УДК 533.913

АППРОКСИМАЦИЯ ПЛОТНОСТИ ЗАРЯДА, ИНДУЦИРОВАННОГО КУЛОНОВСКИМ ПОЛЕМ В ВАКУУМЕ

Н. Л. Манаков, А. А. Некипелов

Воронежский государственный университет

Поступила в редакцию 13.09.2013 г.

Аннотация: в настоящей работе представлена численная аппроксимация плотности индуцированного заряда как функции расстояния от ядра и заряда ядра. Приведеные формулы и таблицы коэффициентов дают значения плотности с относительной погрешностью не хуже 10^{-6} для значений $\alpha Z \leq 0.75$, и не хуже 10^{-8} при $\alpha Z = 0$. Ядро рассматривалось как точечное.

Ключевые слова: поляризация вакуума, КЭД - поправки, многозарядные ионы, квантовая электродинамика (КЭД).

Abstract: in this paper the numerical approximation for the induced charge density as a function of distance from the nucleus and the nuclear charge is presented. The obtained formulas and tables of coefficients give the charge density values with a relative error not worse than 10^{-6} for values of $\alpha Z \leq 0.75$ and not worse than 10^{-8} at $\alpha Z = 0$. Nucleus considered as a point.

 ${\bf Keywords}:$ vacuum polarization, QED - corrections, multiply charged ions, quantum electrodynamics.

В недавней публикации [1] нами были получены аппроксимации потенциала, обусловленного поляризацией вакуума кулоновским полем точечного ядра. В настоящей работе получена аппроксимация соответствующей этому потенциалу плотности индуцированного заряда:

$$\rho(r) = \rho^{(1)}(r) + \rho^{(3)}(r) + \rho^{(5)}(r) + \dots = \rho^{(1)}(r) + \rho^{(3+)}(r), \quad e\rho^{(n)} \sim \alpha(\alpha Z)^n, \tag{1}$$

где $\rho^{(1)}(r)$ — линейная по αZ часть плотности, соответствующая хорошо известному потенциалу Юлинга. В статье используются релятивистские единицы: $\hbar = c = m_e = 1$, $\alpha = e^2/\hbar c$ – постоянная тонкой структуры, e > 0 – элементарный заряд.

Для построения аппроксимаций рассчитанной нами плотности $\rho^{(3+)}$ (подробности и ссылки приведены в [1]) была вычислена ее кубичная по Z часть $\rho^{(3)}(r, Z)$ и представлена в виде

$$\rho^{(3)}(r,Z) = e(\alpha Z)^3 \,\tilde{\rho}^{(3)}(r). \tag{2}$$

Для области значений r < 2.5 использовалось представление

$$\widetilde{\rho}^{(3)}(r) = \sum_{i=0}^{7} c_i r^{i-1} + \ln r \sum_{i=0}^{6} c_{8+i} r^i + \ln^2 r \sum_{i=0}^{2} c_{15+i} r^{2i+1}.$$
(3)

Для интервала $r \in [2.5, 7.5)$

$$\widetilde{\rho}^{(3)}(r) = \frac{1}{r^7} \sum_{i=0}^{15} c_{18+i} (r-5)^i.$$
(4)

[©] Манаков Н. Л., Некипелов А. А., 2013

Для $r \ge 7.5$

$$\tilde{\rho}^{(3)}(r) = \sum_{i=0}^{14} c_{34+i} r^{-2i-7}.$$
(5)

Коэффициенты c_i даны в таблице 1.

i	c_i	c_{18+i}	c_{34+i}
0	2.63769861667016d-2	8.6339233856d-03	4.503163699034d-03
1	1.31180417294048d-1	-1.7667594632d-03	4.744450370785d-02
2	-2.47283675280857d-2	1.2951907970d-04	7.612555542758d- 01
3	-1.74890019800366d-1	1.6184737316d-04	2.120686622504d 01
4	3.73857543897508d-3	-7.1436055234d-05	-1.483167000610d 03
5	-4.95661095534960d-3	1.1761720295d-05	9.012141793257d 05
6	4.55741130044973d-2	8.1895447848d-07	-1.959039781880d 08
7	-1.56917989898583d-3	-8.7447616671d-07	2.038966879940d 10
8	1.06103283062007 d-1	2.0587301503d-07	6.570065680989d 11
9	1.76212200684044d-1	-1.8722443941d-08	-4.049868497673d 14
10	6.30525975517586d-3	-2.7747171095d-09	4.710790124433d 16
11	-3.82098973336047d-2	1.4276961470d-09	-2.895677597100d 18
12	-4.09764415175173d-2	-3.1907722344d-10	1.037115124125d 20
13	-2.10576453523172d-2	2.7386013410d-11	-2.055832925580d 21
14	2.64338144416592d-4	7.0706922426d-12	1.754204984942d 22
15	2.53360984212956d-2	-1.5473376518d-12	
16	-2.62576160699604d-3		
17	4.43947106908109d-3		

Таблица 1. Коэффициенты c_i в формулах (3) – (5)

Во всех таблицах приведенное количество десятичных знаков обеспечивает заявленную точность, при этом предполагается, что при определении остальных констант и в вычислениях будет использовано восьмибайтное представление вещественных чисел (15-16 знаков). Цифры после буквы d обозначают десятичный порядок, например 1.508d-6 = $1.508 \cdot 10^{-6}$.

Формулы (2) - (5) дают значения $\rho^{(3)}(r, Z)$ с относительной погрешностью не хуже 10^{-8} при $0 < r < \infty$.

Ниже приведены формулы, позволяющие вычислить плотность $\rho^{(3+)}(r,Z)$, записанную в форме

$$\rho^{(3+)}(r,Z) = e(\alpha Z)^3 \,\tilde{\rho}^{(3+)}(r,\lambda),\tag{6}$$

для значений $\alpha Z \leq 0.75$, т.е. вплоть до Z = 103, с относительной погрешностью не хуже 10^{-6} . Здесь $\lambda = (\alpha Z)^2/(1 + \lambda_1) = 1 - \lambda_1$, где $\lambda_k = \sqrt{k^2 - (\alpha Z)^2}$.

Для области значений r < 0.24 использовалось представление

$$\tilde{\rho}^{(3+)}(r,\lambda) = \frac{b^{(1)}}{r} + \frac{g_{10}}{4\pi} b^{(2)} r^{\varepsilon_1} + \frac{1}{4\pi} \sum_{k=1}^{2} \sum_{n=0}^{5-2k} r^{2k+n-2} \left\{ g_{kn} \left[a_{kn}^{(0)} e_{1k} + a_{kn}^{(-)} e_{2k} - \frac{a_{kn}^{(-)} \ln r}{k(k+\lambda_k)^2} \right] - \frac{2(4k+2n+1+\varepsilon_k)}{k+\lambda_k} a_{kn}^{(0)} - \frac{(2n+1)a_{kn}^{(-)}}{k(k+\lambda_k)^2} \right\} + \rho^{\text{amp}}, \quad (7)$$

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2013. № 2

где

$$\rho^{\text{amp}} = (12f_1 + g_{11}e_{11}f_2)r + (20f_3 + g_{12}e_{11}f_4 + g_{20}e_{12}f_5)r^2 + (30f_6 + g_{13}e_{11}f_7 + g_{21}e_{12}f_8)r^3.$$
(8)

Здесь
$$g_{kn} = (2\lambda_k + n)(2\lambda_k + n + 1), \ e_{lk} = \frac{e_l(\varepsilon_k \ln r)}{(\alpha Z)^{2l}},$$

 $\varepsilon_k = 2(\lambda_k - k) = -\frac{2(\alpha Z)^2}{\lambda_k + k}, \ e_n(x) = e^x - \sum_{m=0}^{n-1} \frac{x^m}{m!} = \sum_{m=n}^{\infty} \frac{x^m}{m!},$
 $a_{10}^{(0)} = -\frac{2}{9}, \ a_{11}^{(-)} = \frac{1}{6\pi}, \ a_{11}^{(0)} = \frac{35}{72\pi} - \frac{5\pi}{54} - \frac{\gamma_e}{6\pi}, \ a_{20}^{(0)} = \frac{4}{675}, \ a_{12}^{(0)} = -\frac{4}{675},$
 $a_{13}^{(-)} = \frac{1}{90\pi}, \ a_{21}^{(-)} = -\frac{1}{135\pi}, \ a_{10}^{(-)} = a_{12}^{(-)} = a_{20}^{(-)} = a_{13}^{(0)} = a_{21}^{(0)} = 0.$ (9)
 $b^{(1)} = b_0 + \frac{1}{\lambda_1^3(\lambda_1 - \frac{1}{2})} \sum_{i=1}^7 b_i \lambda^i, \ b^{(2)} = b_8 + \frac{1}{(\lambda_1 - \frac{1}{2})} \sum_{i=1}^9 b_{8+i} \lambda^i,$
 $f_i = \frac{1}{4\pi} \sum_{k=1}^6 f_{ik} \lambda^{k-1}, \ \gamma_e = 0.577... -$ постоянная Эйлера.

Значения коэффициентов b_i и f_{ik} приведены в таблицах 2 и 3.

Таблица 2. Коэффициенты b_i

i	b_i	b_{i+1}	b_{i+2}
0	2.637698616666d-2	2.710204893304d-2	-8.487970601686d-2
3	8.719002823789d-2	-2.830031402253d-2	-7.563907945933d-4
6	-2.937542043038d-4	-1.053363353016d-4	8.95586820d-2
9	-2.88082915d-1	6.60130588d-1	-1.44258263d 0
12	2.83101541d 0	-5.52265484d 0	9.62218900d 0
15	-1.35512025d 1	1.27659167d 1	-5.83076140d 0

По поводу выбора представления (7), (8) заметим следующее. Разложение потенциала, соответствующего плотности $\rho^{(3+)}(r)$ при малых r по целым и нецелым степеням r, а также аналитические выражения для нескольких первых коэффициентов этого разложения получены в [2] и [3]. Однако, как мы выяснили, часть последующих коэффициентов этого разложения в такого разложения в качестве базиса для численного расчета, несмотря на формальное сокращение полюсных слагаемых при разных степенях r. Мы установили структуру полюсных коэффициентов и использовали ее для построения более подходящего базиса, содержащего целые степени r, log r и функции $e_1(\varepsilon_k \log r)$, $e_2(\varepsilon_k \log r)$, не имеющего особенностей при малых αZ . Подробное обоснование такого разложения $\rho^{(3+)}$ при малых r мы планируем сделать предметом отдельной публикации, хотя вкратце это изложено в [4].

Для области значений $r \in [0.24, 1.9)$ использовалось представление

$$\tilde{\rho}^{(3+)}(r,\lambda) = \tilde{\rho}^{(3)}(r) \left(1 + \sum_{i=0}^{10} \sum_{k=1}^{4} c_{ik} r^{i-4} \lambda^k \right), \tag{10}$$

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2013. № 2

Аппроксимация плотности заряда, индуцированного кулоновским полем в вакууме

k	f_{1k}	f_{2k}	f_{3k}	f_{4k}
1	-1.20424115d-1	-3.08850861d-2	-1.18805940d-1	2.56186665d 0
2	-1.32843212d 0	5.56055579 d-1	1.39218207d 1	-6.34247728d 0
3	2.77799713d 0	-2.33749801d 0	1.61080310d 1	-1.81356903d 1
4	-3.91836216d 0	5.74262686d 0	-1.04040729d 2	7.57217005d 1
5	2.83268480d 0	-7.97241190d 0	-6.86027455d 1	-7.34197224d 1
6	3.26632970d-1	4.40298590d 0	-2.96614359d 0	1.07021371d 1
k	f_{5k}	f_{6k}	f_{7k}	f_{8k}
1	-5.12034574d 0	2.32423093d-2	-1.75752566d 0	3.53669420d 0
2	1.55237841d 0	-8.63036597d 0	-1.12273479d 1	1.36602008d 1
3	4.62335049d 1	-1.28259976d 1	1.62328404d 1	-6.59775458d 1
4	-2.54346616d 1	7.46535111d 1	6.29554267d 1	-9.07849462d 1
5	-2.72781879d 1	3.77657957d 1	1.03248165d 1	2.53896994d 2
6	-6.76399510d 1	9.38247586d 0	-5.98294748d 0	4.01569281d 1

Таблица 3. Коэффициенты f_{ik} для r < 0.24

Таблица 4. Коэффициенты c_{ik} для $r \in [0.24, 1.9)$

i	c_{i1}	c_{i2}	c_{i3}	c_{i4}
0	-5.4165401d-5	-9.6500878d-7	3.0156108d-5	1.9394962d-5
1	1.2295631d-3	2.0372421d-4	-5.3259773d-4	-5.3427560d-4
2	-1.3943897d-2	-5.5723831d-3	2.6853075d-3	7.6719658d-3
3	1.2070952d-1	1.0764081d-1	4.7425629d-2	2.7815820d-3
4	5.5768910d-1	1.5914705 d-1	3.2933757d-2	-7.6710693d-3
5	-1.5087485d-1	-3.7855274d-2	1.5041870d-3	-4.6777653d-3
6	8.6420820d-2	2.1933618d-2	-2.9005788d-3	5.1051691d-3
7	-4.3051612d-2	-1.0443839d-2	2.7457623d-3	-1.1047170d-3
8	1.1848611d-2	2.2633995d-3	-1.5049352d-3	1.0377325d-4
9	-1.9340381d-3	-2.5941577d-4	3.6187406d-4	-8.6595366d-6

Таблица 5. Коэффициенты c_{ik} для $r \in [1.9, 7.0)$

i	c_{i1}	c_{i2}	c_{i3}
0	2.521165d-1	8.409315d-2	3.386764d-2
1	-1.048525d-1	-4.070093d-2	-1.187530d-2
2	7.608509d-4	1.830939d-3	-9.187259d-4
3	3.372191d-3	1.261916d-3	3.582639d-4
4	5.818615d-4	2.014897d-4	1.935931d-4
5	-1.718826d-4	-9.521914d-5	-3.734766d-5
6	-3.509064d-5	-7.522744d-6	-4.994717d-6
$\overline{7}$	3.532695 d-7	5.754002 d-7	-7.161087d-7
8	3.119665d-6	1.415370d-6	8.297636d-7
9	-1.716480d-7	-2.200984d-7	-1.135687d-7
10	-4.442326d-8	1.635563d-9	3.030026d-9

Н. Л. Манаков, А. А. Некипелов

i	c_i	c_{i+1}	c_{i+2}	c_{i+3}
0	1.49015861d-2	2.56145645d00	-1.52328728d03	7.72156568d05
4	-2.00279452d08	2.90859312d10	-2.28137168d12	9.92125236d13
8	-2.27741954d15	2.16516837d16	-7.07176039d-3	-1.95736029d00
12	9.57667711d02	-2.70346376d05	2.98552835d07	-1.26967299d09
16	1.87647696d10	-1.70092463d01	9.14133606d03	

Таблица 6. Коэффициенты с_i в формуле (12)

а для области $r \in [1.9, 7.0)$ — представление

$$\tilde{\rho}^{(3+)}(r,\lambda) = \tilde{\rho}^{(3)}(r) \left(1 + \sum_{i=0}^{10} \sum_{k=1}^{3} c_{ik}(r-4)^i \lambda^k \right), \tag{11}$$

Коэффициенты c_{ik} для этих двух интервалов даны в таблицах 4 и 5.

Для области $r \ge 7.0$ использовалось представление

$$\widetilde{\rho}^{(3+)}(r,\lambda) = \widetilde{\rho}^{(3)}(r) + \frac{\lambda}{r^{11}} \left(\sum_{i=0}^{9} \frac{c_i}{r^{2i}} + \lambda \sum_{i=0}^{6} \frac{c_{10+i}}{r^{2i}} + \lambda^2 \sum_{i=0}^{1} \frac{c_{17+i}}{r^{2i+4}} \right).$$
(12)

Коэффициенты c_i даны в таблице 6.

Таблица 7. Тестовые значения плотности $\widetilde{\rho}^{(3+)}(r,\lambda)$

r		$\alpha Z = 0$	$\alpha Z = 0.5$	$\alpha Z = 0.75$
0.2	точн.	3.69505989453d-2	4.18429537d-2	5.12034772d-2
	аппр.	3.69505989462d-2	4.18429497d-2	5.12034655d-2
	погр.	2.5d-11	9.6d-08	2.3d-07
1.0	точн.	7.25913721459d-4	7.84405851d-4	8.87626977d-4
	аппр.	7.25913721435d-4	7.84405678d-4	8.87626941d-4
	погр.	3.3d-11	2.3d-07	4.0d-08
3.0	точн.	4.61403436210d-6	4.84443526d-6	5.24317618d-6
	аппр.	4.61403436775d-6	4.84443362d-6	5.24317532d-6
	погр.	1.2d-09	3.4d-07	1.6d-07
8.0	точн.	2.66201474664d-9	2.66599988d-9	2.67248376d-9
	аппр.	2.66201473568d-9	2.66599946d-9	2.67248334d-9
	погр.	4.1d-09	1.6d-07	1.5d-07

В таблице 7 приведены точные и аппроксимированные значения плотности $\tilde{\rho}^{(3+)}(r,\lambda)$, а также относительные погрешности для значений r в каждом из интервалов аппроксимаций. Кроме того, для проверки качества аппроксимаций удобно использовать выражение для соответствующего плотности $\rho^{(3+)}$ потенциала

$$V^{(3+)}(r) = -4\pi \int_{r}^{\infty} r' \left(\frac{r'}{r} - 1\right) \rho^{(3+)}(r') \, dr',\tag{13}$$

воспользовавшись для $V^{(3+)}$ аппроксимациями, приведенными в [1].

СПИСОК ЛИТЕРАТУРЫ

[1] Манаков Н.Л. Аппроксимация потенциала поляризации вакуума кулоновским полем / Н.Л. Манаков, А.А. Некипелов // Вестник Воронежского государственного университета. Серия : физика, математика. — 2012. — № 2. — С. 53–57.

[2] Brown L. S. Vacuum polarization in a strong Coulomb field. II. Short-distance corrections / L. S. Brown, R. N. Cahn, and L. D. McLerran // Phys. Rev. D. — 1975. — V. 12. — Р. 596–608.
[3] Мильштейн А.И. Плотность индуцированного заряда в сильном кулоновском поле /

А.И. Мильштейн, В.М. Страховенко // ЖЭТФ. – 1983. – Т. 84, В. 4. – С. 1247–1256.

[4] Манаков Н.Л. Некоторые аналитические свойства потенциала поляризации вакуума кулоновским полем / Н.Л. Манаков, А.А. Некипелов // Тезисы докладов конференции и школы молодых учёных по фундаментальной атомной спектроскопии ФАС — XX 23–27 сентября 2013 г., Воронеж. — 2013. — С. 149–150.

Манаков Николай Леонидович, д.ф.-м.н., профессор каф. теоретической физики физического факультета ВГУ E-mail: manakov@phys.vsu.ru Teл.: (473)-220-87-56

Некипелов Александр Аркадьевич, к.ф.м.н., доцент каф. теоретической физики физического факультета ВГУ E-mail: nekipelov@phys.vsu.ru Ten.: (473)-220-87-56 Manakov Nikolai L., Doctor of Physics and Mathematics, professor, Physics Department, Voronezh State University E-mail: manakov@phys.vsu.ru Tel.: (473)-220-87-56

Nekipelov Alexandr A., Candidate of Physics and Mathematics, associate professor, Physics Department, Voronezh State University E-mail: nekipelov@phys.vsu.ru Tel.: (473)-220-87-56