution of equation (4.2) and satisfies (8.14). By Theorem 6.1 it satisfies
the inequality

∥v(t)∥1 +
√
εe−αt/2∥v(t)∥3 + ∥v′(t)∥−1 + εe−αt∥v′(t)∥3 ⩽ R1

(
1 +

(
∥v(0)∥21 + ε∥v(0)∥23

)
e−αt

)
,

for a. a. t > 0. Combining it with (8.14), we obtain

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ R1

(
2 + ∥v(0)∥21e−αt

)
.

It follows that for t ⩾ t0 we have

∥v(t)∥1 + ∥v′(t)∥−1 ⩽ 3R1,

so for any s ⩾ t0 we get

∥T(s)v∥L∞(R+;V 1) + ∥T(s)v′∥L∞(R+;V −1) ⩽ 6R1 ⩽ R̃.

This means that T(s)v ∈ H+
ε and since T(s)v ∈ P̃ , we have the inclusion T(s)v ∈ Pε for any

s ⩾ t0.
2) If v is a function of the form T(h)w and satisfies

∥v∥L∞(R+;V 1) + ∥v′∥L∞(R+;V −1) ⩽ R̃,

then v ∈ Pε and therefore T(s)v ∈ Pε for any s ⩾ 0, since Pε is translation invariant.
Thus in any case T(s)v ∈ Pε if s ⩾ t0. This means that Pε is absorbing.
By Proposition 8.5 the trajectory space H+

ε has the minimal trajectory attractor, and
formula (8.17) holds.

Now we state the main result concerning the convergence of attractors.

Theorem 8.1. Minimal trajectory attractors Uε of equation (4.2) converge to the minimal
trajectory attractor U0 of the trajectory space H+

0 of equation (3.1) in the sense of the Hausdorff
semi-distance in C(R+;V

1−δ), i. e.

sup
u∈Uε

inf
v∈U0

∥u− v∥C(R+;V 1−δ) → 0 (ε→ 0).

Global attractors Aε of approximating equation (4.2) converge to the global attractor A0 of the
trajectory space H+

0 of equation (3.1) in the sense of the Hausdorff semi-distance in the space
V 1−δ, i. e.

sup
y∈Aε

inf
z∈A0

∥y − z∥V 1−δ → 0 (ε→ 0).
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Доказательство. Both assertions will follow from Corollary 8.2 if we prove that condition (C′)
of Proposition 8.4 holds in our case. Specifically, we must prove that if εm → 0, vm ∈ Pεm , and
vm → v0 in C(R+;V

1−δ), then v0 belongs to the closure of P0 with respect to the topology of
C(R+;V

1−δ).
Since Pε ⊂ P̃ , the sequence {vm} lies in the set P̃ , which is compact in C(R+;V

1−δ). It follows
that v0 ∈ P̃ .

The fact that v0 is a solution of equation (3.1) is proved in much the same way as the passage
to the limit in the proof of Theorem 3.2. Since v0 ∈ P , then v0 satisfies inequality (8.13) and thus
v0 ∈ H+

0 . We have that v0 ∈ H+
0 ∩ P̃ = P0, and (C′) holds. This concludes the proof.

REFERENCES
[1] Pavlovsky V. A. To a problem on theoretical exposition of weak aqueous solutions of polymers

/ V. A. Pavlovsky // DAN USSR. — 1971. — 200. — 809–812.
[2] V. V. Amfilokhiev et al. Flows of polymer solutions with convective accelerations //

Proceedings of Leningrad Shipbuilding Institute. — 1975. — no. 96. — pp. 3–9.
[3] Zvyagin V.G. The study of initial-boundary value problems for mathematical models of the

motion of Kelvin–Voigt fluids / V.G. Zvyagin, M.V. Turbin // Journal of Mathematical Sciences.
— 2010. — V. 168, no. 2. — P. 157–308.

[4] Zvyagin V.G. Attractors for equations of motions of viscoelastic media / V.G. Zvyagin, S.K.
Kondratyev // Voronezh, Voronezh State University Publishing House, 2010. — 264 p.

[5] Foias C. Navier–Stokes equations and turbulence / C. Foias, O. Manley, R. Rosa, R. Temam
// Cambridge University Press, 2004. — 347 p.

[6] Fursikov A. V. Optimal control of distributed systems. Theory and applications / A. V.
Fursikov // In: Trans. of Math. Monographs. — 2000. — Vol. 187. — 350 p.

[7] Temam R. Navier-Stokes Equations, Theory and Numerical Analysis / R. Temam // AMS
Chelsea, Providence, 2000. — 408 p.

[8] Mathematical issues of mechanics of viscoelastic media. / V. G. Zvyagin, M. V. Turbin. —
Moscow: Krasand, 2012. — 412 p.

[9] Topological Approximation Methods for Evolutionary Problems of Nonlinear
Hydrodynamics. / V. G. Zvyagin, D. A. Vorotnikov. — Berlin, New York: Walter de Gruyter,
2008. — 230 p.

[10] Zvyagin V.G. Uniform attractors for non-automous motion equations of viscoelastic medium
/ D. A. Vorotnikov, V. G. Zvyagin // J. Math. Anal. Appl. — 2007. — V. 325. — P. 438–458.

Звягин Виктор Григорьевич, заведующий
кафедрой алгебры и топологических мето-
дов анализа математического факульте-
та Воронежского университета, доктор
физико-математических наук, профессор,
Воронеж, Российская Федерация
E-mail: zvg@math.vsu.ru

Zvyagin Victor Grigorievich, Head of the
Chair of Algebra and Topological Methods
of Analysis mathematical faculty Voronezh
State University, Doctor of Physics and
Mathematics, Professor, Voronezh, Russian
Federation
E-mail: zvg@math.vsu.ru

Кондратьев Станислав Константинович,
доцент кафедры алгебры и топологиче-
ских методов анализа математического
факультета Воронежского университета,
кандидат физико-математических наук,
Воронеж, Российская Федерация
E-mail: kondratjevsk@gmail.com

Kondratyev Stanislav Konstantinovich,
Associate Professor of the Chair of
Algebra and Topological Methods of
Analysis mathematical faculty Voronezh
State University, candidate of physical and
mathematical sciences, Voronezh, Russian
Federation
E-mail: kondratjevsk@gmail.com

120 ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2014. № 3


