О НЕВЫРОЖДЕННОСТИ СУММЫ ДЕФИНИТНЫХ ПОДПРОСТРАНСТВ*

Т. Я. Азизов, В. А. Сендеров

Воронежский государственный университет

Поступила в редакцию 19.02.2013 г.

Аннотация: в этой статье рассмотрены следующие вопросы геометрии гильбертовых пространств с индефинитной метрикой: Всегда ли замыкание суммы $\mathcal{L} = \overline{\mathcal{L}_+ + \mathcal{L}_-}$ положительного \mathcal{L}_+ и отрицательного \mathcal{L}_- подпространств является невырожденным? Если нет, то при каких естественных условиях это все же справедливо? При каких условиях пространство $\mathfrak L$ является пространством Крейна? Ответ на первый вопрос отрицателен и получены ответы на два других.

Ключевые слова: индефинитная метрика, дефинитное подпространство, вырожденное подпространство, изотропная часть подпространства.

Abstract: in this paper the following geometrical questions for Hilbert spaces with an indefinite metric are considered: Is the sum $\mathfrak{L} = \mathfrak{L}_+ + \mathfrak{L}_-$ of a positive \mathfrak{L}_+ and a negative \mathfrak{L}_- subspaces always non-degenerate? If not by which natural assumptions is it true? By which assumptions such the sum \mathfrak{L} is a Krein space?

Keywords: indefinite metric, definite subspace, degenerate subspace, isotropic part of a subspace.

Пусть \mathfrak{H} — линейное пространство, снабженное полуторалинейной формой $[\cdot,\cdot]$. Объект $\mathcal{K}:=\{\mathfrak{H},[\cdot,\cdot]\}$ называется пространством с индефинитной метрикой, или коротко, индефинитным пространством. Говорят, что \mathcal{K} — пространство \mathcal{K} рейна, если его можно представить как сумму двух $[\cdot,\cdot]$ -ортогональных друг другу подпространств \mathcal{K}^{\pm} : $\mathcal{K}=\mathcal{K}^{+}[\dot{+}]\mathcal{K}^{-}$ таких, что $\{\mathcal{K}^{\pm},\pm[\cdot,\cdot]\}$ — гильбертовы пространства. В этом случае в пространстве \mathcal{K} можно ввести скалярное произведение (x,y)=[Jx,y], где $J=P^+-P^-$, P^\pm — взаимно-дополнительные проекторы на \mathcal{K}^{\pm} , соответственно. Пространство $\mathfrak{H}=\{\mathcal{K},(\cdot,\cdot)\}$ является гильбертовым и так как [x,y]=(Jx,y), то коротко называется J-пространством. Не ограничивая общности, в подавляющем большинстве вопросов понятия пространств \mathcal{K} Крейна и J-пространств отождествляют. Так как любое пространство с индефинитной метрикой можно представить подпространством некоторого пространства \mathcal{K} крейна, то всюду ниже мы будем это предполагать и вести речь о J-пространствах и их подпространствах.

Мы надеемся, что читатель знаком с основами теории индефинитных пространств хотя бы в пределах первой главы книги [1].

Напомним, что одним из отличительных геометрических свойств индефинитного пространства (и, в частности, пространства Крейна) является то, что сумма подпространства (≡ замкнутого линеала) и его [·,·]-ортогонального дополнения не всегда равна всему пространству и, более того, даже не всегда замкнута. Поскольку объектом исследования является

^{*} Исследования Т.Я. Азизова поддержаны грантом РФФИ 12-01-00102-а

[©] Азизов Т. Я., Сендеров В. А., 2013

индефинитное пространство, то естественно ставится вопрос о вырожденности или невырожденности подпространств, т.е., существует или нет в подпространстве ненулевой вектор, J-ортогональный этому подпространству.

Предлагаемая читателю статья посвящена геометрии гильбертовых пространств с индефинитной метрикой и в ней будут решаться следующие основные вопросы:

- **1.** Всегда ли замыкание суммы $\mathcal{L} = \overline{\mathcal{L}_{+} + \mathcal{L}_{-}}$ положительного \mathcal{L}_{+} и отрицательного \mathcal{L}_{-} подпространств является невырожденным?
- 2. Если нет, то при каких естественных условиях это все же справедливо?
- 3. При каких условиях пространство £ является пространством Крейна?
- **1.** Покажем, что даже в случае J-ортогональных подпространств \mathfrak{L}_+ и \mathfrak{L}_- ответ на первый вопрос в общем случае отрицателен.

Существование соответствующего примера может быть доказано на основе достаточно общего результата [2, Теорема 1.1] для нормированных пространств, однако мы предпочли привести прямую конструкцию.

Пример 1. Пусть

$$\mathfrak{H} = \mathfrak{H}^+ \oplus \text{n.o.}\{e\} \oplus \mathfrak{H}^- \tag{1}$$

— ортогональное разложение гильбертова пространства с сепарабельными бесконечномерными составляющими \mathfrak{H}^{\pm} . Пусть G: л.о. $\{e\} \oplus \mathfrak{H}^{-} \to$ л.о. $\{e\} \oplus \mathfrak{H}^{-} \to$ самосопряженный оператор, являющийся строгим, но не равномерным сжатием, т.е. $\|Gx\| < \|x\|, \ 0 \neq x \in$ л.о. $\{e\} \oplus \mathfrak{H}^{-}$, и $\|G\| = 1$. Выберем оператор G таким, что $e \notin \text{ran}(I - G)$, где через ran(I - G) обозначена область значений оператора I - G. Пусть

$$U: \pi.o.\{e\} \oplus \mathfrak{H}^- \to \mathfrak{H}^+$$

— унитарный оператор. Введем в рассмотрение операторы

$$K = G^{1/2}U^* : \mathfrak{H}^+ \to \text{л.o.}\{e\} \oplus \mathfrak{H}^-$$

И

$$K^* = UG^{1/2} : \text{л.o.}\{e\} \oplus \mathfrak{H}^- \to \mathfrak{H}^+.$$

Эти операторы являются строгими сжатиями.

Введем в \mathfrak{H} индефинитную метрику: $[x,y]=(J_0x,y)$, где $J_0x=x_+-x_-$ для любого $x=x_++\alpha e+x_-, x_\pm\in\mathfrak{H}^\pm$. Относительно этой индефинитной метрики подпространство $\mathfrak{L}_+=\{x=x_++Kx_+\mid x_+\in\mathfrak{H}^+\}$ является положительным, а $\mathfrak{L}_-=\{y=y_-+K^*y_-\mid y_-\in\mathfrak{H}^-\}$ — отрицательным. Кроме того, [x,y]=0 при $x\in\mathfrak{L}_+, y\in\mathfrak{L}_-$. Проверим, что

$$\mathfrak{H} = \overline{\mathfrak{L}_{+} \dot{+} \mathfrak{L}_{-}}.$$

Предположим, что вектор $z \in \mathfrak{H}$ ортогонален $\mathfrak{L}_+\dot{+}\mathfrak{L}_-$. Тогда он должен быть ортогонален \mathfrak{L}_+ и потому имеет представление $z=z_--K^*z_-$ с некоторым $z_-\in$ л.о. $\{e\}\oplus\mathfrak{H}^-$. Из условия $(z_--K^*z_-,y_-+K^*y_-)=0,\ y_-\in\mathfrak{H}^-$, следует, что $0=((I-KK^*)z_-,y_-)=((I-G)z_-,y_-),$ что влечет $(I-G)z_-=\lambda e$. Так как по условию $e\notin \operatorname{ran}(I-G),$ то $\lambda=0$. Осталось заметить, что $\|Gx\|<\|x\|,\ x\neq 0$, обеспечивает равенство $z_-=0$, а потому справедливо (2).

Таким образом, хотя подпространства \mathfrak{L}_{\pm} дефинитны и ортогональны друг другу относительно индефинитной метрики, замыкание их суммы — вырожденное подпространство.

2. Однако ситуация меняется, если хотя бы одно из подпространств \mathfrak{L}_+ или \mathfrak{L}_- равномерно дефинитно, т.е. существует такое $\alpha > 0$, что $|[x,x]| \geqslant \alpha(x,x)$ при всех $x \in \mathfrak{L}_\pm$, соответственно. Прежде докажем некоторые вспомогательные предложения.

Лемма 2. Пусть \mathfrak{L}_{\pm} — неотрицательный/неположительный линеал, соответственно, $x_{\pm} \in \mathfrak{L}_{\pm}$ и $x_{+} + x_{-}$ — изотропный вектор в $\mathfrak{L}_{+} + \mathfrak{L}_{-}$. Тогда x_{\pm} — изотропный вектор в $\mathfrak{L}_{+} + \mathfrak{L}_{-}$.

Доказательство. В силу изотропности вектора $x_{+} + x_{-}$ в сумме $\mathfrak{L}_{+} + \mathfrak{L}_{-}$ имеем

$$0 = [x_{+} + x_{-}, x_{+} - x_{-}] = \operatorname{Re}[x_{+} + x_{-}, x_{+} - x_{-}] = [x_{+}, x_{+}] - [x_{-}, x_{-}].$$

Из неотрицательности/неположительности \mathfrak{L}_{\pm} следует $[x_+, x_+] = [x_-, x_-] = 0$, т.е. векторы x_{\pm} нейтральны, а потому они изотропны в неотрицательном/неположительном подпространстве \mathfrak{L}_{\pm} , соответственно. С учетом этого и того, что сумма $x_+ + x_-$ изотропна в $\mathfrak{L}_+ + \mathfrak{L}_-$, получаем изотропность x_{\pm} в $\mathfrak{L}_+ + \mathfrak{L}_-$.

Из Леммы 2 сразу следует

Лемма 3. Пусть \mathfrak{L}_{\pm} — положительный и отрицательный линеал, соответственно. Тогда $\mathfrak{L}_{+}\dot{+}\mathfrak{L}_{-}$ — невырожденный линеал.

Лемма 4. Пусть:

1) на линеале

$$\mathfrak{L}_{+} \dotplus \mathfrak{L}_{-} \tag{3}$$

заданы норма $\|\cdot\|$ и полуторалинейная эрмитова форма $[\cdot,\cdot]$;

- 2) функция [x,x] равномерно непрерывна на шаре $\{x: ||x|| \le 1\}$;
- 3) $[x_+, x_+] \geqslant \alpha ||x_+||^2$ npu $\sec x x_+ \in \mathfrak{L}_+$ и некотором $\alpha > 0$;
- 4) $[x_-, x_-] \leqslant 0$ npu $\sec x x_- \in \mathfrak{L}_-$.

Тогда сумма (3) топологическая.

Доказательство. Предположив противное, без ограничения общности можно считать $x_{+,n}-x_{-,n}\to 0$ при $(\mathbb{N}\ni)n\to\infty$, где $x_{+,n}\in\mathfrak{L}_+,\,x_{-,n}\in\mathfrak{L}_-,\,1\geqslant \|x_{+,n}\|\geqslant c>0,\,1\geqslant \|x_{-,n}\|$ при всех $n\in\mathbb{N}$ и некотором числе c. Отсюда для всякого $\varepsilon>0$ существует число $n\in\mathbb{N}$ такое, что

$$\varepsilon > |[x_{+,n}, x_{+,n}] - [x_{-,n}, x_{-,n}]| \ge |[x_{+,n}, x_{+,n}]| \ge \alpha c^2 > 0.$$

Противоречие.

Применяя Лемму 3 и Лемму 4, получим

Предложение 5. Пусть \mathfrak{L}_{\pm} — положительное/отрицательное подпространство, соответственно. Если хотя бы одно из них равномерно дефинитно, то их сумма — невыроженное подпространство.

Пример 6. Рассмотрим разложение (1) и введем индефинитную метрику с помощью самосопряженного оператора $G: G(x_+ + \lambda e + x_-) = G_+ x_+ - G_- x_-$, где $G_\pm > 0$, причем $0 \notin \rho(G_+)$. Обозначим \widetilde{G}_- расширение G_- на л.о. $\{e\} \oplus \mathfrak{H}^-$, положив $\widetilde{G}_-e = 0$. Линеал $\mathfrak{L}_- = \{x = x_- + G_+^{-1/2} S \widetilde{G}_-^{-1/2} x_-\}$ отрицателен, если S: л.о. $\{e\} \oplus \mathfrak{H}^- \to \mathfrak{H}^+$ строгое сжатие на области значений гап $G_-^{1/2} (= \operatorname{ran} \widetilde{G}_-^{-1/2})$ оператора $G_-^{1/2}$ и $e \notin \operatorname{dom}(G_+^{-1/2} S \widetilde{G}_-^{-1/2})$.

Построим пример оператора $G_+^{-1/2}S\widetilde{G}_-^{-1/2}$ такого, что он плотно задан, замкнут и подпространство \mathfrak{L}_- отрицательно. Будем считать, что гильбертовы подпространства \mathfrak{H}^+ и \mathfrak{H}^- совпадают, т.е. $\mathfrak{H}^+=\mathfrak{H}^-=:\mathcal{G}$. Пусть A_0 — равномерно положительный плотно заданный симметрический оператор в пространстве \mathcal{G} с индексами дефекта (1,1). Пусть A — равномерно положительное самосопряженное расширение оператора A_0 и его область определения $\mathrm{dom}\,A=\mathrm{dom}\,A_0+\mathrm{n.o.}\{f\}$ с некоторым $f\in\mathrm{dom}\,A_0^*\setminus\mathrm{dom}\,A_0$. Пусть $G_+=A^{-6}$ и $G_-=A^{-2}$. Положим $S(\lambda e+x)=A^{-1}/(2\|A^{-1}\|)x$ при всех комплексных λ и $x\in\mathfrak{H}_-$. Множество $\mathrm{n.o.}\{e+f\}+\mathrm{dom}\,A_0$ плотно в $\mathrm{n.o.}\{e\}\oplus\mathfrak{H}^-$ и оператор $K:K(\lambda(e+f)+x)=G_+^{-1/2}SG_-^{1/2}(x+\lambda f)=A/(2\|A^{-1}\|)(x+\lambda f)$ с $\mathrm{dom}\,K=\mathrm{n.o.}\{e+f\}+\mathrm{dom}\,A_0, x\in\mathrm{dom}\,A_0$, плотно задан в $\mathrm{n.o.}\{e\}\oplus\mathfrak{H}^-$, $e\notin\mathrm{dom}\,K$ и K — замкнутый оператор, поскольку он является одномерным расширением замкнутого оператора A_0 . Следовательно, $\mathfrak{L}_-=\{x=x_-+Kx_-\mid x_-\in\mathrm{n.o.}\{e+f\}+\mathrm{dom}\,A_0\}$ — искомое отрицательное подпространство.

По построению, $\mathfrak{H}_+ + \mathfrak{L} = \mathfrak{H}_+ + \pi$.о. $\{e+f\} + \text{dom } A_0$ плотно в \mathfrak{H} , а потому замыкание суммы регулярного подпространства \mathfrak{H}_+ и отрицательного \mathfrak{L} вырождено.

3. Перейдем теперь к ответу на основной — третий — вопрос.

Лемма 7. Пусть $\mathfrak{L} - G$ -пространство, $\mathfrak{L}_+ - p$ авномерно положительное (полное) подпространство в \mathfrak{L} . Тогда $\mathfrak{L} = \mathfrak{L}_+[\dot{+}]\mathfrak{L}_+^{[\perp]}$.

Доказательство. Без ограничения общности будем считать $\mathfrak L$ полным пространством. Согласно [1, с. 58–59] пространство $\mathfrak L$ может быть расширено до пространства Крейна $\mathfrak H$. Как известно [1, Теорема 1.7.16], равномерно положительное подпространство $\mathfrak L_+$ порождает разложение:

$$\mathfrak{H}=\mathfrak{L}_{+}[\dot{+}]\mathfrak{L}_{+}^{[\perp]_{\mathfrak{H}}}.$$

Остается заметить, что $\mathfrak{L}=\mathfrak{L}_{+}[\dot{+}](\mathfrak{L}_{+}^{[\perp]_{\mathfrak{H}}}\cap\mathfrak{L})$ и $(\mathfrak{L}_{+}^{[\perp]_{\mathfrak{H}}}\cap\mathfrak{L})=\mathfrak{L}_{+}^{[\perp]_{\mathfrak{L}}}$

Теорема 8. Пусть \mathfrak{H} — гильбертово пространство с индефинитной метрикой $[\cdot,\cdot]$, допускающее следующие разложения:

$$\mathfrak{H} = \mathfrak{L}_{+} \dot{+} \mathfrak{L}_{-},\tag{4}$$

где \mathfrak{L}_+ – равномерно положительное подпространство и \mathfrak{L}_- – неположительное подпространство, и

$$\mathfrak{H} = \mathfrak{H}_1^+[\dot{+}]\mathfrak{H}_1^-, \tag{5}$$

еде \mathfrak{H}_1^+ — положительное подпространство, \mathfrak{H}_1^- — неположительное подпространство, $[\cdot,\cdot]$ -ортогональное \mathfrak{H}_1^+ .

Tогда \mathfrak{H}_1^+ — равномерно положительное подпространство.

Доказательство. Поскольку \mathfrak{L}_+ — равномерно положительное подпространство, согласно Лемме 7 имеем

$$\mathfrak{L} = \mathfrak{L}_{+}[\oplus] \mathfrak{L}_{+}^{[\perp]}. \tag{6}$$

Без ограничения общности будем считать, что разложение (6) является каноническим, т.е. подпространства \mathfrak{L}_+ и $\mathfrak{L}_+^{[\perp]}$ взаимно ортогональны не только относительно индефинитной метрики, но и относительно скалярного произведения. Поэтому в разложении (6) оператор Грама G имеет следующее матричное представление:

$$G = \begin{bmatrix} G_+ & 0\\ 0 & -G_- \end{bmatrix}, \qquad G_{\pm} \geqslant 0, \tag{7}$$

где, поскольку \mathfrak{L}_+ равномерно дефинитно, $0 \in \rho(G_+)$, т.е. $G_+ >> 0$.

Разложение (5) также является каноническим относительно скалярного произведения

$$(x,y)_1 = (x^+, y^+) + (x^-, y^-), \quad x = x^+ + x^-, \ y = y^+ + y^-, \quad x^{\pm}, y^{\pm} \in \mathfrak{H}_1^{\pm}$$

Поскольку исходное скалярное произведение и $(\cdot,\cdot)_1$ эквивалентны, то существует такой непрерывный равномерно положительный оператор W, что $(x,y)_1=(Wx,y)$. Поскольку индефинитная метрика непрерывна относительно W-скалярного произведения, то существует ограниченный W-самосопряженный оператор G_1 , такой что $[x,y]=(G_1x,y)_1=(WG_1x,y)$, т.е. $G_1=W^{-1}G$. Теперь заметим, что $0\in \rho(G_{1,+})$ тогда и только тогда, когда существует такое $\varepsilon>0$, что все $\lambda:0<\lambda<\varepsilon$ регулярны для оператора $G_1=W^{-1}G$. Докажем последнее. Пусть

$$W = \begin{bmatrix} W_1 & W_{12} \\ W_{12}^* & W_2 \end{bmatrix}$$

— матричное представление оператора W относительно разложения (6). Так как $W^{-1}G - \lambda = W^{-1}(G - \lambda W)$, то достаточно проверить, что при

$$0 < \lambda < \inf_{\|x_+\|=1} (W_1^{-1/2} G_+ W_1^{-1/2} x_+, x_+)$$

имеем $0 \in \rho(G - \lambda W)$. Последнее следует из того, что существует и непрерывен следующий оператор:

$$A = \begin{bmatrix} A_1 & A_{12} \\ A_{21} & A_2 \end{bmatrix},$$

где

$$A_{1} = (G_{+} - \lambda W_{1} + \lambda^{2} W_{12} (G_{-} + \lambda W_{2})^{-1} W_{12}^{*})^{-1}$$

$$A_{2} = -(G_{-} + \lambda W_{2} + \lambda^{2} W_{12}^{*} (G_{+} - \lambda W_{1})^{-1} W_{12})^{-1}$$

$$A_{12} = \lambda (G_{+} - \lambda W_{1})^{-1} W_{12} (G_{-} + \lambda W_{2} + \lambda^{2} W_{12}^{*} (G_{+} - \lambda W_{1})^{-1} W_{12})^{-1}$$

$$= \lambda (G_{+} - \lambda W_{1})^{-1} W_{12} A_{2}$$

$$A_{21} = -\lambda (G_{-} + \lambda W_{2})^{-1} W_{12}^{*} (G_{+} - \lambda W_{1} + \lambda^{2} W_{12} (G_{-} + \lambda W_{2})^{-1} W_{12}^{*})^{-1}$$

$$= -\lambda (G_{-} + \lambda W_{2})^{-1} W_{12}^{*} A_{1}$$

В силу выбора λ все операторы, для которых написан обратный, являются равномерно положительными и потому оператор A корректно задан и является обратным к оператору

$$G - \lambda W = \begin{bmatrix} G_+ - \lambda W_1 & -\lambda W_{12} \\ -\lambda W_{12}^* & -G_- - \lambda W_2 \end{bmatrix}.$$

Из доказанной теоремы непосредственно вытекает приведенное ниже следствие.

Следствие 9. Пусть \mathfrak{L}_{\pm} — равномерно положительное/отрицательное подпространство, соответственно. Тогда $\mathfrak{L}_{+}\dot{+}\mathfrak{L}_{-}$ — пространство Крейна.

СПИСОК ЛИТЕРАТУРЫ

- [1] Азизов Т.Я., Иохвидов И.С. Основы теории линейных операторов в пространствах с индефинитной метрикой, М.: Наука, 1986, 352 с.
- [2] V.A. Khatskevich, V.A. Senderov, On properties of linear operators of certain classes in rigged spaces with indefinite metric, Integral Equations and Operator Theory, 15 (1992), 301–324

Азизов Т. Я., доктор физико-математических наук, профессор, $B\Gamma Y$ E-mail: azizov@math.vsu.ru

Azizov Tomas Yakovlevich, Department of Mathematics, Voronezh State University E-mail: azizov@math.vsu.ru

Сендеров В. А., Пятницкое шоссе, 23-2-156, Москва, 125430

 $E\text{-}mail:\ sender ov.valery@gmail.com$

Senderov Valerii Anatol'evich, Pyatnitskoe highway, 23-2-156, Moscow, 125430, Russia E-mail: senderov.valery@gmail.com