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Abstract: this paper presents results on solvability of multidimensional systems
of equations of thermoviscoelasticity. Both compressible and incompressible continua
are considered. The existence and uniqueness of regular, weak and weak-renormalized
solutions are given, both local and global. The systems under consideration are coupled
systems of a motion equation and an energy equation. The results are based on the
reduction of the system of equations of thermoviscoelasticity to an operator equation in
the suitable Banach space. The operator equation is constructed by means of successive
solving of the motion equation and the energy equation. The corresponding apriori
estimates admit to obtain the solvability of operator equations by means of application
of various fix-point theorems. The theory of anisotropic Sobolev spaces with a mixed
norm is used.
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НЕКОТОРЫЕ РЕЗУЛЬТАТЫ О СУЩЕСТВОВАНИИ И
ЕДИНСТВЕННОСТИ ДЛЯ СВЯЗАННЫХ ЗАДАЧ

ТЕРМОМЕХАНИКИ
В. Г. Звягин, В. П. Орлов

Аннотация: в этой статье представлены результаты о разрешимости многомерных си-
стем уравнений термовязкоупругости. Рассматриваются как сжимаемые так и несжимае-
мые среды. Приводятся результаты о существовании и единственности сильных, слабых и
слабо-ренормализованных решений, как локальные, так и глобальные. Рассматриваемые
системы уравнений являются связанными системами уравнений движения и уравнения
сохранения энергии. Основным методом получения результатов является сведение исход-
ной системы уравнений термовязкоупругости к операторному уравнению в подходящем
банаховом пространстве, основанное на последовательном решении уравнений движения
и уравнения сохранения энергии. Соответствующие априорные оценки позволяют полу-
чить разрешимость операторных уравнений с помощью применения различных теорем
о неподвижной точке. Используется теория анизотропных пространств Соболева со сме-
шанной нормой.

Ключевые слова: термовязкоупругая среда, последовательные приближения, апри-
орные оценки, теория неподвижных точек, слабое решение, слабо-ренормализованное ре-
шение, системы типа Обербека-Буссинеска.
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1. INTRODUCTION

In the present paper we review existence results for multidimensional thermoviscoelastic sys-
tems. The systems under consideration describe heat conductive materials which have the prop-
erties both of elasticity and viscosity.

Thermoviscoelastic system represents balance laws for the linear momentum and energy. The
balance laws of momentum and energy ultimately lead to the nonlinear coupled system of ther-
moviscoelasticity.

The linear momentum balance equation is specified by the stress tensor given by a rheology
law of the appropriate type. The energy equation is governed by thermodynamic potentials ( the
free energy, the internal energy, the dissipation potential et.c.) which characterize the material.
Different assumptions about the form of the rheology law and the thermodynamic potentials
generate a variety of system of thermoviscoelasticity.

The existence of solutions to such systems is established by a suitable successive approximation
method to regularized (if needed) system in a suitable functional space, proof of solvability of which
is based on appropriately chosen successive approximations, global a priori estimates, application
of a fixed point theorem and pass to the limit.

In this paper we present the series of results on multidimensional mathematical models of ther-
moviscoelasticity. The subject matter is largely defined by authors’ own research interests. The
review does not claim to be exhaustive in its domain and is only intended to demonstrate wildly
used applications of the based on fix-point arguments methods in the theory of thermoviscoelas-
ticity.

The paper consists of five sections. In Section 2-3 we introduce fundamental concepts and basic
notions used for description of the dynamics of a thermoviscoelastic continua. In Section 4 we
review the known results for compressible thermoviscoelastic continua. In Section 5 the known
results for incompressible thermoviscoelastic continuum are presented.

2. FUNDAMENTAL CONCEPTS

2.1. Dynamics of continuum

(e. g. [72], Sect.1, [43], Sect. 1.1–1.5.) The object of study is a continum filling a bounded volume
Ω ⊂ Rn, n = 2, 3 with the boundary ∂Ω, which is supposed to be sufficiently smooth. The particle
occupying the coordinate X ∈ Ω at the moment of time t = 0 is identified with this coordinate.
To describe the medium it suffices to know the position at time 0 ⩽ t ⩽ T < +∞ of any particle
X, i. e. the function x = u(t,X). It is supposed that for any t the transformation x = u(t,X) is
sufficiently smooth and has the inverse X = U(t, x). Set Ω0 = Ω and Ωt = u(t,Ω) for t > 0; then
x = u(t,X) is a one-to-one mapping of Ω0 onto Ωt and X = U(t, x) is a one-to-one mapping of
Ωt onto Ω0 and the inverse x = u(t,X).

The velocity and the acceleration of a particle X at time t are respectively defined as follows:

v(t,X) = ∂u(t,X)/∂t, w(t,X) = ∂2u(t,X)/∂t2. (2.1)

The motion description of a continuum in terms of functions x = u(t,X) is associated with the
name of Lagrange (so-called Lagrangian description).

There exists another approach.
By V (t, x) denote the velocity of the particle X occupying the point x at time t, so that

V (t, x) = v(t, U(t, x)). (2.2)

The function V (t, x) defined on QT = {(t, x) : 0 ⩽ t ⩽ T ;x ∈ Ωt} is called the velocity field.
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The Cauchy problem

du(t, x)/dt = V (t, u(t,X)), u(0, X) = X (2.3)

(provided that it is uniquely solvable) demonstrates that knowing V (t, x) we can uniquely deter-
mine the function x = u(t,X), i. e. the trajectory of the particle X.

Conversely, (2.2) allows to derive the velocity field U(t, x) knowing the function x = u(t,X).
Thus it suffices to know U(t, x) in order to describe the motion of a continuum. This approach

is associated with Euler.
The variables X and x are called Lagrangian and Eulerian coordinates, respectively. When

Lagrangian coordinates are used, u is the unknown; in the case of Eulerian coordinates V is the
unknown.

Parameters of a continuum may be conveniently expressed either in Lagrangian coordinates
(e. g. the stress tensor) or in Eulerian ones (e. g. the strain velocity tensor).

In case of considerable deformations elastic and viscous terms must be taken into account
simultaneously. This results in cumbersome terms arising in equations.

Eulerian coordinates are convenient for some conservation laws, while Lagrangian ones are
more suitable for others.

To find the function u(t,X) (or V (t, x)) one takes into consideration physical laws specific for
given kind of continuum.

By S(t, x) and F (t, x) denote the stress tensor and the external body force respectively (at
time t and at point x). An important parameter of a particle X is its density ρ(t,X). The density
of the medium at point x is R(t, x) = ρ(t, U(t, x)).

The dynamics of a continuum obeys the equation of motion ( hereafter the summation conven-
tion over the repeated indices is used)

R (∂V/∂t+ Vi∂V/∂xi)−DivS = RF (2.4)

and the continuity equation
∂R/∂t+ div(RV ) = 0. (2.5)

Here F is the external body force. The divergence DivS of the tensor S = (sij) is vector (DivS)j
with components ∂sij/∂xi. The system of equations (2.4)–(2.5) is not closed. It can be closed
under extra assumptions based on experiments. If S can be expressed via V , we obtain a closed
system of equations, and it makes sense to consider its solvability. Thus, one can assume that S
depends on V . This dependence may be functional or else it can incorporate certain parameters
of u(t,X) defined by (2.3).

It may occur that R is predefined for a continuum. For example, if R ≡ 1, the continuum is
called incompressible and equation (2.5) is transformed into

div V = 0. (2.6)

The pressure of an incompressible continuum is defined by

p(t, x) = −1

3
trS(t, x), (2.7)

and the stress deviator is defined by
σ = S− pI. (2.8)

The motion of an incompressible fluid is governed by the equations

∂V/∂t+ Vi∂V/∂xi −Div σ +∇p = F, div V = 0. (2.9)
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So far we have used Eulerian coordinates in the equations. In Lagrangian coordinates equations
of motion (2.4)–(2.5) have the form

∂2ū/∂t2 −Div s = f ; r = det |I + ∂ū/∂X| , (2.10)

where ū(t,X) = u(t,X) −X is the displacement function, r(t,X) = R(t, u(t,X)), and s(t,X) =
S(t, u(t,X)).

Various dependencies for S and R specify classes of corresponding continuum such as ideal fluid,
viscous incompressible fluid, elastic medium, or viscoelastic medium. These kinds of continua are
subject for further classification.

Real-word problems may involve effects of thermal conductivity. Thermal phenomena require
introducing additional parameters and studying the way these parameters affect S, R, and F .

Thus the study of motion becomes entangled with notions belonging to thermodynamics. A
continuum is regarded as a set of thermodynamic systems. Specifically, a set of thermodynamic
parameters {µi}ni=1 is assigned to any particle X. Usually these parameters include the temper-
ature. Some of the parameters can be related to mechanical properties of the continuum and be
expressed via u (or V ). Other parameters may be of a different nature. A set of parameters is
said to form a basis, if the other parameters can be expressed in terms of it.

If thermal phenomena are considered, the number of unknowns increases. One must find not
only u (or V ), but also µi as functions µi(t,X) (or Mi(t, x) = µi(t, U(t, x))).

To find µi(t,X) one must derive equations for µi, consider the dependence of S, R, and F on µi
and solve the system obtained in this way. Equations for µi are derived from various formulations
of the first and the second laws of thermodynamics.

2.2. Fundamental concepts of thermodynamics

(A more detailed exposition may be found e. g. in [43], Chapter 1, Section 1.6.)
It is convenient to use a different notation for the thermodynamic parameters. Specifically, let

(θ, {εij}mi,j=1) stand for {µi}ni=1. Thus we single out the temperature θ among the parameters.
We mathematically identify a thermodynamic system with the set of parameters (θ, εij)

m
i,j=1. The

free energy f(θ, εij) specifies the type of a given thermodynamic system. Any function depending
on (θ, εij) is called a function of state. Functions of state are numerous. The most important of
them are the entropy s(θ, εij), the internal energy e(θ, εij), and stresses σij(θ, εij). They can be
expressed via f as follows:

s = −∂f/∂θ; σij = ∂f/∂εij ; e = f − θs. (2.11)

In what follows the term ‘thermodynamic system’ refers to a particle X of the medium Ω. The
parameters θ, εij associated with the particle are considered as functions θ(t,X), εij(t,X).

It is often the case in applications that the parameters εij of the particle X regarded as a
thermodynamic system are related to u(t,X) through the formula ε(u) = 1

2 (∂u/∂X + (∂u/∂X)∗) .
In this case the matrix ε = ε(u) = (εij)

m
i,j=1 is called the strain tensor.

The formulas (2.11) show that functions of state can be expressed via f . The same is true if
f is replaced by another basic function of state. Then one must obtain an equation for the new
basic function of state.

In what follows we use lower-case letters for parameters of a thermodynamic system X and
capitals for parameters of the particle situated at point x. Thus, θ(t,X) is the temperature of the
particle X at time t and Θ(t, x) is the temperature of the particle X (= U(t, x)) situated at x at
time t. Thus we have:

Θ(t, x) = θ(t, U(t, x)), θ(t,X) = Θ(t, u(t,X)). (2.12)
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Similar equations hold for other functions of state.
A set of functions θ(t,X), εij(t,X) defining the behaviour of a thermodynamic system X is

called a thermodynamic process.
The first law of thermodynamics states that if a process is represented by a closed path

θ(t,X), εij(t,X) in the state space (θ, εij), the increment of total energy e equals zero.
This law implies a relation for the increment of internal energy when parameters change:

dE = R−1(εijσijdt+ δqe + δq∗∗). (2.13)

Here the first term is the mechanical energy inflow (it is assumed that the mechanical energy
is transformed into internal one), δqe is the heat inflow, δq∗∗ is the inflow of other kinds of energy
(except the mechanical and thermal ones) that are transformed into internal energy.

Here dE denotes an exact differential, and δq indicates that the linear form δq = ∂q
∂εij

dεij+
∂q
∂θdθ

is not an exact differential.
The exact form of terms δqe and δq∗∗ in the right-hand side of Equation (2.13) is due to

‘external’ factors with respect to the thermodynamic system.
Thermomechanics studies the behaviour of a continuum Ω assuming that every particle X is a

thermodynamic system of mass r(t,X). Thus the continuum is considered as a set of thermody-
namic systems. These systems interact, so a change of certain thermodynamic parameters implies
a change of other parameters. In particular, this causes energy transmission.

The term δqe can be made explicit on the basis of the second law of thermodynamics and the
entropy balance equation related to this law. This law governs the direction and speed of physical
processes.

The equilibrium process is a process described by equations not involving speeds of change of
state parameters.

Suppose that the equations describing a process relate infinitesimal variations of parameters. If
the equations are still satisfied after the signs of all the variations have been changed, the process
is called reversible.

An equilibrium process can be irreversible (e. g. an equilibrium process of heat transfer in a
stationary continuum).

Reversible and irreversible processes can be obtained by combining sequences of equilibrium
and nonequilibrium states of the continuum at issue.

The second law of thermodynamics implies

δQe = θds+ δQ′; δQ′ ⩾ 0. (2.14)

Here δQ′ is called uncompensated heat.
If a process is reversible, δQ′ = 0. The converse is not always true. In order to actually use

equation (2.14) one needs to know δQe and δQ′. The quantity δQ′ is often written in the form

δQ′ = δq′dΩ =W ∗dt dΩ, W ∗dt ⩾ 0, (2.15)

where dΩ is the volume element.
The dispersionfunction W ∗ is determined by physical properties of the continuum. The in-

equality serves as a criterion showing that relations being used are correct.
Theory of thermomechanical behaviour of continuum postulates the existence of the heat flux

vector q = q(t, x) being the quantity of heat transferred in unit time through section of unit area
perpendicular to q, so that

δqe = −(div q) dt. (2.16)

The dependence of q on the parameters of the thermodynamic system varies from one contin-
uum to another. The simplest assumption

q = −κ∇θ, κ > 0 (2.17)
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is called the Fourier law.
In the case of the Fourier law we have

δqe = div(κ∇θ)dt. (2.18)

Here κ may depend on coordinates, time and various parameters of the thermodynamic system.
It follows from (2.13) that

d

dt
E = R−1(σijεij + div(κ∇θ) + δq∗∗/dt). (2.19)

Substituting
d

dt
E(θ, εij) =

∂E

∂θ

dθ

dt
+
∂E

∂εij

dεij
dt

(2.20)

in (2.19), we obtain an equation for θ. Generally, it is nonlinear and parabolic. One must also
know the form of the function E and the dependence between ε and σ.

Equations (2.4), (2.5), (2.19), (2.20) and various assumptions about F , R, S, E, and relation-
ships between ε, σ, θ, and q∗∗ give rise to various models of thermoviscoelasticity. Note that if
Lagrangian coordinates are used in some of the relations and Eulerian ones are used in others, one
should ensure a single system for any given equation (e. g. like this is done in (2.12)). If deforma-
tions are small, the difference between the Eulerian and Lagrangian coordinates is disregarded.
We refrain from spelling the difference between them out, to keep the notation simple.

In the following sections we consider specific models of continua.

2.3. Mathematical models in continuum thermomecanics

In what follows we shall consider continua, the energy equation for which contains only one
thermodynamic parameter, namely the temperature θ, and mechanical ones.

Let us dwell on constitutive laws. For incompressible continua often they have a form of
differential equation

L1(σ) = L2(D(V )). (2.21)

Here L1 and L2 are linear differential operators ( generally speaking heterogeneous) of orders
m and k respectively, m, k = 0, 1, 2, . . . , σ is the stress deviator, D(V ) = (Dij)

n
i,j=1, Dij =

1
2(∂Vi/∂Vj + ∂Vj/∂xi), is the strain velocity tensor. The coefficients of L1 and L2 may depend
on both mechanical and thermodynamic parameters. If (2.21) is solved with respect to σ, then
substitution of σ = σ(D(V )) in (2.9) allows to exlude one unknown function σ from (2.9).

For example, the case m = 0, k = 0 corresponds to the viscous fluid (both Newtonian and non-
Newtonian). If L1(w) = w, L2(w) = A1w and F = F (θ), then one get the system of Boussinesq’s
type for thermoviscous incompressible continua (see Section 4 below). The coefficients A1 may
depend on θ. The casem = L, k = L+1, L = 1, 2, . . . corresponds to the generalized Kelvin–Voigt
fluids ( see [72], sect. 4.1–4.2,[73], [74]).

The derivatives involved in (2.21) equations may be both partial or substantial.
In the case of compressible continua at small displacements it is more convenient to use the

Lagrangian specification and to consider the constitutive law in the form L1(s) = L2(ε(u)) as
relation for stress and strain tensors. Here L1 and L2 are linear differential operators of orders
l and r respectively, l, r = 1, 2, . . . . Assuming L1(w) = w, L2(w) = B1dw/dt + B2w + B3θ
(l = 0, r = 1) with tensor-valued coefficients Bi, one get typical systems of thermoviscoelasticity
at small displacements (see Section 4 below).

On the other hand the appearance of L1 terms in some models of thermoviscoelastic continua
is frequently occurring. The arising in this case difficulties in L2 theory are overcome for example
with the help of the notion of renormalized solutions (Section 5).

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2014. № 2 125



V. G. Zvyagin, V. P. Orlov

3. FUNCTIONAL SPACES

Let Ω ⊂ Rn be domain with sufficiently smooth boundary ∂Ω, QT = [0, T ] × Ω. In what fol-
lows we use spaces Lp(Ω), Lp(QT ), Sobolev-Slobodetskii spaces W l

p(Ω), Besov spaces Bl
p,r(Ω),

spaces of Bessel potentials Hβ
p (Ω), p, q, r, l ∈ [1,+∞) ([70], sect. 2.3, 4.3.1). We set Lpq(QT ) =

Lp(0, T ;Lq(Ω)), Bp,p(Ω) = Bp(Ω), W
k,m
p,p (QT ) = W k,m

p (QT ), W
k,m
p,q (QT )=Lp(0, T ;W

m
q (Ω)) ∩

W k
p (0, T ;Lq(Ω)). We denote the norms in the spaces L2(Ω), W

l
2(Ω), L2(QT ) and W k,m

2 (QT )
by | · |0, | · |l, ∥ · ∥0, ∥ · ∥k,m, respectively. The notation Lp(Ω)

n (or Lp(Ω;R
n) and similar ones

mean that the space consists of functions taking it values in Rn.
Let C∞

0 (Ω, Rn) be the set of infinitely differentiable functions on Ω having compact sup-

port D′(Ω)n denote the space of distribution on C∞
0 (Ω, Rn). By

◦
Wm

p (Ω) denote the closure
of C∞

0 (Ω)=C∞
0 (Ω, R1) with respect to the norm of Wm

p (Ω) (m > 0) and let Wm
p,0(Ω) = Wm

p (Ω)∩
◦
W 1

p(Ω), m > 1/p. Further, let W−m
p (Ω) = (

◦
Wm

p′ (Ω))
′, where m > 0, p′ = p/(p− 1), 1 < p < +∞,

and ′ denotes the dual space.
Let V = {u : u ∈ C∞

0 (Ω, Rn), div u = 0}. In what follows H and V are the closures of V in the
norms | · |0 and | · |1 respectively. P : L2(Ω, R

n)→ H is the orthoprojector in L2(Ω, R
n) onto the

space of solenoidal functions H.
Denote by Cr(0, T ;E), r ∈ N , the space of the E-valued functions which have r continuous

derivatives with respect to t with usual norm. Denote by W r
p (0, T ;E), 1 ⩽ p ⩽ +∞, r = 1, 2, . . . ,

the Sobolev space of the functions for which the norm ∥u∥W r
p (0,T ;E) =

∑r
m=0 ∥u(m)(t)∥Lp(0,T ;E) is

finite.

4. COMPRESSIBLE CONTINUA

In this section we consider results concerning existence and uniqueness of weak solutions to a three-
dimensional thermoviscoelastic system. The constitutive relations of the models are recovered by
a free energy functional and a pseudopotential of dissipation. Using a fixed point argument,
combined with an a priori estimates – passage to the limit technique, existence and uniqueness
results for related initial-boundary values problems are established.

4.1. A system of thermoviscoelasticity of Kelvin–Voigt type (local solvability)

In this section we consider results of the paper [18] concerning local in time existence and nonlocal
uniqueness of weak solutions to a three-dimensional thermoviscoelastic system.

Suppose we are given a thermoviscoelastic continuum filling a bounded domain Ω ⊂ R3 with
smooth boundary ∂Ω.

Basic functions are the displacement function u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and the tem-
perature θ(t, x). We assume that the displacements are small and therefore identify Eulerian and
Lagrangian coordinates. The medium is characterized by the following set (θ, εij) of thermody-
namic parameters, where

εij = εij(u) =
1

2
(∂ui/∂xj + ∂uj/∂xi), (4.1)

ε(u) = (εij(u)) is the strain tensor.
The function of free energy Ψ(θ, ε(u)) is

Ψ(θ, ε(u)) = −csθ log θ +
1

2
ε(u)Kε(u) + α(θ) tr ε(u), (4.2)

where K is the elastic tensor, cs > 0 is the coefficient of heat capacity, α(θ) is the thermal
expansion coefficient, and α(θ) = αθ, α ∈ R1. Here Kε(u) is defined as follows:

Kε(u) = λ tr ε(u)I + 2µε(u), (4.3)
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where λ and µ are the Lamé parameters.
The pseudopotential of dissipation Φ depends on ∇θ and ε(ut) and refers to the heat flux and

the evolution of deformation. It is given by

Φ(∇θ, ε(ut)) =
k0
2θ
|∇θ|2 + 1

2
ε(ut)Bε(ut), (4.4)

where B = (bij) is a symmetrical positively defined matrix.
The equation of motion is

utt − div s = G, (x, t) ∈ [0, T ]× Ω. (4.5)

Here G stands for external forces.
The equation of energy balance is

et + div q = r + s · ε(ut), (x, t) ∈ [0, T ]× Ω. (4.6)

Here r denotes external heat sources, the term s · ε(ut) stands for the increment of internal energy
caused by mechanical factors, s is the stress tensor responsible for the increment of thermal energy
caused by mechanical factors.

Further, the internal energy and the entropy s = −∂Ψ/∂θ satisfy the Helmholtz law e = Ψ+sθ.
The non-dissipative part σnd of the stress tensor s has the form σnd = ∂Ψ/∂ε(u), and its

dissipative part is σd = ∂Φ/∂ε(ut), so that s = σnd + σd. The vector q is given by q = −k0∇θ.
Substituting the above equations into the equations of motion and energy balance, we obtain

the system in QT :

csθt − k0∆θ − αθ div ut = Bε(ut)ε(ut) + r, (4.7)

utt −Div (Bε(ut) +Kε(u) + αθI) = G. (4.8)

Initial and boundary conditions are specified as follows:

θ(0) = θ0; u(0) = u0, ut(0) = u1; (4.9)

k0∂nθ = h on [0, T ]× ∂Ω; u = ut = 0 on [0, T ]× ∂Ω. (4.10)

The model is justified in [39].
Equation (4.8) is based on the linear Kelvin–Voigt type law of thermoviscoelasticity ( see [36],

Chap. 5.4) s = Bε(ut) +Kε(u) + αθI, where s is the stress tensor.
The above initial-boundary value problem is transformed into a related system of differential-

operator equations.
Let H = L2(Ω), V =W 1

2 (Ω), W =W 1
20(Ω)

3 and operators A, A, B, H (operators of variational
calculus [47], sec.2.5) be defined as

A : V→ V′, ⟨Au, v⟩ =
∫
Ω

∇u∇ dx, u, v ∈ V;

A : W →W ′, ⟨Au, v⟩ = a(u, v), u, v ∈W,

a(u, v) = λ

∫
Ω

div u div v dx+ 2µ

∫
Ω

εij(u)εij(v) dx;

B :W →W ′, ⟨Bu, v⟩ = b(u, v), u, v∈W, b(u, v)=
∫
Ω

bijεij(u)εij(v) dx;

H : H→W ′, ⟨Hu, v⟩ =
∫
Ω

udiv v dx, u ∈ H, v ∈W.
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Let the functions R and G be specified by

⟨R(t), v⟩ =
∫
Ω

r(t)v dx+

∫
Γ

h(t)v|∂Ω dx, v ∈ V for a.a. t ∈ [0, T ],

⟨G, v⟩ =
∫
Ω

G(t)v dx, v ∈W for a.a. t ∈ [0, T ],

where
r ∈ L2(0, T ;H), h ∈ L2(0, T ;L2(∂Ω)), G ∈ L2(0, T ;H

3), (4.11)

and consequently,
R ∈ L2(0, T ;V

′), G ∈ L2(0, T ;H
3).

Normalizing the constant coefficients, problem (4.7)–(4.10) is reduced to the following system
of differential-operator equations

θt +Aθ = θ div ut +R+ |ε(ut)|2, in V′, (4.12)

utt + But +Au+Hθ = G, in W ′ (4.13)

with conditions (4.9)–(4.10). The solution to problem (4.12)–(4.13), (4.9)–(4.10) ( Problem Pα)
is seeking in the class

θ ∈W 1
2 (0, T0;V

′) ∩ C0([0, T0];H) ∩ L2(0, T0;V) ≡ Φ,

u ∈W 2
2 (0, T0;H

3) ∩W 1
∞(0, T0;W ) ∩W 1

2 (0, T0;W
2
2 (Ω)

3) ≡ Ψ,

Theorem 1. Let (4.11) and

θ0 ∈ H, u0 ∈W ∩W 2
2 (Ω)

3, u1 ∈W (4.14)

hold. Then, there exist T0 ∈ (0, T ) and a unique pair of functions (θ, u) solving problem Pα in
[0, T0].

The proof of Theorem 1 is reduced to the fix-point problem for the following operator T . Take
an arbitrary u ∈ Ψ and substitute it in (4.13). Find a solution θ ∈ Φ of (4.13) and substitute
it in (4.12). Then find a solution ũ ∈ Ψ of (4.12), so that ũ = T u. Using the Schauder fix-
point theorem for operator T , combined with local in time contracting estimates, Theorem 1 is
established.

For other results for similar systems see [40],[67], [57].

4.2. A system of thermoviscoelasticity of Kelvin–Voigt type (global solvability)

In this section we discuss results of [54]. A classical 3D thermoviscoelastic system of Kelvin-
Voigt type is considered. The existence and uniqueness of a global regular solution is proved
without small data assumption. The existence proof is based on the successive approximation
method. The crucial part constitute a priori estimates on an arbitrary finite time interval, which
are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm.

Let Ω ⊂ R3 be a bounded domain with the boundary ∂Ω ⊂ C2, QT = Ω× [0, T ]. Consider the
following equations:

utt −Div [A1εt +A2(ε− θα)] = b in QT ; (4.15)

cvθθt − k∆θ = −θ(A2α)εt + (A1εt)εt + g, in QT , (4.16)
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where ε ≡ ε(u), ε = (εij(u)), εij(u) =
1
2(∂ui/∂xj + ∂uj/∂xi).

Additionally,

u = 0, n · ∇θ = 0, on ∂Ω× [0, T ]; (4.17)

u|t=0 = u0, ut|t=0 = u1, θ|t=0 = θ0, in Ω, (4.18)

n is the outer normal for ∂Ω. The vector u : QT → R3 is the displacement, θ : QT → (0,∞) is the
absolute temperature, ε = (εij)i,j=1,2,3 and εt = ((εt)ij)i,j=1,2,3 are the linearized stress and strain
tensors.

Equation (4.15) is based on the linear Kelvin–Voigt law of thermoviscoelasticity s = A1εt +
A2(ε− θα), where s is the stress tensor, A1 and A2 are tensors of order 4 defined by

ε→ Apε = λp tr εI + 2µpε, p = 1, 2, (4.19)

λ1 and µ1 are coefficients of viscosity, λ2 and µ2 are Lamé parameters, µp > 0, 3λp+2µp > 0, p =
1, 2. The symmetric tensor α = (αij)i,j=1,2 with constant αij represents heat expansion.

The system is governed by two thermodynamic potentials: the free energy and the pseudopo-
tential of dissipation. The free energy is specified by

Ψ(ε, θ) = −1

2
cvθ

2 +
1

2
ε(A2ε)− θε(A2α), cv > 0,

then e = 1
2cvθ

2+ 1
2ε(A2ε). This gives rise to the term cvθθt in energy equation (4.16). The presence

of θt in energy equation (4.7) in Section 4.1 (the case of the caloric specific heat is constant cv)
in place of θθt in energy equation (4.16) (the case of the caloric specific heat is cvθ) is a serious
mathematical obstacle in the proof of the global existence.

The pseudopotential of dissipation corresponding to system (4.15)–(4.18) is given by

Φ(∇θ, ε(ut)) =
1

2θ
εt(A1εt) +

k

2
|∇logθ|2.

Equation (4.16) is based on the Fourier law q = −k∇θ, k > 0.

Main results.

Theorem 2. (Existence) Let u0 ∈ W 2
12(Ω), u1 ∈ B

11/6
12,12(Ω), θ0 ∈ B

5/3
6,6 (Ω), g ∈ L∞(0, T ;L12(Ω)),

b ∈ L12(QT ), g ⩾ 0, θ0 ⩾ θ̄ > 0, θ0 is a constant. Then there exists a solution to problem (4.15)–
(4.18) such that u ∈ C([0, T ];W 2

12(Ω)), ut ∈ W
2,1
12 (QT ), θ ∈ W 2,1

6 (QT ), θ(t) ⩾ θ exp(−c0T ) ≡
θ∗ > 0; moreover, the following estimates are satisfied

∥u∥C([0,T ];W 2
12(Ω)) ⩽ c∥ut∥W 2,1

12 (QT )
;

∥ut∥W 1,2
12 (QT )

+ ∥θ∥
W 2,1

6 (QT )
⩽

⩽ φ

(
T, ∥u0∥W 2

12(Ω) + ∥u1∥B11/6
12,12(Ω)

+ (4.20)

∥θ0∥B5/3
6,6 (Ω)

+ ∥b∥L12(Ω) + ∥g∥L∞,12(QT )

)
where φ is an increasing positive function of its arguments.

Theorem 3. (Uniqueness) Any solution to problem (4.15)–(4.18) satisfying ε(ut) ∈
L2(0, T ;L3(Ω)), θ ∈ L2(0, T ;L+∞(Ω)), θt ∈ L2(0, T ;L3(Ω)) is uniquely defined.
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The existence proof is based on the successive approximation method. The successive approx-
imations are defined as follows:

un+1
tt −Div (A1ε(u

n+1
t )) = A2(ε− θnα)] + b; (4.21)

cvθ
nθn+1
t − k∆θn+1=−θn(A2α)ε(u

n
t )+A1ε(u

n
t )ε(u

n
t ) + g, (4.22)

un+1 = 0, n · ∇θn+1 = 0, on ∂Ω× [0, T ], (4.23)

un+1|t=0 = u0, u
n+1
t |t=0 = u1, θ

n+1|t=0 = θ0, in Ω, (4.24)

where un, θn, n = 0, 1, · · · are treated as given, u0|t=0 = u0, u
0
t |t=0 = u1, θ

0|t=0 = θ0.

It is established that the initial-value problems for (4.21) and (4.22) have solutions un and
θn, and the sequence un, θn converges to the solution u, θ of (4.15)–(4.18) on a small interval
0 ⩽ t ⩽ T0. The apriori estimates allow to extend the solvability on the whole [0, T ].

The crucial part constitute a priori estimates on an arbitrary finite time interval, which are
derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. The proof
heavily relies on properties of solutions of parabolic system (4.21) and parabolic equation (4.22)
in anisotropic Sobolev spaces W 2,1

p,p0(QT ), p, p0 ∈ [1,∞) (see [46], [31]).

It is worth to remark that (u, θ) could be found as a fixed point of a generated by approximation
process operator (similar to T in previous section.)

Problem (4.15)–(4.18) was also considered in [60], [12] under different assumptions about Ak.

4.3. Remarks

Let us mention other papers dealing with multiphysics coupled system where, beside the ther-
momechanical part, also the phase-field, electro-magnetic and diffusive processes are involved. In
this papers other approaches except the fixed-point arguments are used.

In [19] a thermo-mechanical nonlinear model describing hydrogen storage by use of metal
hydrides is proposed. The model leads to a phase transition problem in terms of three state
variables: the temperature, the phase parameter representing the fraction of one solid phase, and
the pressure. The main difficulty in investigating the resulting system relies on the presence of
the squared time derivative of the order parameter in the energy balance equation. The global
existence of a weak solution to the problem is proved by exploiting sharp estimates on parabolic
equations with right hand-side in L1. Some results on stability and steady state solutions are also
given. The proof of the results based on a regularization of the problem, time-discretization of the
regularizied problem, application of direct method of the Calculus of Variations for its solvability
and the subsequent passage to the limit using weak and weak star compactness arguments.

The case of for a Kelvin-Voigt-type systems with heat capacity dependent both on temperature
and on the strain is considered in [62]. The existence of a weak solution is proved by means of a
suitably regularized Rothe method and a subsequent limit passage.

In [63] the existence of weak solutions of the system of thermomechanics of hydrogen storage
in metallic hydrides is proved. A semi-implicit discretisation in time scheme which decouples the
system to a suitable sequence of convex minimization problems combined with a diffusion equation
provides a rather efficient conceptual numerical strategy.

5. INCOMPRESSIBLE CONTINUA

The traditional mathematical model for the description of heat gravitational convection in vis-
cous liquids is the system of Oberbeck-Boussinesq equations ([41], sect. IIIV.54), which is a
result of reduction of the complete equations of mechanics of continuous media under the follow-
ing conditions: a density of liquid linearly depends only on its temperature ( liquid is isothermal
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incompressible); a velocity field is considered to be solenoidal, however, in the equation of momen-
tum approximately takes into account the change of a density; the contribution of dissipation and
forces of pressure in the description of heat flow is negligible; a dynamic viscosity ratio, coefficients
of thermal conductivity and specific heat capacity are assumed to be constant.

Different assumptions about the nature of the dependence of the coefficients on the velocity,
temperature and additional parameters in specific physical problems lead to a variety of Boussi-
nesq’s type models.

Below we use lower-case letters for velocity and temperature (in spite of the Eulerian specifi-
cation).

5.1. Boussinesq’s type equations with nonlinear viscosity

This section deals with results of [8].

Let Ω ⊂ RN , (N = 2, 3) be a bounded Lipschitz domain, QT = Ω × [0, T ], 0 < T < +∞.
Consider the problem

∂v/∂t+ vi∂v/∂xi − 2Div(µ(θ)D(v)) +∇p = F (θ), in QT , (5.1)

∂(b(θ))/∂t+ vi∂(b(θ))/∂xi −∆θ = 2µ(θ)|D(v)|2, in QT , (5.2)

div v = 0, in QT , (5.3)

v = 0, θ = 0, on ∂Ω× [0, T ], (5.4)

v|t=0 = v0, b(θ)|t=0 = b(θ0), in Ω, (5.5)

Velocity v : QT → RN and temperature θ : QT → R1 are the unknowns. Further, D(v) = (Dij(v)),
Dij(v) = Dij =

1
2(∂vi/∂xj + ∂vj/∂xi) is the strain velocity tensor, |D(v)|2 = DijDij , the consti-

tutive law is σ = −pI + 2µ(θ)D(v), p is the pressure, the function µ is positive, bounded, and
continuous on R1, µ0 ∈ L2(Ω)

N , v0 ·n = 0 on ∂Ω, F : R1 → RN is the buoyancy force depending on
the temperature, function b, characterizing dependance of the internal energy on the temperature,
is an strictly increasing C1-function, b(0) = 0, b′(r) ⩾ α1 ∀r ∈ R1, α1 > 0, b(θ0) ∈ L1(Ω).

Equation (5.1) is the conservation equation of momentum. Equation (5.2) is the energy con-
servation equation, in which the right hand side µ(θ)|D(u)|2 is the dissipation energy.

Specify the differences between (5.1)–(5.5) and Oberbeck-Boussinesq system:

- the viscosity coefficient µ and the external forcing term F are temperature-dependent (with
nonlinear dependence);

- the internal energy is also assumed to be nonlinear with respect to the temperature and this
affects the time derivative term in the temperature equation;

- there is a right hand side in the energy conservation equation which is quadratic in the spatial
gradient of the velocity field.

One of the difficulties arising in the study of the problem (5.1)–(5.5) in a weak setting is due
to the fact that the right-hand side of (5.2) belongs to L1(Q).

The notion of weak-renormalized solution proved useful in the study of elliptic and parabolic
problems with data belonging to L1. This notion has been introduced by R.-J. DiPerna and P.-L.
Lions in [34] and [35] for the study of Boltzmann equations. This notion was then adapted to
various types of elliptic and parabolic problems with L1 data (see [48]). See [13], [13], [14], [29],
[30], [16], [17], [33], [56] for application of this notion to various types of elliptic and parabolic
problems.

The investigation of the problem (5.1)–(5.5) is carried out in the framework of theory of weak-
renormalized solutions.

Define the truncation function as Tk(s) = s if |s| ⩽ k, and Tk(s) = k sign(s) if |s| > k. Let
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Lp,σ(Ω) be the closure of V in Lp(Ω)
N , p ⩾ 1,

aθ(u, v) =
1
2

∫
Ω

µ(θ)( ∂ui∂xj
+

∂uj
∂xi

)
∂vj
∂xi
dx, ∀u, v ∈ V,

d(u, v, w) =
∫
Ω

uj
∂vi
∂xj

wjdx ∀u, v ∈ V, ∀w ∈ V ∩ LN,σ(Ω).

Definition 5.1. The weak-renormalized solution of (5.1)–(5.5) is a pair (v, θ) such that:

v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H);

Tk(θ) ∈ L2(0, T ;
◦
W

1

2(Ω)) ∀k ⩾ 0 and b(θ) ∈ L∞(0, T ;L1(Ω));∫
(x,t)∈QT :n⩽|b(θ)(x,t)|⩽n+1

b′(θ)|∇θ|2dxdt→ 0 as n→∞;

⟨vt, w⟩L2,σ(Ω) + a0(v, w) + d(v, v, w) = ⟨F (θ), w⟩ ∀w ∈ V ∩ LN,σ(Ω),
v(t = 0) = v0 a.e. in Ω;

∀S ∈ C∞(R1) with compact support

∂S(b(θ))/∂t+ div(vS(b(θ)))− div(S ′(b(θ))∇θ)+
S ′′(b(θ))b′(θ)|∇θ|2 = 2µ(θ)|D(v)|2S ′(b(θ)) in D′(QT ),

(5.6)

S(b(θ))(t = 0) = S(b(θ0)) in Ω. (5.7)

Here v satisfies (5.1) in the weak sense. As to the notion of renormalized solution, let as
remark that equation (5.6) is formally obtained through pointwise multiplication of equation (5.2)
by S ′(b(θ)). In other terms, equation (5.6) is nothing but

−
∫
QT

S(b(θ))φt dxdt+

∫
QT

vi∂S(θ)/∂xiφdxdt+

∫
QT

S ′′(b(θ))b′(θ)|∇θ|2φdxdt+

∫
QT

S ′(b(θ))∂θ/∂xi∂φ/∂xi dxdt = 2

∫
QT

µ(θ)|D(v)|2S ′(b(θ))φdx dt.

for any S ∈ W 2
∞(R1) such that supp(S ′) is compact and for any φ ∈ C∞

0 ((0, T ) × Ω) such that

S ′(θ)φ ∈ L2(0, T ;
◦
W 1

2(Ω)). This formally corresponds to using the test function φS(b(θ)) in (5.2),
but this is only formal.

The main result of [8] runs as follows:

Theorem 4. Let N = 2. Assume that

|F (r)| ⩽ a+ b|r|α, α ⩾ 0, µ ⩾ 0, 0 ⩽ 2α ⩽ 3, v0 ∈ H,

θ0 is measurable on Ω and b(θ0) ∈ L1(Ω). Then:

• if 0 ⩽ 2α ⩽ 1, there exists at least a weak-renormalized solution of problem (5.1)–(5.5).

• if 1 ⩽ 2α ⩽ 3, there exists a real positive number η such that if a+∥u0∥L2(Ω)2+∥b(θ0)∥L1(Ω) ⩽
η, there exists at least a weak-renormalized solution of problem (5.1)–(5.5).

Theorem 5. Let N = 3. Assume that F is continuous and bounded, u0 ∈ V , θ0 satisfies
conditions of Theorem 4. Then there exists at least a weak-renormalized solution of the system
(5.1)–(5.5) provided

∥v0∥W 1
2 (Ω)3 + ∥F∥L∞(R)3 ⩽ η

for sufficiently small positive number η.
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The proof of the main result involves consideration of the ε-approximate problem (5.1)–(5.5),
in which b, F are replaced by bε, Fε. Here bε is C

2-approximations of b, Fε is a smooth bounded
approximations of F . Take an arbitrary θ from suitable L = Lr(0, T ;Lq(Ω)), r, q ∈ [1,+∞) and
substitute it in ε-approximate (5.1). Find its solution u. Then find a weak-renormalized solution
θ̃ of ε-approximate (5.2), so that θ̃ = ψε(θ). Using the Schauder fix-point theorem for operator
ψε one finds a weak-renormalized solution (θε, uε) to ε-approximate problem (5.1)–(5.5).

The existence of a weak-renormalized solution of the coupled system (5.1)–(5.5) is then ob-
tained by passing to the limit in this approximate problem.

Other results for similar models can be found in [28], [29], [33], [37], [42], [51], [52], [48].

5.2. Boussinesq’s type equations with constant viscocity

Here we consider the results of [11].
Let Ω ⊂ R2 be a bounded domain, ∂Ω ∈ C2. Consider the nonlinear equations of Boussinesq’s

type:

∂v/∂t+ vi∂v/∂xi −∆v +∇p = F (θ); div v = 0, in QT ; (5.8)

∂θ/∂t−∆θ + vi∂θ/∂xi = δ|D(v)|2 + f, in QT ; (5.9)

v(t = 0) = v0, θ(t = 0) = θ0 in Ω; v = 0, θ = 0, in ∂Ω× [0, T ]. (5.10)

The system (5.8)–(5.10) is a special case of (5.1)–(5.5) for linear b, δ = 1 and µ ≡ 1/2 that
allows to get uniqueness of weak-renormalized solutions additionally to the existence.

Theorem 6. Suppose that δ = 0. Let θ0 ∈ L1(Ω), v0 ∈ V , f ∈ L1(QT ), F (r) be continuous,
|F (r)| ⩽ a+ b|r|α, r ∈ R, a, b > 0 and the Lipschitz condition

|F (r)− F (s)| ⩽ L|r − s|(1 + |r|β + |s|β), r, s ∈ R1, 0 ⩽ β < 1, (5.11)

hold true. Then, if ∥θ∥L1(Ω), ∥f∥L1(QT ) are sufficiently small, there exists a unique weak-
renormalized solution to problem (5.8)–(5.10).

Here the existence of a weak-renormalized solution of the problem (5.8)–(5.10) is insured by
Theorem 4.

Consider the case δ = 1. Theorem 4 gives the existence of at least a weak-renormalized solution
to (5.8)–(5.10) such that F (θ) ∈ L2(QT ). Using the smooth character of data, it is shown that this
solution is actually a weak solution (which means that θ is a weak solution of the heat equation).
Then uniqueness of a small solution is established provided the Lipschitz condition on F holds
true.

Theorem 7. Suppose that δ = 1. Let θ0 ∈ L1(Ω), u0 ∈ V ∩ W 2
2 (Ω)

N , f ∈ L2(QT ), F (r) be
continuous and |F (r)| ⩽ a+ b|r|α, r ∈ R, a, b > 0. Further, suppose that either 0 ⩽ 2α < 1 or

1 < 2α < 3 and a, ∥v0∥V , ∥f∥L2(QT ) are sufficiently small.

Then problem (5.8)–(5.10) admits at least a weak solution.
Moreover, if (5.11) holds true, there is uniqueness of the weak solution of the problem (5.8)–

(5.10) for sufficiently small solutions. More precisely, there exists R > 0 such that if (v1, θ1) and
(v2, θ2) are two weak solutions of (5.8)–(5.10) satisfying ∥θi∥L4(QT ) ⩽ R, ∥∂θi/∂xj∥L2(QT ) ⩽ R,
∥∂vi/∂xj∥L4(QT ) ⩽ R, i, j = 1, 2, then θ1 = θ2, v

1 = v2.

Other results for similar models can be found in [29], [10].
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5.3. Boussinesq’s type equations with nonlinear thermal diffusion

In this section we consider the results of [32]. There are some fluids such as lubrificants or some
plasma flow for which the energy conservation equation is nonlinear parabolic equation. Below
the existence and uniqueness of weak solutions for this kind of models are given.

Let QT = [0, T ] × Ω be a bounded and connected domain, where Ω ⊂ RN , N = 2, 3 and
∂Ω ∈ C1. Consider the equations

vt + vi∂v/∂xi −Div(µ(θ)D(u)) +∇p = F (θ); div v = 0; (5.12)

θt + vi∂θ/∂xi −∆φ(θ) = 0, (5.13)

where v is the velocity, θ is the temperature, p is the pressure, F (θ) is the buoyancy force, and
φ(θ) = φD on ∂Ω× [0, T ], v(·, 0) = v0 and θ(·, 0) = θ0 in Ω.

Note that the equation in (5.13) is the energy conservation equation transformed by means of
a suitable change of temperature function. The function φ takes into account interaction between
non-constant specific heat and heat conductivity (slow and fast diffusion). The model is justified
in [49].

It is assumed that:

φ ∈ C([0,∞)) ∩ C1((0,∞)), φ(0) = 0, φ is nondecreasing;

F ∈ C0,1
loc ([0,∞);RN );

µ ∈ C0,1
loc ([0,∞)), m0 ⩽ µ(s) ⩽ m1, 0 < m0 ⩽ m1;

u0 ∈ H, θ0 ∈ L∞(Ω), θ0 ⩾ 0;

φD ∈ L2(0, T ;
◦
W

1

2(Ω)) ∩W 1
2 (0, T ;L2(Ω)) ∩ L∞(QT ).

If µ′ ̸= 0 or F ′ ̸= 0, then φ−1 is supposed to satisfy the Hölder condition with some α ∈ (0, 1).
Let

aθ(u, v) =
1
2

∫
Ω

µ(θ)( ∂ui∂xj
+

∂uj
∂xi

)
∂vj
∂xi
dx, u, v ∈ V in θ ∈ L∞(QT );

b(u, v, w) =
∫
Ω

ui
∂vj
∂xi
wjdx for u, v ∈ V, w ∈ V ∩ LN,σ(Ω).

Definition 5.2. The weak solution of (5.12)-(5.13) is a pair (v, θ) such that

1. v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), θ ∈ L∞(QT ), θt ∈ L2(0, T ;
◦
W 1

2(Ω)), φ(θ) ∈ φD +

L2(0, T ;
◦
W 1

2(Ω));

2. v(·, 0) = v0 a.e. in Ω, and for a.e. t ∈ [0, T ] the identity holds:

⟨vt, w⟩H + aθ(v, w) + b(v, v, w) = ⟨F (θ), w⟩H ∀w ∈ V ∩ LN,σ(Ω);

3. for ∀ ξ ∈ L2(0, T ;
◦
W 1

2(Ω)) and for ∀ψ ∈ L2(0, T ;
◦
W 1

2(Ω)) ∩W 1
1 (0, T ;L2(Ω)) with ψ(T ) = 0

T∫
0

⟨θt, ξ⟩V ′,V dt +

T∫∫
0 Ω

(∇φ(θ)− θv)∇ξ dtdx = 0;

T∫
0

⟨θt, ψ⟩
W−1

2 (Ω),
◦
W 1

2(Ω)
dt+

T∫∫
0 Ω

(θ − θ0)ψt dtdx = 0.
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The main result of [32] is the proof of existence of a weak solution of (5.12)-(5.13) such that

Theorem 8. Ther exists a weak solution of (5.12)-(5.13) such that

v ∈ C([0, T ];V ′), θ ∈ C([0, T ];W−1
2 (Ω)).

Moreover, if there exist non-negative constants k, m, λ1, λ2 such that

k ⩾ θ0 ⩾ m ⩾ 0, φ(k exp(λ0t)) ⩾ ψD(·, t) ⩾ φ(m exp(−λ1t)) ⩾ 0,

then

k exp(λt) ⩾ θ(·, t) ⩾ m exp(−λt) ⩾ 0 for t ∈ [0, T ] and a.e. in Ω.

In the case N = 2, µ ≡ 1, φ−1 ∈ C0,1([0,∞)) there exists the unique weak solution of (5.12)-
(5.13).

The existence proof is based on the successive approximation method similar to one in section
4.2. The solvability of approximative equation (5.12) relies in Galerkin’s method. The solvability
of approximative equation (5.13) uses results in [3] on solvability nonlinear parabolic problems.
Passage to the limit in the successive approximations gives a weak solution of the coupled system.

5.4. Non-isothermal solidification problem with melt convection

The Allen-Cahn and Cahn-Hilliard equations ([2], [24]) have been widely used in many complicated
moving interface problems in two-phase flow of viscous fluids and alloys through a phase-field
approach.

This section deals with results of [38] on a phase-field model for solidification processes in a
molten material which is assumed to behave as an incompressible fluid with variable viscosity.

Let Ω ⊂ RN , N = 2, 3 be a bounded open domain, ∂Ω ⊂ C2.
Consider in QT = Ω× [0, T ] the problem

φt + vi∂φ/∂xi − ξ2∆φ = φ(φ− 1)(1− 2φ) + θ; (5.14)

θt + vi∂θ/∂xi − div(k(φ, θ)∇θ) = ν(φ, θ)|D(v)|2, in QT ; (5.15)

vt+vi∂v/∂xi −Div (ν(φ, θ)D(v))+∇p = f ; div v = 0; (5.16)

φ = 0, θ = 0, v = 0, on ∂Ω× [0, T ]; (5.17)

φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), v(x, 0) = v0(x), in Ω. (5.18)

Model (5.14)–(5.18) is justified in [5], [9], and [22]. The unknowns are the phase-field function
φ, the temperature θ, the velocity field u and the hydrostatic pressure p; ξ is a positive constant
related to the width of the transitions layers; k and ν are strictly positive functions that depend
on φ and θ and must be viewed as a heat diffusion and a kinematic fluid viscosity, respectively; f
is an external field; φ0, θ0 and u0 are given functions.

The structure of this system is typical in non-isothermal solidification problems with melt
convection. This model couples the Boussinesq system to the Allen-Cahn equation for a non-
mechanical phase-field variable.

Notice that due to the nonlinear right-hand side, that only belongs to L1(Q), the problem
(5.14)–(5.18) is considered in the framework of theory of weak-renormalized solutions. For this
reason, the notion of renormalized solutions adapted to the problem (5.14)–(5.18) is given below.

Introduce the following notations. Put L(0, T ; Ω) = {v ∈ L∞(0, T ;L1(Ω)) : TR(v) ∈
L2(0, T ;H

1
0 (Ω))∀R > 0, lim

n→∞
1
n

∫
An(v)

|∇v|2dxdt = 0}, An(v) = {(x, t) ∈ Q : n ⩽ |v(x, t)| ⩽ 2n}.
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Definition 5.3. The triple (φ, θ, v) is called a weak-renormalized solution of problem (5.14)–
(5.18) if

1. v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), φ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H
1
0 (Ω)) ∩ L4(Q) and θ ∈

L(0, T ; Ω);

2. φ is a weak solution of (5.14) in usual sense and φ|t=0 = 0;

3. v is a weak solution of (5.16) in usual sense (together with p ∈ D′(Ω)) and v|t=0 = 0;

4. for any β ∈ W 2
∞(R) such that suppβ is a compact set and for any η ∈ C1([0, T ];H1

0 (Ω)) ∩
L∞(Q) such that η|t=T = 0 the following condition holds:

−
∫∫
Q

β(θ)ht dxdt+

∫∫
Q

k(φ, θ)∇β(θ)∇η dxdt+

+

∫∫
Q

k(φ, θ)(∇θ ∇β′(θ))η dxdt−
∫∫
Q

((v · ∇)β′(θ))ηdxdt =

=

∫∫
Q

β′(θ)ν(φ, θ)|D(v)|2η dxdt+
∫
Ω

β(θ0)η(x, 0) dx.

The main result of [38] runs as follows.

Theorem 9. Suppose that N = 2, f ∈ L2(Q)2, φ0 ∈ L2(Ω), v0 ∈ H, θ0 ∈ L1(Ω), ν, k ∈ C0(R×R),
0 < ν1 < ν ⩽ ν2, 0 < k1 ⩽ k ⩽ k2; then there exists at least one weak-renormalized solution of
problem (5.14)–(5.18).

The proof relies on the solvability of the regularized problem (5.14)ε–(5.18)ε, i.e. the
problem (5.14)–(5.18) in which the right-hand side in (5.15) and θ0 are changed by gε =
T1/ε(ν(φε, θε)|D(vε)|2) and θ0ε = T1/ε(θ0), ε > 0, respectively.

Consider the mapping Λε : L1(Q)2 → L1(Q)2 that associates to each (φ, θ), first, the unique
solution vε to (5.16); then, the unique solution θε to (5.15)ε, finally, the unique solution φε to
(5.16) for v = vε and θ = θε, so that (φε, θε) = Λε(φ, θ).

The solvability of the defining (5.14)ε–(5.18)ε problems is obtained from a standard Galerkin
scheme, the existence of solution to (5.14)ε–(5.18)ε follows from Schauder’s fixed-point theorem
for operator Λε.

The solvability of (5.14)–(5.18) is established by virtue of passage to the limit by ε = 1/n, n→
+∞.

The problems of solvability for N = 3 are discussed.

Other results for similar problems can be found in [23] and [50].

5.5. Some remarks

Let us mention some papers dealing with Navier-Stokes-Fourier-type equations which characterizes
the Newtonian fluids under heat-conducting effects.

In [20] the large-data and long-time existence of a suitable weak solution to an initial and
boundary value problem driven by a system consisting of the Navier-Stokes equations with the
viscosity polynomially increasing with a turbulent kinetic energy that evolves according to an
evolutionary convection diffusion equation (Navier-Stokes-Fourier problem) with the L1-summable
right-hand side are established. The L1 difficulties are overcome by means of a specific notion of
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a weak solution, the application of a Galerkin type method for the regularized problem and with
the subsequent passage to the limit.

In [21] the mathematical properties of unsteady 3D internal flows of incompressible fluids are
investigated. The model is expressed through a system of equations representing the balance of
mass, the balance of linear momentum, the balance of energy and the equation for the entropy
production. The viscosity and the thermal conductivity are assumed to be dependant on the
pressure and the temperature. Supposing Navier’s slip condition at the impermeable boundary
the long-time existence of a (suitable) weak solution by the large data are established.

The paper [27] deals with the existence of strong 2D solutions to the Navier-Stokes-Fourier
system. The nonstationary Navier-Stokes system for an incompressible homogeneous fluid with
temperature dependent viscosity is completed by the equation of balance of energy which includes
the term of dissipative heating. The regularity of solutions to the problems under study is proved
through compactness methods and fixed point arguments, instead assuming the existence of weak
solutions to the problems. The proof relies on sufficient smallness of derivatives of viscosity and
heat-conductivity coefficients and sufficient smoothness of the data.
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Anal. — 2013. — V. 210. — P. 1–43.

[64] Sobolevskii P.E. Inequalities coerciveness for abstract parabolic equations /
P.E. Sobolevskii // Dokl. Akad. Nauk SSSR. — 1964. — V. 157, no. 1. — P. 52–55.

[65] Sobolevskii P.E. On equations of parabolic type in Banach space / P. E. Sobolevskii //
Trudy Moscow Matemat. Obsch. — 1961. — V. 10. — P. 297–351.

[66] Solonnikov V.A. A priori estimates for parabolic equations of second order / V. A. Solon-
nikov // In: Boundary problems of mathematical physics. 1, Collected articles, Proceedings of
Mathematical Institute of the Academy of Sciences of USSR. — 1964. — V. 70. — P. 133–212.

[67] Shibata Y. Global in time existence of small solutions of nonlinear thermoviscoelastic
equations / Y. Shibata // Math. Methods Appl. Sci. — 1995. — V. 18. — P. 871–895.

[68] Talhouk R. Local existence and uniqueness of viscoelastic fluid flows in unbounded domains
/ R. Talhouk // C.R. Acad. Sci. Paris. Serie I. — 1999. — V. 328. — P. 87–92.

[69] Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam: North-
Holland, 1979. — 408 p.

[70] Triebel H. Interpolation theory, Function Spaces, Differential Operators. Berlin: Deutscher
Verlag der Wissenschaften, 1978. — 604 p.

[71] Truesdell C. A First Course in Rational Continuum Mechanics. Baltimore: The John
Hopkins University Press, 1972. — 562 p.

[72] Turbin M. V., Zvyagin V. G. Mathematical Question of Hydrodynamcs of Viscoelastic
Continua. Moscow: Krasand, 2012. — 412 p.

[73] Turbin M.V. Research on the mathematical model of foight liquid motion / M.V. Turbin
// Proceedings of Voronezh State University. Series: Physics. Mathematics. — 2003. — no. 1.
— P. 169–181.

[74] Turbin M.V. Investigation of the generalized mathematical model of calvin-voigt liquid
motion / M.V. Turbin // Proceedings of Voronezh State University. Series: Physics. Mathematics.
— 2004. — no. 1. — 163–179.

[75] Vorotnikov D.A. On the solvability of the initial-value problem for the motion equations
of nonlinear viscoelastic medium in the whole space / D.A. Vorotnikov, V.G. Zvyagin // Nonlin.
Anal. TMA. — 2004. — V. 58. — P. 631–656.

[76] Vorotnikov D.A. Approximating-topological methods in some problems of hydrodynamics/
D.A. Vorotnikov, V.G. Zvyagin // Fix. Point Theor. and Appl. — 2008. — V. 3, no. 1. —
P. 23–29.

140 ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2014. № 2



Existence and uniqueness results for a coupled problem in continuum thermomechanics

Орлов Владимир Петрович, доктор
физико-математических наук, профессор
кафедры математического моделирования,
математический факультет, Воронеж-
ский государственный университет,
г. Воронеж, Российская Федерация
E-mail: orlov_vp@mail.ru

Orlov V.P., doctor of physico-mathematical
Sciences, Professor of Department of math-
ematical modeling, mathematics faculty,
Voronezh State University, Voronezh, Rus-
sian Federation
E-mail: orlov vp@mail.ru

Звягин Виктор Григорьевич, Научно-
исследовательский институт матема-
тики Воронежского государственного
университета, г. Воронеж, Российская
Федерация
E-mail: zvg@math.vsu.ru

Zvyagin V. G., Research Institute of Mathe-
matics, Voronezh State University, Voronezh
Russian Federation
E-mail: zvg@math.vsu.ru

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2014. № 2 141


