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Abstract: this paper is a survey of results on the operator ideals, which are related
to interpolation theory of linear operators. We discuss the application of the real and
complex method interpolation constructions to classical operator ideals, acting in scales
of spaces, related to Hilbert couples, and some improvements of interpolation properties
of linear operators, if these linear operators belong to some ideals. We consider also
interpolation orbits with respect to some operator ideals. The paper is devoted to
ideals of operators acting in Hilbert spaces or in couples of Hilbert spaces. We consider
modern approach to the problem mentioned above.
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ОПЕРАТОРНЫЕ ИДЕАЛЫ И ИНТЕРПОЛЯЦИЯ В
ГИЛЬБЕРТОВЫХ ПАРАХ

В. И. Овчинников
Аннотация: эта статья является обзором результатов об операторных идеалах, кото-

рые связаны с теорией интерполяции линейных операторов. Рассматривается применение
интерполяционных конструкций вещественного и комплексного метода к классическим
идеалам операторов, действующих в шкалах пространств, связанных с гильбертовыми
парами, и уточнение интерполяционных свойств операторов, когда они принадлежат опе-
раторным идеалам. Мы также рассматриваем интерполяционные орбиты относительно
некоторых операторных идеалов. Рассматриваются только операторные идеалы, действу-
ющие в гильбертовых пространствах или парах гильбертовых пространств. В обзоре рас-
смотрены современные подходы к решению упомянутых выше задач.

Ключевые слова: операторные идеалы, интерполяция линейных операторов.
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Operator ideals and interpolation in Hilbert couples

1. INTRODUCTION

Interpolation spaces and operator ideals are related to each other in at least two directions.
First, you are able to apply an interpolation construction to classical operator ideals and to obtain
a new operator ideal. If you obtain somewhat familiar ideal as a result, then you find a dependence
between classical ideals, which can be useful. And this phenomenon was historically the first, which
was performed in the works of I.C.Gohberg and M.G.Krein (see [8]). The second direction is to
use somewhat complementary properties of operators from an ideal in order to get more sharp
interpolation properties of these operators.

Thus the first direction is one of applications of the interpolation theory. The second direction
can be considered as a part of interpolation theory itself. We are going to deal with both these
relations between interpolation spaces and operator ideals in the given survey paper.

The most developed part of the operator ideals theory is the theory of cross-norm ideals of
operators in Hilbert spaces. And for these ideals we have the most complete results concerning
interpolation properties of operators from these ideals.

No proofs are discussed. The corresponding references are presented as well as several open
problems are mentioned.

2. CLASSICAL IDEALS OF OPERATORS MAPPING HILBERT SPACES

We shall suppose that readers are familiar with main fundamentals of the theory of cross-norm
ideals of operators mapping Hilbert spaces. In this Section we simply recall more or less common
notations.

Let T be a bounded linear operator mapping a Hilbert space H into a Hilbert space F . This
will be denoted by T : H → F and T ∈ L(H → F ), where L(H → F ) is the space of all bounded
linear operators mapping H into F .

Singular numbers or s-numbers of T ∈ L(H → F ) are defined as follows

sn(T ) = inf
K
∥T −K∥L(H→F ),

where infimum is taken over all K ∈ L(H → F ) provided dim K(H) < n. Thus s1(T ) =
∥T∥L(H→F ) and sn(T ) ⩾ sn+1(T ) for any n ∈ N.

If the operator T is compact (which is denoted by T ∈ S∞(H → F )), then |T | = (T ∗T )1/2 is
also compact, therefore it’s spectrum is discrete. Hence we are able to construct a monotone positive
sequence λj(|T |), which runs over all eigenvalues of |T |, taking into account it’s multiplicities, and
tends to 0. It turns out that sj(T ) = λj(|T |) for any j ⩾ 1.

Thus sj(T ) → 0, if T ∈ S∞(H → F ). Moreover the subspace S∞(H → F ) ⊂ L(H → F ) can
be characterized by this property of s–numbers, i.e., T ∈ S∞(H → F ) is equivalent to sj(T )→ 0
or {sj(T )} ∈ c0.

The properties of s-numbers are well known (see [8]).
The s-numbers of compact operators are also used in Schmidt’s expansion of these operators.

Namely, for any T ∈ S∞(H → F ) there exists an orthonormal sequence {ψj}dj=1 (ψj ∈ F ) and
an orthonormal sequence {φj}dj=1 (φj ∈ H), where d = min(dim H, dim F ), such that

Tx =

d∑
j=1

sj(T )(x, φj)ψj . (2.1)

The Neumann–Schatten classes Sp(H → F ), where 0 < p <∞, are defined as follows.
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An operator T is said to be an element of Sp(H → F ) if {sj(T )} ∈ lp or

∞∑
j=1

sj(T )
p <∞.

It is known that Sp(H → F ) is a Banach space, and

∥T∥Sp(H→F ) =

 ∞∑
j=1

sj(T )
p

1/p

.

is a norm on Sp(H → F ), if 1 ⩽ p ⩽ ∞. If 0 < p < 1, then ∥T∥Sp(H→F ) is a quasi-norm and
Sp(H → F ) is a quasi-Banach space.

The space Sp(H → F ) is an ideal in L(H → F ), which means that for any U1 ∈ L(H ′ →
H), U2 ∈ L(F → F ′) and T ∈ Sp(H → F ) we have U2TU1 ∈ Sp(H ′ → F ′) and

∥U2TU1∥Sp(H′→F ′) ⩽ ∥U2∥ · ∥T∥Sp(H→F ) · ∥U1∥.

The ideal S1(H → F ) is one of the most important because it coincides with the ideal of all
nuclear operators mapping H into F . The Neumann-Schatten classes are particular example of
cross-norm ideals mapping Hilbert spaces.

Recall that an ideal I(H) in the algebra L(H) is called a cross-norm ideal or a symmetrically
normed ideal if I(H) is a Banach space with respect to a norm on I(H) such that

∥UTS∥I(H) ⩽ ∥U∥L(H)∥T∥I(H)∥S∥L(H)

for any U, S ∈ L(H) and T ∈ I(H).
Note that the notion of a cross-norm ideal can be easily extended to operators, mapping one

Hilbert space to another.

3. BANACH COUPLES AND FUNCTORS

In this Section we recall simple general properties of Banach couples, which will be applied later
on to couples of operator spaces. For detailed information see [4], [17].

Recall that if {X0, X1} is a Banach couple, then for any x ∈ X0 +X1 and any s, t > 0 we can
define the K-functional:

K(s, t, x; {X0, X1}) = inf
x=x0+x1

s∥x0∥X0 + t∥x1∥X1

and K(t, x; {X0, X1}) = K(1, t, x; {X0, X1}).

3.1 Interpolation functors on couples of operator spaces

Definition 3.1. Let E = {E0, E1} and F = {F0, F1} be Banach couples and a ∈ E0 + E1,
b ∈ F0+F1. The elements a and b are called orbitally equivalent with respect to the couples E and
F if there exist linear operators T : E → F and S : F → E such that Ta = b, Sb = a.

If any element a ∈ E0 +E1 is orbitally equivalent to some element b ∈ F0 +F1 then the couple
E is called a partial retract of the couple F .

If the couple E is a partial retract of the couple F and the couple F is a partial retract of the
couple E, then couples E and F are called orbitally equivalent.

The notion of orbital equivalence of Banach couples is rather similar to the notion of
the homotopic equivalence of topological spaces, especially if we compare with the notion of
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isomorphism. For instance any couples of spaces {E0, E1}, where E0 = E1 with equivalent norms,
are orbitally equivalent. Moreover {E0, E1} is orbitally equivalent to the couple of one-dimensional
spaces {R, R}.

Interpolation for couples of operator ideals are based mainly on the following theorem (see [32],
[34]).

Theorem 3.1. Banach couples {S1(H → F ), L(H → F )} and {l1, l∞} are orbitally equivalent if
both H and F are infinite dimensional. In general case any operator T ∈ L(H → F ) is orbitally
equivalent to the sequence {sj(T )} ∈ l∞ with respect to the couples

{S1(H → F ), L(H → F )} and {l1, l∞}.

Moreover the operators mapping T into {sj(T )} and vice versa can be chosen with the unit norms
in the corresponding spaces.

The proof is based on Schmidt’s expansion (2.1) if we note that the subspace of operators
{Tλ} ⊂ L(H → F ), where λ ∈ l∞ such that

Tλ(x) =

∞∑
j=1

λj(x, φj)ψj ,

and the orthonormal sequences {φj} ⊂ H and {ψj} ⊂ F are fixed, is complemented in L(H → F )
and corresponding projection is bounded in S1(H → F ).

Theorem 3.1 enables us to establish the one to one correspondence between interpolation spaces
of the couple {S1(H → F ), L(H → F )} and interpolation spaces of the couple {l1, l∞} if both H
and F are infinite dimensional spaces.

Indeed if Φ is an interpolation space between l1 and l∞, consider the space Φ̃ between S1(H →
F ) and L(H → F ) consisting of all T ∈ L(H → F ) which are orbitally equivalent to elements of
Φ with respect to the couples {l1, l∞} and {S1(H → F ), L(H → F )}.

The norm on Φ̃ can be introduced by ∥T∥
Φ̃

= ∥{sj(T )}∥Φ.
It is easily seen that the correspondence between Φ and Φ̃ is an order isomorphism between

sets of all interpolation spaces of the corresponding couples.
This one to one correspondence allows us to carry on interpolation properties of sequence spaces

to the properties of corresponding operator spaces.
For instance, if two interpolation functors coincide on the couple {l1, l∞} then they coincide on

the couple {S1(H → F ), L(H → F )} and vice versa. Moreover if Φ0 and Φ1 are two interpolation
spaces between l1 and l∞, then for any interpolation functor F

F(Φ̃0, Φ̃1) = ˜F(Φ0, Φ1). (3.1)

For quasi-Banach ideals Sp we also have somewhat analogous results, but only for real method
functors (mainly for the Lions-Peetre construction) (see [33]). This fact is likely related to the
orbital equivalence of couples {lp, l∞} and {Sp(H), L(H)} for any 0 < p < 1 with respect to
quasi-linear operators.

Definition 3.2. A cross-norm ideal Φ of operators mapping Hilbert spaces is called an interpolation
ideal if Φ is an interpolation space between S1(H → F ) and L(H → F ) .

Any separable cross-norm ideal is an interpolation ideal as well as any ideal dual to some
separable ideal (see [9]). In particular any the Neumann–Schatten ideal is an interpolation ideal.

Recall that any interpolation ideal Φ corresponds to an interpolation space between l1 and l∞
which is orbitally equivalent to Φ.
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3.2 Couples of Hilbert spaces

Let H = {H0, H1} be a Hilbert couple, i.e., Banach couple, where H0 and H1 are Hilbert
spaces. It is worthwhile to note that the intersection H0∩H1 and the sum H0+H1 are also Hilbert
spaces. For example we can introduce a quadratic form

∥x∥2H0∩H1
= ∥x∥2H0

+ ∥x∥2H1
,

on the H0 ∩H1, and a quadratic form

∥x∥2H0+H1
= inf

x=x0+x1
∥x0∥2H0

+ ∥x1∥2H1

on the sum of spaces H0 and H1.
As we shall see below the isomorphic structure of an arbitrary Hilbert couple is not so

complicated. It doesn’t look very unexpected because of a simple structure of an arbitrary Hilbert
space.

A Banach couple X = {X0, X1} is called regular if the space X0 ∩X1 is dense in X0 and X1.
In what follows we mainly consider regular Hilbert couples.
Any Hilbert couple generates an indefinite metric on H0 ∩H1

∆(x) = ∥x∥2H0
− ∥x∥2H1

,

which is bounded by ∥x∥2H0∩H1
. Evidently |∆(x)| < ∥x∥2H0∩H1

, if x ̸= 0.
It is easy to see also that any continuous indefinite metric J (x) on a Hilbert space H such that

|J (x)| < ∥x∥2 if x ̸= 0 generates a Hilbert couple by introducing two new norms on the underlying
Hilbert space, namely

∥x∥2H0
= ∥x∥2 − J (x)

∥x∥2H1
= ∥x∥2 + J (x).

The spaces H0 and H1 are now defined by completion with respect to the norms introduced. Thus
we obtain a regular Hilbert couple such that H0 ∩H1 = H.

Let us denote by D a self-adjoined operator, generating the metric ∆(x), i.e.,

∆(x) = (Dx, x),

where (x, x) is the metric on H0 ∩H1. Hence the metric on H0 is defined by

1

2
((I +D)x, x) = ∥x∥2H0

,

and the metric on H1 is defined by

1

2
((I −D)x, x) = ∥x∥2H1

.

Therefore, if the metric ∥x∥20 is fixed, then ∥x∥21 is introduced by the operator(
I −D
I +D

)1/2

= A, that is ∥x∥21 = (A2x, x)0.

If Eλ denotes the spectral resolution of the operator A, then denote by Gn the space (E2−n −
E2−n−1)(H0) for any n ∈ Z. Thus H0 = l2(Gn), where l2(Gn) denotes the space of sequences
{ξn} ∞

−∞ such that ξn ∈ Gn and
∞∑

n=−∞
∥ξn∥2Gn

<∞.
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(Note that some Gn may be trivial, i.e., Gn = 0.)
The space H1 now can be identified (up to equivalent norms) with the space l2(2−nGn) of the

sequences {ξn}, such that
∞∑

n=−∞
(2−n∥ξn∥Gn)

2 <∞.

Hence we are able to consider any regular Hilbert couple {H0, H1} as a couple of vector-valued
weight sequence spaces {l2(Gn), l2(2−nGn)}.

Such couples are well studied (see [3] Chapter 4), and the classical interpolation functors are
described for these couples.

The Lions-Peetre construction Xθ,p, where 0 < θ < 1 and 0 < p ⩽ ∞, applied to the couple
{l2(Gn), l2(2−nGn)} gives us a weighted lp space, namely (see [3])

(l2(Gn), l2(2
−nGn))θ,p = lp(2

−θnGn),

where {ξn} ∈ lp(2−θnGn) means {2−θn∥ξn∥Gn} ∈ lp.
The Calderon complex method [X]θ, where 0 < θ < 1 gives us the unique scale of Hilbert spaces

connecting l2(Gn) and l2(2−nGn), i.e.,

[l2(Gn), l2(2
−nGn)]θ = l2(2

−θnGn).

Moreover any interpolation Hilbert space H between l2(Gn) and l2(2
−nGn) can be identified

(see [17]) with the space l2(φ(1, 2−n)Gn), where φ(s, t) is an interpolation function.
Recall that a function φ(s, t) > 0, (s, t > 0), is called an interpolation function if

1) φ(s, t) increases in s and t,

2) φ(λs, λt) = λφ(s, t) for any λ, s, t > 0.

The function φ(s, t) is an interpolation function, if and only if φ(1, t) is increasing and φ(1, t)/t
is decreasing, i.e., φ(1, t) is a quasi-concave function on (0, ∞).

If the couple of Hilbert spaces is presented in the form of a couple of vector-valued sequence
spaces {l2(Gn), l2(2−nGn)} then operators, mapping intermediate spaces between H0 and H1 can
be presented in a matrix form. Indeed, if T : H0 ∩ H1 → H0 + H1, then there corresponds a
block-matrix {Tij} such that Tij : Gj → Gi and

Tij(ξ) = (T (ξej))i,

where ej = {δij}∞i=−∞, and ξ ∈ Gj .
Any weight space

l2(wnGn) = {ξn; {ξnwn} ∈ l2(Gn)}
is isomorphic to l2(Gn), where the isometry is established with the help of the multiplication
Mw : {ξn} 7→ {wnξn} ∈ l2(Gn). This gives us an opportunity to present any condition

T ∈ Sp(l2(wnGn)→ l2(wnGn)), (3.2)

as
MwTMw−1 ∈ Sp(l2(Gn)→ l2(Gn)).

If we use the matrix representation of the corresponding operators, then any condition (3.2) we
reduce to a weight condition

{wi
wj
Tij} ∈ Sp(l2(Gn)→ l2(Gn)).

Thus we able to consider Sp(l2(wnGn)→ l2(wnGn)) as a weight space

Sp(l2(Gn)→ l2(Gn))(wiw
−1
j ). (3.3)
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3.3 Duality for Neumann-Schatten ideals mapping Hilbert couples

Consider the space m of matrices {Tij}, where Tij are finite-rank operators mapping Gj into
Gi and only finite number of Tij ̸= 0, i.e., suppi,j Tij is finite. There is a duality between this
space and the space M of arbitrary matrices Tij ∈ L(Gj → Gi) which is established by the scalar
product

⟨S, T ⟩ =
∑
i,j∈Z

tr(SijTji),

where S ∈ m, T ∈M.
This duality allows us to obtain an isometry between the conjugate space

Sp(l2(Gn) → l2(Gn))
∗ for any 1 ⩽ p ⩽ ∞ and the space Sq(l2(Gn) → l2(Gn)), where

1/p+ 1/q = 1 (p ̸= 1) (see [8]) , and

S1(l2(Gn)→ l2(Gn))
∗ ∼= L(l2(Gn)→ l2(Gn)).

The same duality applied to the weight space (3.3) gives us the isometry

Sp(l2(wnGn)→ l2(wnGn))
∗ = Sp(l2(Gn)→ l2(Gn))(wiw

−1
j )∗

∼= Sq(l2(Gn)→ l2(Gn))(wjw
−1
i ) = Sq(l2(w

−1
n Gn)→ l2(w

−1
n Gn)).

3.4 Spectral classification of Hilbert couples

A Banach couple X = {X0, X1} is called K-abundant (see [4]), if for any interpolation function
φ(s, t) there exists an element a ∈ X0 +X1, such that

φ(s, t) ≍ K(s, t, a; {X0, X1}).

(Recall that ≍ means as usual that there exist two positive constants c and d such that

c φ(s, t) ⩽ K(s, t, a; {X0, X1}) ⩽ dφ(s, t)

for all s, t > 0.
The couple X is called K0-abundant if the same is true for any function φ such that φ(1, t)→ 0

as t→ 0 and φ(s, 1)→ 0 as s→ 0.
N. Krugliak found (see, [4]) that X is K0-abundant if for some 0 < θ < 1

K(t, aθ; {X0, X1}) ≍ tθ,

where aθ ∈ X0 + X1. Thus this property is simple in checking. In particular if Gn ̸= 0 for any
n ∈ Z, then for any aθ = {2nθgn} ∞

n=−∞ with ∥gn∥Gn = 1 we easily have

K(t, aθ; {l2(Gn), l2(2−nGn)}) ≍

( ∞∑
n=−∞

(min(1, t2−n)2nθ∥gn∥Gn)
2

)1/2

=

( ∞∑
n=−∞

(min(1, t2−n)2nθ)2

)1/2

≍ tθ.

Therefore any couple, where Gn ̸= 0, is K0-abundant.
This remark gives us some right to call K0-abundant Hilbert couples as spectrally filling couples

or couples with full spectrum. Any ordered couple, i.e., the couple for which H0 ⊂ H1 or H0 ⊃ H1

is not spectrally filling. However any ordered couple H may happen to be a ”half” of a spectrally
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filling couple, i.e., the couple H ⊕F is spectrally filling for some ordered couple F . In this case we
call the couple H as a generalized spectrally filling couple.

Unfortunately there is no an adequate notion of spectrum of a Banach or Hilbert couple. The
problem is that the exact norms of spaces involved are not very important. Recall that even the
famous Riesz–Thorin interpolation theorem is not exact in general in spaces of real valued functions.
Hence the notion of spectrum of Banach couple has to be independent of norms involved up to
equivalence of norms. For example, it may happen that orbitally equivalent couples have identical
spectrum.

Note that a lot of Hilbert couples in Analysis are generalized spectrally filling.

4. INTERPOLATION THEOREMS FOR IDEALS MAPPING HILBERT
COUPLES

Interpolation theorems for operators belonging to the Neumann–Schatten classes can be sharper
then interpolation results for bounded operators.

Let us consider the Lions–Peetre interpolation functor (X0, X1)θ,p. Recall that if {X0, X1} is a
Banach couple, 0 < θ < 1, 0 < p ⩽∞, then (X0, X1)θ,p by definition consists of x ∈ X0 +X1 such
that {2−nθK(2n, x, {X0, X1})} ∈ lp, equipped with the natural quasi-norm.

Let us consider Hilbert couples {H0,H1} and {F0, F1}. Then standard interpolation gives us
that T : {H0,H1} → {F0, F1} implies (H0,H1)θ,r → (F0, F1)θ,r. As we see below this result is
improved if T ∈ Sp0(H0 → F0) ∩ Sp1(H1 → F1).

Theorem 4.1. [16] If T ∈ Sp0(H0 → F0) and T ∈ Sp1(H1 → F1), where 0 < p0, p1 ⩽ ∞, then
for any 0 < r ⩽∞ we have

T : (H0, H1)θ,r → (F0, F1)θ,q,

where 0 < θ < 1 and 1/q = 1/r + (1− θ)/p0 + θ/p1.

(Note that we obtain the same result if replace S∞(Hi → Fi) for i = 0, 1 by L(Hi → Fi).)
The natural multiplicative inequality also takes place, i.e.,

∥T∥(H0, H1)θ,r→(F0, F1)θ,q ⩽ C ∥T∥1−θSp0 (H0→F0)
· ∥T∥θSp1 (H1→F1)

,

where C depends on p0, p1, r, θ.
This interpolation theorem is optimal from the orbital point of view. Namely if the couple

{H0, H1} is spectrally filling, then for any y ∈ (F0, F1)θ,q there exists x ∈ (H0, H1)θ,r and an
operator T ∈ Sp0(H0 → F0) ∩ Sp1(H1 → F1) such that y = Tx.

This Theorem 4.1 is intimately connected with the following ”model” interpolation theorem for
discrete lp spaces. In [18] Theorem 4.1 was used in the proof of this ”model” theorem.

Theorem 4.2. If a linear operator T : {ls0 , ls1(2−n)} → {lt0 , lt1(2−n)}, where 0 < s0, s1, t0, t1 ⩽
∞ then

1) T : lr(2
−nθ) → lq(2

−nθ), where 1/q = 1/r + (1 − θ)(1/t0 − 1/s0)+ + θ(1/t1 − 1/s1)+ and
0 < r ⩽∞, 0 < θ < 1;

2) T ∈ Sp(l2(2−nθ) → l2(2
−nθ)), where 1/p = (1 − θ)(1/t0 − 1/s0)+ + θ(1/t1 − 1/s1)+, and S∞

has to be replaced by L.

The proof of both these results is based on the Grothendieck factorization theorem (see [13])
and the following theorem on coherent factorization in Hilbert couples (see [16]).

Two operators are said to be metrically equivalent if they have identical s-numbers.
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Theorem 4.3. Let an operator T : {H0, H1} → {F0, F1} and T be factorized through Hilbert
spaces F̃0 and F̃1 separately as an operator mapping H0 into F0 and as an operator mapping
H1 into F1, i.e., T |H0 = U0S0, where S0; H0 → F̃0, U0 : F̃0 → F0, and T |H1 = U1S1, where
S1; H1 → F̃1, U1 : F̃1 → F1.

Then there exist a Hilbert couple {Q0, Q1} and operators S : {H0, H1} → {Q0, Q1} and U :
{Q0, Q1} → {F0, F1} such that T = US and U |Qi is metrically equivalent to Ui and S|Hi is
metrically equivalent to Si for i = 0, 1.

Let us illustrate this theorem by the remark on opportunity to separate the conditions T ∈
Sp0(H0 → F0) and T ∈ Sp1(H1 → F1). Indeed T |H0 = I · T and T |H1 = T · I, where F̃0 = F0 and
F̃1 = H1. Therefore, T = US, where U : {Q0, Q1} → {F0, F1} and S : {H0, H1} → {Q0, Q1},
and U ∈ Sp1(Q1 → F1) ∩ L(Q0 → F0) and S ∈ Sp0(H0 → Q0) ∩ L(H1 → Q1).

5. ORBITS WITH RESPECT TO IDEALS IN HILBERT COUPLES

The notion of a norm ideal of operators mapping Hilbert couples is not uniquely defined (see [12],
[7]). Here we use only the following one (see [7], [17]), which naturally corresponds to cross-norm
ideals.

Definition 5.1. The Banach space I(H → F ) ⊂ L(H → F ) is called an ideal mapping Hilbert
couples if

1) ∥T∥L(H→F ) ⩽ ∥T∥I(H→F ),

2) any rank-one operator T ∈ L(H → F ) belongs to I(H → F ) provided

∥T∥L(H→F ) = ∥T∥I(H→F ),

3) for any T ∈ I(H → F ) and any S ∈ L(H → H), U ∈ L(F → F ) we have UTS ∈ I(H → F )
provided ∥UTS∥I(H→F ) ⩽ ∥U∥L(F→F )∥T∥I(H→F )∥S∥L(H→H).

Recall also the notion of interpolation orbit of an element a ∈ H0 +H1 with respect to some
ideal of operators mapping Hilbert couples.

Definition 5.2. Let I(H → F ) be an ideal, and a ∈ H0 +H1. The space of all y ∈ F0 + F1 such
that y = Ta, where T ∈ I(H → F ), is called an orbit of a with respect to I(H → F ) and is denoted
by Orb (a; I(H → F )).

The orbit is equipped with the norm

∥y∥ = inf
T

y = Ta

∥T∥I(H→F )∥a∥H0+H1 .

If we use this definition of an ideal, then the space Orb (a; I(H → F )) turns out be an
intermediate space between F0 and F1. Moreover it is an interpolation space between F0 and
F1.

It is easily seen that each space of the form Sp0(H0 → F0) ∩ Sp1(H1 → F1) is an ideal in
L(H → F ).

We are going to describe interpolation orbits of arbitrary a ∈ H0+H1 with respect to Sp0(H0 →
F0) ∩ Sp1(H1 → F1) for any 0 < p0, p1 ⩽∞.
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5.1 The generalized Lions–Peetre spaces of means

Let φ(s, t) be interpolation function. In what follows we also suppose that φ(s, 1) → 0 and
φ(1, t)→ 0 as s→ 0 and t→ 0. As usual this property is denoted as φ ∈ Φ0.

Recall that for any function φ ∈ Φ0 there exists so called balanced sequence {um}m∈M, where
M is an interval of integers [5]. The balanced sequence is not uniquely defined. There are several
ways to construct a balanced sequence for a given function φ ∈ Φ0, (see [11], [4], [5]). For instance
it may be constructed inductively by u0 = 1 and

min

(
φ(1, um+1)

φ(1, um)
,
um+1φ(1, um)

umφ(1, um+1)

)
= 2,

where M is the maximal interval in Z such that m and m+ 1 ∈M.

Definition 5.3. [22] Let {X0, X1} be a couple of Banach spaces, φ ∈ Φ0, and 1 ⩽ p0, p1 ⩽ ∞.
The space φ(X0, X1)p0,p1 is defined to be the space of elements x ∈ X0 +X1 such that

x =
∑
∈M

φ(1, um)xm (convergence in X0 +X1),

where xm ∈ X0 ∩X1, {∥xm∥X0} ∈ lp0 , and {um∥xm∥X1} ∈ lp1 (see [22]).

In the case of φ(s, t) = s1−θtθ, 0 < θ < 1 these spaces where introduced by J.-L.Lions
and J.Peetre and were called the spaces of means. It is easily seen that our generalization of the
Lions–Peetre method of means is a particular case of the general method of means considered in
[4]. That is why such properties as Banach space property, interpolation property and essential
K-monotonicity follow immediately from the definition.

It is important that the definition of φ(X0, X1)p0,p1 is independent of the choice of a balanced
sequence {um} for φ. This follows from the next proposition, which gives us the description of
φ(X0, X1)p0,p1 in terms of the K-functional and the Calderon–Lozanovskii construction as well.
Note that this description has nothing common with the description of the Lions–Peetre method
of means obtained in [4].

Recall that the Calderon–Lozanovskii construction allows to introduce an intermediate quasi-
Banach lattice φ(X0, X1) with the help of two quasi-Banach lattices X0 and X1 and an
interpolation function φ. The space φ(X0, X1) consists of x ∈ X0 +X1 such that

|x| = φ(|x0|, |x1|)

for some x0 ∈ X0 and x1 ∈ X1. The quasi-norm is defined by

∥x∥φ(X0,X1) = inf
x0, x1

φ(|x0|, |x1|) = |x|

max(∥x0∥X0 , ∥x1∥X1).

Recall that interpolation function φ is called non-degenerate if the ranges of the functions
φ(s, 1) and φ(1, t) coincide with (0,∞). Note that in the case of non-degenerate functions the
corresponding balanced sequences turns out to be bilateral, i.e., be defined on Z.

Proposition 5.1. [23] Suppose that φ ∈ Φ0. If φ is non-degenerate, the space φ(X0, X1)p0,p1
consists of x ∈ X0 +X1 such that

{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1
m )),

where {wm} is a balanced sequence for the function K(s, t, x; {X0, X1}).
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If φ(1, t) is bounded and φ(s, 1) is unbounded, then φ(X0, X1)p0,p1 consists of x ∈ X0 such that

{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1
m )),

where {wm} is a balanced sequence for the function K(s, t, x; {X0, X1}).
If φ(1, t) is unbounded and φ(s, 1) is bounded, then φ(X0, X1)p0,p1 consists of x ∈ X1 such that

{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1
m )),

where {wm} is a balanced sequence for the function K(s, t, x; {X0, X1}).
If both φ(1, t) and φ(s, 1) are bounded, then φ(X0, X1)p0,p1 = X0 ∩X1.

It turns out that this Proposition may be used for definition of φ(X0, X1)p0,p1 if 0 < p0, p1 ⩽∞.

Definition 5.4. [24] Suppose that {X0, X1} is a Banach couple and 0 < p0, p1 ⩽∞, φ ∈ Φ0. If φ
is non-degenerate, then φ(X0, X1)p0,p1 is defined to consist of x ∈ X0 +X1 such that

{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1
m )), (5.1)

where {wm} is a balanced sequence for the function K(s, t, x; {X0, X1}).
If φ(1, t) is bounded and φ(s, 1) is unbounded, then φ(X0, X1)p0,p1 is defined to consist of x ∈ X0

such that
{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1

m )),

where {wm} is the same sequence.
If φ(1, t) is unbounded and φ(s, 1) is bounded, then φ(X0, X1)p0,p1 is defined to consist of x ∈ X1

such that
{K(1, wm, x; {X0, X1}} ∈ φ(lp0 , lp1(w−1

m )),

where {wm} is the same sequence.
If both φ(1, t) and φ(s, 1) are bounded, then φ(X0, X1)p0,p1 = X0 ∩X1.

If X is a Hilbert couple and φ ∈ Φ0, then the condition (5.1) on the K-functional is sufficient
to x ∈ φ(H0,H1)p0,p1 for all 0 < p0, p1 ⩽∞.

If φ(s, t) is an interpolation function, then φ⋆(s, t) = 1/φ(1/s, 1/t) is also an interpolation
function. Denote by φ(H0, H1) the space, which corresponds to the space l2(φ⋆(1, 2−n)Gn) if we
identify the couple {H0, H1} with the couple of vector-valued sequence spaces {l2(Gn), l2(2−nGn)}
(see Section 3).

We use in the next subsection that φ (H0, H1) = φ(H0, H1)2,2 (see [22],[23]).
Recall that Λφ(H0, H1) denotes the so called generalized Lorentz spaces, corresponding to the

interpolation function φ. (It can be defined in a lot of ways (see [7]), for instance as the smallest
interpolation space E between H0 and H1 such that

∥x∥E ⩽ φ (∥x∥H0 , ∥x∥H1).

The identity Λφ⋆(H0, H1) = φ(H0,H1)1,1 follows from the definitions.
The generalized Marcinkiewicz spaces Mφ(H0, H1) can be defined through duality to the

Lorentz spaces, but it is much more easier to define Mφ(H0, H1) by the K-method. Namely

Mφ(H0, H1) = {x ∈ H0 +H1; sup
0<s,t

K(s, t, x; {H0, H1})
φ(s, t)

<∞}

with the natural norm

∥x∥Mφ(H0, H1) = sup
0<s,t

K(s, t, x; {H0, H1})
φ(s, t)

.

(see [7] ).
We easily have Mφ(H0, H1) = φ(H0,H1)∞,∞.
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5.2 Description of interpolation orbits

The final results on description of interpolation orbits with respect to the Neumann–Schatten
operator ideal are obtained in [24].

Recall that for any regular couple {H0,H1} and any a ∈ H0+H1 we have K(s, t, a, {H0,H1}) ∈
Φ0.

Theorem 5.1. Let {H0,H1} and {F0, F1} be regular Hilbert couples, a ∈ H0 +H1. Then for any
0 < p0, p1 <∞

Orb (a, Sp0(H0 → F0) ∩ Sp1(H1 → F1)) = φ(F0, F1)p0,p1 ,

where φ(s, t) = K(s, t, a; {H0, H1}).
For any 0 < p0 <∞

Orb (a, Sp0(H0 → F0) ∩ L(H1 → F1)) = φ(F0, F1)p0,∞,

Orb (a, L(H0 → F0) ∩ L(H1 → F1)) = φ(F0, F1)∞,∞.

The latter identity actually coincides with the Sedaev theorem [29].

Corollary 5.1. Let φ ∈ Φ0 and 0 < p0, p1, s0, s1 ⩽∞, then for any T ∈ Sp0(H0 → F0)∩Sp1(H1 →
F0) we have T : φ(H0,H1)s0,s1 → φ(F0, F1)t0,t1 , where 1/t0 = 1/s0 + 1/p0, 1/t0 = 1/s0 + 1/p0.

Corollary 5.2. For any a ∈ H0 +H1 and for any 0 < p0, p1 ⩽∞

Orb (a, Sp0(H0 → F0) ∩ Sp1(H1 → F1)) = φ(F0, F1)
◦
p0,p1 ,

where φ(s, t) = K(s, t, a; {H0, H1}).

Recall that X◦ denotes the closure of F0 ∩ F1 in X.

Corollary 5.3. For any a ∈ H0 +H1

Orb (a, L(H0 → F0) ∩ L(H1 → F1)) =Mφ(F0, F1),

Orb (a, S∞(H0 → F0) ∩ S∞(H1 → F1)) =Mo
φ(F0, F1),

Orb (a, S2(H0 → F0) ∩ S2(H1 → F1) = φ(F0, F1),

Orb (a, S1(H0 → F0) ∩ S1(H1 → F1) = Λφ⋆(F0, F1),

where φ(s, t) = K(s, t, a; {H0, H1}).

6. THE COMPLEX METHOD AND EMBEDDING FOR CROSS-NORM
IDEALS

The results described in previous Section 4 can be naturally interpreted as embedding theorems
for operator spaces. For instance Theorem 4.1 is an embedding

Sp0(H0 → F0) ∩ Sp1(H1 → F1) ⊂ L(Hθ,r → F θ,q).

We are going to consider the analogous embedding for more sophisticated constructions than
the intersection of spaces.

Note that if a couple H is regular then Sp0(H0 → F0) and Sp1(H1 → F1) form a Banach couple.
We begin with the complex method by A.P.Calderon, applied to {Sp0(H0), Sp1(H1)}. This

situation was considered in [31], [15], [19].
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Let Hθ, (0 < θ < 1), be the unique Hilbert scale connecting H0 and H1. If H0 = l2(Gn) and
H1 = l2(2

−nGn), then Hθ = l2(2
−nθGn).

The simplest approach is to represent the couple {Sp0(H0), Sp1(H1)} as a couple of weighted
matrix spaces (see Section 3)

{Sp0(l2(Gn)), Sp1(l2(Gn))(2j−i)}. (6.1)

The complex method, applied to the couple {Sp0(H), Sp1(H)}, where H0 = H1 = H is well
studied and we have (see [8], [34], [32])

[Sp0(H), Sp1(H)]θ = Spθ(H),

where 1/p = (1− θ)/p0 + θ/p1. Therefore (see [19]),

[Sp0(l2(Gn)), Sp1(l2(Gn))(2
j−i)]θ = Spθ(l2(Gn))(2

θ(j−i))

for any 0 < θ < 1. Thus we obtain the following

Theorem 6.1. For any regular Hilbert couple {H0, H1} and 1 ⩽ p0, p1 ⩽∞

[Sp0(H0), Sp1(H1)]θ = Spθ(Hθ). (6.2)

In the case of the couple {L(H0), L(H1)} we obtain

Theorem 6.2. For any regular Hilbert couple {H0, H1}

[L(H0), L(H1)]
θ = L(Hθ),

where [ · , · ]θ is the second Calderon complex method.

By the way (6.2) implies that

Sp0(H0) ∩ Sp1(H1) ⊂ Spθ(Hθ). (6.3)

Moreover, Spθ(Hθ) is an intermediate space between Sp0(H0) and Sp1(H1), i.e.,

Sp0(H0) ∩ Sp1(H1) ⊂ Spθ(Hθ) ⊂ Sp0(H0) + Sp1(H1).

We also have
∥T∥Spθ

(Hθ) ⩽ ∥T∥1−θSp0 (H0)
∥T∥θSp1(H1)

,

for any Sp0(H0) ∩ Sp1(H1), which follows from (6.2). This result was obtained first in [28].
It seems natural to suppose that Φ(Hθ) are the most typical examples of interpolation space

and trivially are examples of intermediate spaces. However as we see from the following theorem
that this is not true for majority of Hilbert couples.

Theorem 6.3. Let H = {H0, H1} be generalized spectrally filling couple. Suppose that Φ is a
cross-norm ideal. Then Φ(Hθ) is an intermediate space between Sp0(H0) and Sp1(H1), if and only
if Φ = Spθ .

This theorem contradicts to the results of [10] that one-sided interpolation takes place for any
Hilbert couple and for any the Neumann-Schatten ideals including nuclear and the Hilbert-Schmidt
ideals. In particular it was alleged that

S1(H0 → F0) ∩ L(H1 → F1) ⊂ S1(Hθ → Fθ), (6.4)
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what is impossible for generalized spectrally filling couples in view of Theorem 6.3.
However the embedding similar to (6.4) are possible and not only for trivial couples.
Denote by µn = 2n for n ⩾ 0, and consider the Hilbert couple {l2, l2(2µn)}, which has extremely

sparse spectrum. Then

Φ0(H0 → H0) ∩ Φ1(H1 → H1) ⊂ (Φ0 ∩ Φ1)(Hθ)

for any 0 < θ < 1 and any cross-norm ideals Φ0,Φ1. Thus one-sided results take place for this
couple.

Finally recall that one-sided results for compact operators take place, i.e.,

S∞(H0 → F0) ∩ L(H1 → F1) ⊂ S∞(Hθ → Fθ)

for any Hilbert couples and 0 < θ < 1 (see [6] for full references).

7. DESCRIPTION OF THE SUM AND THE INTERSECTION OF
OPERATOR SPACES OF HILBERT COUPLES

7.1 Weighted space description

The simplest interpolation spaces for X = {X0, X1} are the sum and the intersection of the
spaces X0, X1. More or less appropriate description of the spaces

Sp0(H0) ∩ Sp1(H1) and Sp0(H0) + Sp1(H1)

for p0 ̸= p1 are unknown. We present here some facts for the case p0 = p1. In the case p0 = p1 =∞
we consider the couple {L(H0), L(H1)} (see [20], [21]).

Again we use the representation of {H0, H1} as a couple of sequence spaces {l2(Gn), l2(2−nGn)}.
Consider the space M of arbitrary matrices {Tij}, where i, j ∈ Z and Tij ∈ L(Gj → Gi). Let

us introduce Pk+, Pk−, Pk0 , mapping this space M.
We put Pk+(T )ij = Tij for i < j + k and Pk+(T )ij = 0 for i ⩾ j + k; Pk−(T )ij = Tij , for i > j + k

and Pk−(T )ij = 0 for i ⩾ j + k; Pk0 (T )ij = Tij , for i = j + k and Pk0 (T )ij = 0 for i ̸= j + k.
Thus Pk− + Pk+ + Pk0 = I for any k ∈ Z.
These maps Pk± are triangular truncations. It’s properties are well studied in Sp(H) (see [1]).

Their main property is the boundedness in any Sp for 1 < p < ∞. It is also known that they are
unbounded on the space of all bounded linear operators and the space of nuclear operators.

The maps Pk0 are diagonal truncations and they are bounded in every Sp for 1 ⩽ p ⩽ ∞, and
in the space of all bounded linear operators. Moreover,

∥Pk0 (T )∥Sp ⩽ ∥T∥Sp ,

for all matrices T and 1 ⩽ p ⩽∞.
Let us denote by H an analog of the Hilbert transform H = Po+−Po−, and introduce the spaces

Hp(l2(Gn)) = Sp(l2(Gn)) ∩H(Sp(l2(Gn))),

for any 1 ⩽ p <∞, and

H∞(l2(Gn)) = L(l2(Gn)) ∩H(L(l2(Gn))).

The boundedness of H in Sp implies Hp(l2(Gn)) = Sp(l2(Gn)) for 1 < p <∞.
Let us denote also

BMO(l2(Gn)) = L(l2(Gn)) + H(L(l2(Gn))).
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It is easily seen that for the definition of these spaces we can use the projections Pk± instead of
Po±. Thus

BMO(l2(Gn)) = L(l2(Gn)) + Hk(L(l2(Gn))),
where Hk = Pk+ − Pk−, but these definitions lead to a family of equivalent norms on BMO

∥T∥BMOk(l2(Gn)) = inf
U0, U1

T = U1 +Hk(U2)

∥U1∥L(l2(Gn)) + ∥U2∥L(l2(Gn)).

The spaces, which were introduced, are useful for the description of the intersection and the
sum of operator spaces.

Theorem 7.1. For any 1 < p <∞

Sp(H0) ∩ Sp(H1) = Sp(H0)(max(1, 2j−i)),

Sp(H0) + Sp(H1) = Sp(H0)(min(1, 2j−i)).

Since the space H0 is identified with l2(Gn) and the space Sp(H0) with some space of matrices,
we denote by Sp(H0)(wij) the space of matrices Tij ∈ L(Gj → Gi) such that the matrix {wijTij} ∈
Sp(l2(Gn)).

For the description of the sum and the intersection in the extreme cases p = 1,∞ we have to
use the spaces introduced above.

Theorem 7.2. We have

S1(H0) ∩ S1(H1) = H1(l2(Gn))(max(1, 2j−i)),

L(H0) ∩ L(H1) = H∞(l2(Gn))(max(1, 2j−i)),

L(H0) + L(H1) = BMO(l2(Gn))(min(1, 2j−i)).

The description of spaces from Theorem 7.2 can be used to settle the question posed by
L.Maligranda (see [14]) concerning general properties of the complex method. The question was
whether the space

[E0 ∩ E1, E0 + E1]1/2

is equal to [E0, E1]1/2. It is known that these two spaces are equal for couples {E0, E1} of Banach
lattices, for example for Hilbert couples. However, this is not so for the couple {L(H0), L(H1)}, if
{H0, H1} is spectrally filling (see [25] for more examples). Let us outline that

[L(H0) ∩ L(H1), L(H0) + L(H1)]
1/2 ̸= [L(H0), L(H1)]

1/2.

We have already seen in Section 6

[L(H0), L(H1)]
1/2 = L(H1/2).

From the other side the description above yields

[L(H0) ∩ L(H1), L(H0) + L(H1)]
1/2 = [H∞, BMO]1/2(H1/2).

The spaces [H∞, BMO]1/2(H1/2) and L(H1/2) don’t coincide because the first is invariant with
respect to H, but the second is not.

The estimation of the K-functional for couples of cross-norm ideals is also possible.
It turns out that

K(t, T ; {Sp(H0), Sp(H1)}) ≍ ∥Tij min(1, 2j−it)∥Sp(l2(Gn))

for 1 < p <∞.
The corresponding result for p =∞ is not so "smooth"

K(2k, T ; {L(H0), L(H1)}) ≍ ∥Tij min(1, 2k+j−i)∥BMOk(H0)

since the norms ∥T∥BMOk
themselves are defined again with the g.l.b.
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7.2 Alternative descriptions of L(H0) + L(H1)

Let us denote by Em, where m ∈ Z, the orthogonal projection onto the linear span of Gj ,
(j ⩽ m) in l2(Gn) and in l2(2−nGn). Evidently Em : {l2(Gn), l2(2−nGn)} → {l2(Gn), l2(2−nGn)}.

Theorem 7.3. [2] The space L(H0) + L(H1) consists of T ∈ L(H0 ∩H1 → H0 +H1) such that

sup
n∈Z
∥EnT (I − En)∥L(H0) + sup

n∈Z
∥(I − En)TEn∥L(H1) <∞.

For any T ∈ L(H0) + L(H1)

K(2p, T, {L(H0), L(H1)}) ≍ sup
n∈Z
∥En+pT (I − En)∥L(H0) + 2p sup

n∈Z
∥(I − En+p)TEn∥L(H1).

Theorem 7.4. [27] The space L(H0) + L(H1) consists of T ∈ L(H0 ∩H1 → H0 +H1) such that

sup
x∈H0∩H1

K(1/∥x∥H0 , 1/∥x∥H1 , T (x), {H0,H1})

is finite, and for any T ∈ L(H0) + L(H1)

K(s, t, T, {L(H0), L(H1)}) ≍ sup
x∈H0∩H1

K(s/∥x∥H0 , t/∥x∥H1 , T (x), {H0,H1}).

This theorem is based on the description of the minimal operator ideal mapping Hilbert couple.
It is easily seen that the minimal ideal consists of T ∈ L(H0) ∩ L(H1), such that T =

∑∞
j=1 Tj

where Tj ∈ L(H0) ∩ L(H1) are rank-one operators, provided
∞∑
j=1

∥Tj∥L(H0)∩L(H1) <∞.

This minimal ideal is also called the ideal of coherently nuclear operators and is denoted by
CohN{H0,H1}.

Theorem 7.5. [27] For any Hilbert couple

CohN{H0,H1} = S1(H0) ∩ S1(H1).

8. THE LIONS-PEETRE CONSTRUCTION FOR COUPLES OF
NEUMANN-SCHATTEN IDEALS

We can see from Theorem 6.3 that for the description of interpolation spaces, which are not
complex method spaces, we need to introduce some new classes of operator spaces.

Let a Hilbert couple {H0, H1} be identified with the couple of vector-valued sequence spaces

{l2(Gn), l2(2−nGn)}.

Let θ ∈ R, 0 < p <∞, 0 < q ⩽∞. We introduce the matrix space

Mpq(Hθ) = {Tij :
∞∑

k=−∞
(2kθ(

∞∑
j = −∞,
k = j − i

∥Tij∥pSp(Gj→Gi)
)1/p)q <∞}

with natural corrections in case of p or q =∞.
For brevity denote Mpp(Hθ) = Mp(Hθ). These matrix spaces are close to the Neumann-

Schatten ideals.
Indeed, M2(Hθ) = S2(Hθ) for any θ. For p ̸= 2 there are simple inclusion maps Mp(Hθ) ⊂

Sp(Hθ), if 1 ⩽ p ⩽ 2, and Sp(Hθ) ⊂Mp(Hθ), if 2 ⩽ p ⩽∞ and any θ.
The interaction of scales Mp(Hθ) and Sp(Hθ) turns out to be deeper (see [21]).
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Lemma 8.1. For any θ0 ̸= θ1 ∈ R

Mp0(Hθ0) ∩Mp1(Hθ1) ⊂ Sp(Hθ),

where θ = (1− µ)θ0 + µθ1, 1/p = (1− µ)/p0 + µ/p1 for 0 < µ < 1, and

∥T∥Sp(Hθ) ⩽ C ∥T∥1−µMp0 (Hθ0
) · ∥T∥

µ
Mp1 (Hθ1

).

This lemma implies that the reiteration theorem for the Lions-Peetre construction can be
applied, and we obtain

Theorem 8.1. For any θ0 ̸= θ1 and 1 ⩽ p0, p1 ⩽∞

(Sp0(Hθ0), Sp1(Hθ1))η,q = (Mp0(Hθ0),Mp1(Hθ1))η,q,

where 0 < η < 1, 0 < q ⩽∞.

Theorem 8.2. For any θ0 ̸= θ1 and 1 ⩽ p, p0, p1 ⩽∞

(Sp(Hθ0), Sp(Hθ1))η,q =Mpq(Hθ),

where θ = (1− η)θ + ηθ1 and any 0 < q ⩽∞. If 1/q = (1− η)/p0 + η/p1, then

(Sp0(Hθ0), Sp1(Hθ1))η,q =Mq(Hθ).

The spaces (Sp0(Hθ0), Sp1(Hθ1))η,q can be also described for ”non-diagonal” cases, i.e.,

1/q ̸= (1− η)/p0 + η/p1,

but it demands a consideration of non-commutative Lorentz spaces Lpq on a gauge space with a
measure on projections (see [30], [21]).

Note that for some p the matrix spaces Mp(Hθ) have an operator description.
Indeed,

M∞(Hθ) = L(l1(2
−nθGn)→ l∞(2−nθGn)).

Recall (see [3]) that
(l2(Gn), l2(2

−nGn))θ,p = lp(2
−nθGn),

therefore
M∞(Hθ) = L((H0, H1)θ,1 → (H0, H1)θ,∞),

and we obtain
(L(H0), L(H1))θ,∞ = L((H0, H1)θ,1 → (H0, H1)θ,∞)

by Theorem 8.2.
Analogously, since

M1(Hθ) = {Tij :
∑
i,j∈Z

2(j−i)θ∥Tij∥S1(Gj→Gi) <∞}

we obtain
M1(Hθ) = N(c0(2

−nθGn)→ l1(2
−nθGn)),

where N(X → Y ) is the space of all nuclear operators mapping X to Y . Hence

(S1(H0), S1(H1))θ,1 = N((H0, H1)
o
θ,∞ → (H0, H1)θ,1).
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The equality
(S1(H0), S1(H1))θ,1 = M1(Hθ)

implies the embedding

S1(H0) ∩ S1(H1) ⊂ N((H0, H1)θ,∞ → (H0, H1)θ,1),

which slightly improves the previous result in this direction (see Theorem 4.1), which said that

S1(H0) ∩ S1(H1) ⊂ L((H0, H1)θ,∞ → (H0, H1)θ,1).

9. INTERPOLATION OF IDEAL PROPERTIES IN INTERPOLATION
HILBERT SPACES

In this Section we discuss two-sided interpolation of cross-norm ideals in general interpolation
Hilbert space for a Hilbert couple.

Recall that if a Hilbert couple is represented in the form {l2(Gn), l2(2−nGn)} then any
interpolation Hilbert space between H0 and H1 can be identified with the space l2(φ(1, 2−n)Gn),
where φ(s, t) is an interpolation function. If also note that T ∈ S2(l2(wnGn)) is equivalent to∑

i,j∈Z
∥wiw−1

j Tij∥2S2(Gj→Gi)
<∞,

then the following interpolation theorem becomes almost evident (see [18]).

Theorem 9.1. If T ∈ S2(H0) ∩ S2(H1), then T ∈ S2(H), where H is an arbitrary interpolation
Hilbert space between H0 and H1.

The factorization Theorem 4.3 and Theorem 9.1 imply

Theorem 9.2. If T ∈ S1(H0) ∩ S1(H1), then T ∈ S1(H), where H is an arbitrary interpolation
Hilbert space between H0 and H1.

The interpolation of arbitrary ideal property in any interpolation Hilbert space is not established
yet, but for a rather large class of interpolation spaces it is already done.

Recall that interpolation space H is called R-interpolation space, where R (s, t) is a function
of two positive variables, if for any T ∈ L(H0) ∩ L(H1) we have

∥T∥L(H→H) ⩽ R ( ∥T∥L(H0→H0), ∥T∥L(H1→H1)).

Definition 9.1. If the function R (s, t) → 0 as s → 0 for any t, and R (s, t) → 0 as t → 0 for
any s, then R-interpolation space H is called a proper interpolation space between H0 and H1.

The proper interpolation spaces are remarkable by their property of one-sided interpolation of
compactness (see [6]), i.e., we have

Theorem 9.3. If T ∈ S∞(H0) ∩ L(H1) or T ∈ S∞(H1) ∩ L(H0), then T ∈ S∞(H), where H is
any proper interpolation Hilbert space.

For interpolation ideals (see Section 2) we have the following

Theorem 9.4. If T ∈ J(H0)∩ J(H1), where J is any interpolation ideal, then T ∈ J(H) for any
proper interpolation space H between H0 and H1.
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