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Abstract: in the framework of Lagrangian approach to hydrodynamics we suggest
a special stochastic perturbation of the flow of perfect incompressible fluid on flat n-
dimensional torus T n and obtain the description of viscous incompressible fluid with viscous
term in the form of some second order differential operator more general than Laplacian.
This model describes anisotropic fluids. We show that transition to Euler description of such
a fluid yields the solution of an analogue of Navier-Stokes equation without external force.
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INTRODUCTION

In this paper we present a development of idea, suggested in [1] (see also [2]), of the use of special
stochastic perturbations of flows of perfect fluids to obtain stochastic flows whose expectation describes
the motion of viscous fluids. This approach is based on machinery of mean derivatives (see [3], [4], [5]
and on geometry of groups of Sobolev diffeomorphisms (see [6]). The flow of perfect fluid is considered
as a curve in the group of diffeomorphisms and its stochastic perturbation satisfies a special equation
in terms of mean derivatives.

In [1] this idea is realized for classical viscous fluids for which Euler’s description is given by the
Navier-Stokes equation. Here we deal with the fluids for which in Euler’s description the Laplacian is
replaced by a more general second order differential operator. We interpret such equations as the ones
describing anisotropic fluids.

The research is supported in part by RFBR Grants 10-01-00143 and 12-01-00183.

1. PRELIMINARIES

Consider a stochastic process ξ(t) in Rn, where t ∈ [0, T ], given on a certain probability space
(Ω,F , P ), and such that ξ(t) is an L1-random variable for all t. The ”present” for ξ(t) is the least

complete σ-subalgebra N ξ
t of F that includes preimages of the Borel set of Rn under the map ξ(t) :

Ω → Rn. The least complete σ-subalgebra that includes preimages of the Borel set of Rn under the
map ξ(t) : Ω → Rn for s 6 t is called the ”past”σ-algebra and is denoted by Pξ

t . The least complete
σ-subalgebra that includes preimages of the Borel set of Rn under the map ξ(t) : Ω → Rn for s > t is

called the ”future”σ-algebra and is denoted by Fξ
t .

We denote by Eξ
t the conditional expectation with the respect to N ξ

t .

Below we most often deal with the diffusion processes of the form
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ξ(t) = ξ0 +

t∫

0

a(s, ξ(s))ds +Bw(t) (1)

in Rn and flat torus T n as well as natural analogue of such processes on groups of diffeomorphisms. In
(1) w(t) is a Wiener process adapted to ξ(t); a(t, x) is a vector field; B is a constant linear operator in
Rn.

Following [3], [4], [5] and [1] we give the following definitions:

Definition 1. The forward mean derivative Dξ(t) of the process ξ(t) at t is the L1-random variable
of the form

Dξ(t) = lim
∆t→0+

Eξ
t

(
ξ(t+∆t)− ξ(t)

∆t

)
(2)

where the limit is supposed to exist in L1(Ω,F , P ) and t→ 0+ means that t→ 0 and ∆t > 0

Definition 2. The backward mean derivative D∗ξ(t) of the process ξ(t) at t is the L1-random variable
of the form

D∗ξ(t) = lim
∆t→0+

Eξ
t

(
ξ(t)− ξ(t−∆t)

∆t

)
(3)

where the limit is supposed to exist in L1(Ω,F , P ) and t→ 0+ means that t→ 0 and ∆t > 0

From the properties of conditional expectation it follows that Dξ(t) and D∗ξ(t) can be represented
as compositions of ξ(t) and Borel measurable vector fields (called regressions)

Y 0(t, x) = lim
∆t→0+

Eξ
t

(
ξ(t+∆t)− ξ(t)

∆t
|ξ(t) = x

)
(4)

Y 0
∗ (t, x) = lim

∆t→0+
Eξ

t

(
ξ(t)− ξ(t−∆t)

∆t
|ξ(t) = x

)
(5)

on Rn. This means that Dξ(t) = Y 0(t, ξ(t)) and D∗ξ(t) = Y 0
∗ (t, ξ(t)). We notice that for a process of

type (1), Dξ(t) = a(t, ξ(t)) and so Y 0(t, x) = a(t, x).
Let Z(t, x) be a C2-smooth vector field on Rn.

Definition 3. The L1-limits of the form

DZ(t, ξ(t)) = lim
∆t→0+

Eξ
t

(
Z(t+∆t, ξ(t+∆t))− Z(t, ξ(t))

∆t

)
(6)

D∗Z(t, ξ(t)) = lim
∆t→0+

Eξ
t

(
Z(t, ξ(t))− Z(t−∆t, ξ(t−∆t)

∆t

)
(7)

are called forward and backward, respectively, mean derivatives of Z along ξ(t) at time instant t.

Certainly DZ(t, ξ(t)) and D∗Z(t, ξ(t)) can be represented in terms of corresponding regressions,
analogously to (4), (5). We denote these regressions by DZ and D∗Z (see e.g., [1]).

Lemma 1. For the process (1) in Rn the following formulae take place:

DZ =
∂

∂t
Z + (Y 0 · ∇)Z + B̃Z (8)

D∗Z =
∂

∂t
Z + (Y 0

∗ · ∇)Z − B̃Z (9)

where ∇ = ( ∂
∂x1 , ...,

∂
∂xn ) and B̃ = 1

2B̃
ij ∂2

∂xi∂xj is the second order differential operator with the matrix

(B̃ij) = BB
∗.
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2. THE MAIN IDEA

The main idea of description of viscous hydrodynamics in the language of mean derivatives is as
follows (see, e.g., [1], [2]). We deal with the fluids moving on a flat n-dimensional torus T n. It is the
quotient space of Rn with the respect the integral lattice where the Riemannian metric is inherited
from Rn. Consider the vector space V ect(s) of all Hs-vector fields (s > n/2 + 1) on T n. Introduce the
L2-inner product in V ect(s) by the formula

(X,Y ) =

∫

T n

〈X(m), Y (m)〉µ(dm) (10)

where 〈·, ·〉 is the Riemannian metric on T n and µ is the Riemannian volume form.
Denote by β the subspace of V ect(s) consisting of all divergence-free vector fields. Then consider

the orthogonal projection with respect to (10):

P : V ect(s) → β (11)

It follows from the Hodge decomposition that the kernel of P is the subspace consisting of all gradients.
Thus, for any Y ∈ V ect(s), we have

P (Y ) = Y − gradp (12)

where p is a certain Hs+1-function on T n, unique to within the additive constant for given Y .

Let a random flow ξ(t,m) with initial data ξ(0,m) = m ∈ T n be given on a flat n-dimensional
torus T n such that ξ(t,m) is the general solution of a stochastic differential equation of the type (1).
Suppose that D∗ξ(t,m) = u(t, ξ(t,m)), where u(t,m) is a C1-smooth in t and C2-smooth in m ∈ T n

divergence-free vector field on T n. Suppose also that ξ(t,m) satisfies the relation

PD∗D∗ξ(t,m) = F (t,m) (13)

where F (t,m) is a divergence-free vector field on T n. Taking into account formulae (8), (9) we obtain

PD∗D∗ξ(t,m) = P (
∂

∂t
u+ (u,∇)u−Bu) =

∂

∂t
u+ (u,∇)u−Bu− gradp (14)

Thus (13) means that u(t,m) is divergence-free and satisfies the relation

∂

∂t
u+ (u,∇)u−Bu− gradp = F (t,m) (15)

that is the Navier-Stokes type equation with the viscous termB and external force F (t,m). We interpret
(13) as a stochastic analogue of Newton’s second law on the group of Sobolev diffeomorphisms Ds(T n)
of the torus, subjected to the mechanical constraint.

3. BASIC NOTIONS FROM THE GEOMETRY OF GROUPS OF

DIFFEOMORPHISMS OF FLAT TORUS

Here, following [1], [2], [6], we present the basic facts from the geometry on infinite-dimensional
manifolds of Sobolev diffeomorphisms of the flat n-dimensional torus T n.

The tangent bundle to T n is trivial: TT n = T n × Rn. Note that the flat metric generates in the
second factor the inner product, same as in the copy of Rn from which the torus is obtained by the
factorization.
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Consider the set Ds(T n) of all diffeomorphisms of T n to itself belonging to the Sobolev space Hs,
where s > n/2 + 1. Recall that for s > n/2 + 1 the maps belonging to Hs are C1-smooth.

There is a structure of smooth Hilbert manifold on Ds(T n) as well as the natural group structure
with the respect to composition. A detailed descroption of structures and their interconnections can
be found in [6].

The tangent space TeDs(T n) at unit e = id is V ect(s). Also TeDs(T n) contains its subspace β
consisting of all divergence-free vector fiels on T n belonging to Hs.

The space TfDs(T n) where f ∈ Ds(T n) consists of the maps Y : T n → TT n such that πY (m) =
f(m), where π : TT n → T n is a natural projection. For any Y ∈ TfDs(T n) there exists unique
X ∈ TeDs(T n) such that Y = X ◦ f . In any TfDs(T n) we can define the L2-inner product by analogy
with (10) by formula

(X,Y ) =

∫

T n

〈X(m), Y (m)〉f(m)µ(dm) (16)

The family of these inner products forms a weak Riemannian metric on Ds(T n).
The right translation Rf : Ds(T n) → Ds(T n), where Rf (Θ) = Θ ◦ f for Θ, f ∈ Ds(T n), is C∞-

smooth. The tangent to the right translation takes the form TRf (X) = X ◦ f for X ∈ TDs(T n).
The left translation Lf : Ds(T n) → Ds(T n) where Lf (Θ) = f ◦ Θ for Θ, f ∈ Ds(T n) is only

continuous. But if we specify a vector x ∈ Rn and denote by lx : T n → tn the diffeomorphism
lx(m) = m + x modulo factorization with respect to the integral lattice, we obtain C∞-smooth left
translation Llx.

Introduce the operators
B : TT n → Rn (17)

the projection onto the second factor in T n × Rn, and

A(m) : Rn → TmT n (18)

the converse to B linear isomorphism of Rn onto the tangent space to T n at m ∈ T n. The map A may
be considered as a map A : Rn → β ⊂ TeDs(T n).

Introduce the linear isomorphism

Qg(m) = A(g(m)) ◦B (19)

where g ∈ Ds(T n), m ∈ T n. For every Y ∈ TfDs(T n) we get QgY = A(g(m)) ◦B(Y (m)) ∈ TgDs(T n)
for any f ∈ Ds(T n). In particular, QeY ∈ V ect(s). The operation Qe is a formalization for Ds(T n) of
the usual finite-dimensional operation that allows one to consider the composition X ◦ f of a vector
X ∈ V ect(s) and diffeomorphism f ∈ Ds(T n) as a vector in TDs(T n). It denotes the shift of a vector,
applied at point f(x), to the point x with respect to global parallelism of the tangent bundle to torus.

Lemma 2. The following relations hold:

TRg−1(QgX) = Qe(TRg−1X), (20)

TRg(Qg−1X) = Qe(TRgX). (21)

Introduce the subspace βf ⊂ TfDs(T n) as TRfβ with β introduced in (11). Having done this for
every f ∈ Ds(T n), we obtain the smooth subbundle β̄ of TDs(T n). Its integral manifold going through
e is the submanifold and subgroup Ds

µ(T n) that consists of Hs-diffeomorphisms preserving the volume.

Consider the map P̄ : V ect(s) → β̄ determined for each f ∈ Ds(T n) by the formula

P̄f = TRf ◦ P ◦ TR−1
f (22)
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where P = P̄e : V ect(s) = TeDs(T n) → β = βe = TeDs
µ(T n) – the orthogonal projection introduced

with respect to the Riemannian metric (12). It is shown in [6] that P̄ is TeDs
µ(T n)-right-invariant and

C∞-smooth.

It is a standard fact of differential geometry that the covariant derivative D̃
dtY (t) of a vector filed

Y (t) along a curve g(t) in Ds
µ(T n) is defined by the relation

D̃

dt
Y (t) = P̄

D̄

dt
Y (t) (23)

where D̄
dt is the covariant derivative on Ds

µ(T n) generated by the derivative on T n (see [6]). Let
¯F (t, g, Y ), Y ∈ TgDs

µ(T n), be a force vector field on Ds
µ(T n). Consider a curve g(t) satisfying the

equation

D̃

dt
ġ(t) = F̄ (t, g(t), ġ(t)) (24)

Denote by u(t) the curve in TeDs
µ(T n) (i.e., a divergence-free vector field on T n) obtained by right

translations of vectors ġ(t), i.e., u(t) = ġ(t) ◦ g−1(t) = TR−1
g(t)ġ(t).

The field u(t) satisfies the Euler equation

∂

∂t
+ (u · ∇)u− gradp = TR−1F̄ (t, g(t), u(t, g(t))). (25)

It should be pointed out that (24) is Newton’s second law with the force F̄ that describes the motion
of perfect incompressible fluid on T n under the action of force TR−1F̄ (t, g(t), u(t, g(t))) depending of
the ”configuration of fluid”. Recall that a curve satisfying (25) with F̄ = 0 is called a geodesic.

If F̄ is a right-invariant vector field on Ds
µ(T n) such that F̄e = F , where F is a divergence-free

vector field on T n, then (25) turns into

∂

∂t
+ (u · ∇)u− gradp = F. (26)

Consider the map Ā : Ds
µ(T n ×Rn → TDs

µ(T n) such that Āe is equal to A introduced earlier, and for
every g ∈ Ds

µ(T n) the map Āg : R
n → TgDs

µ(T n) is obtained from Āe by means of the right translation,
i.e., for X ∈ Rn:

Āg(X) = TRg ◦ Ae(X) = (A ◦ g)(X). (27)

The right invariant vector field Ā(X) is C∞-smooth on Ds
µ(T n) for every specified X ∈ Rn.

For any point m ∈ T n denote by expm : TmT n → T n the map that sends the vector X ∈ TmT n into
the pointm+X in T n, wherem+X is obtained modulo factorization with respect to integral lattice, i.e.
by the following procedure: we take a certain point Rn corresponding to m ∈ T n and X ∈ Rn = TmRn

then we identify Rn with TmRn = Rn, find m+X in Rn and pass from Rn to T n by factorization with
respect to Zn. The field of maps exp at all points generates the map exp : TeDs(T n) → Ds(T n) that
sends the vector X ∈ TeDs(T n) to e +X ∈ Ds(T n), where e+X is the diffeomorphism of T n of the
form (e+X)(m) = m+X(m).

Consider the composition exp ◦ Āe : Rn → Ds(T n). By the construction of Āe for any X ∈ Rn we
get exp ◦ Āe(X)(m) = m + X, i.e., the same vector X is added to every point m. Thus, obviously,
exp ◦ Āe(X) ∈ Ds

µ(T n).

Let w(t) be a Wiener process in Rn defined on a certain probability space (Ω,F , P ). Introduce the
process

W (t) = exp ◦ Āe(Bw(t)) (28)
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in Ds
µ(T n), where B is the constant linear operator. By the construction, for ω ∈ Ω the corresponding

sample trajectory Wω(t) is the diffeomorphism of the form Wω(t)(m) = m+Bwω(t), so that the same
sample trajectory Bwω(t) is added to each point m ∈ T n. In particular, this clarifies that Wω(t)(m)
takes values in Ds

µ(T n). Note that for a specified ω ∈ Ω and for specified t ∈ R the value of Bwω(t) is
a constant vector in Rn. Then for given ω and t, the action of Wω(t) coincides with that of lBwω(t).

4. VISCOUS INCOMPRESSIBLE FLUIDS

Consider s > n/2+ 1, so that the diffeomorphisms from Ds(T n) and so Ds
µ(T n) are C1-smooth and

V ect(s) consists of C2-smooth vector fields. Everywhere below we use the same processW (t) constructed
from the specified Wiener process w(t) in Rn by formula (28).

Let g(t) be a solution of (24) on Ds
µ(T n) with F̄ = 0 and with initial conditions g(0) = e and

ġ(0) = u0 ∈ TeDs
µ(T n). Such a solution exists in a certain time interval t ∈ [0, T ]. Consider u(t) =

ġ(t) ◦ g−1(t) ∈ TeDs
µ(T n). This infinite-dimensional vector considered as a divergence free vector field

on T n, will be denoted u(t,m).
Consider a process on Ds

µ(T n) of the form η(t) =W (t) ◦ g(t). In finite-dimensional notation η(t) is
a random diffeomorphism of T n of the form η(t,m) = g(t,m) +Bw(t) modulo the factorization with
respect to integral lattice. Introduce the process ξ(t) = η(T − t), or, in finite-dimensional notation,
ξ(t,m) = g(T − t,m) +Bw(T − t). Since w(t) is a martingale with respect to its own ”past” , we can
derive from the properties of conditional expectation that D∗ξ(t) = ġ(T − t,m) = u(T − t, g(T − t,m)),

and so P̄D∗D∗ξ(t) =
D̄
ds ġ(s)|s=T−t = 0 on Ds

µ(T n).
Consider the random process

ξt(s) = ξ(s) ◦ ξ−1(t) =W (T − s) ◦ g(T − s) ◦ g−1(T − t) ◦ (W (T − t))−1.

Notice that the random diffeomorphism (W (T − t))−1 acts by the rule (W (T − t))−1(m) = m−Bw(t).
Thus

ξt(t) = ξ(t) ◦ ξ−1(t) =W (T − t) ◦ g(T − t) ◦ g−1(T − t) ◦ (W (T − t))−1 = e.

The finite-dimensional descroption of this process can be given as follows. By the construction

m = ξ(t, ξ−1(t,m)) = g(T − t, ξ−1(t,m)) +Bw(t).

Then
g(T − t, ξ−1(t,m)) = m−Bw(t)

and so
ξ−1(t,m) = g−1(T − t,m−Bw(t)).

Thus

ξt(s,m) = ξ(s, g−1(T − t,m−Bw(t))) = g(T − s, g−1(T − t,m−Bw(t))) +Bw(t).

Notice that ξt(t,m) = m − Bw(t) + Bw(t) = m, i.e., ξt(t) = e on Ds
µ(T n). Then the ”present” σ-

algebra N ξ
t is trivial and so the conditional expectation with the respect to it coincides with ordinary

mathematical expectation. Hence, using the relation between u(t) and g(t) and definition of D∗ we can
easily derive that

D∗ξt(s) = E(u(T − t,m−Bw(T − t))) = E(QeTR
−1
W (T−t)u(T − t)). (29)

Introduce on T n the vector field U(t,m) = E(u(t,m−Bw(t))) (in infinite-dimensional notation U(t) =
E(QeTR

−1
W (t)u(t))).
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Lemma 3 (See [1]). The vector field U(t,m) is divergence free.

Proof. By construction, for an elementary event ω ∈ Ω, the diffeomorphism (W (t)ω)
−1 is a shift

of the entire torus by a constant vector. Hence, Qe applied to TR−1
W (t)ω

u(t) means the parallel trans-

lation on torus of the entire divergence free vector field u(t) by the same constant vector back. Thus
QeTR

−1
W (t)u(t) is a random divergence free vector field on the torus. Hence its expectation is divergence

free. �
So, U(t) ∈ TeDs

µ(T n). In particular, we have proved above that D∗ξt(s)|s=t = U(T − t).

Theorem 1. Vector field U(t,m) satisfies the following Reynolds type equation

∂

∂t
U + E [((u · ∇)(t,m−Bw(t)))] − B̃U − gradp = 0. (30)

Proof. It follows from Itô formula that

u(t,m−Bw(t)) =

t∫

0

∂u

∂s
(s,m−Bw(s))ds +

t∫

0

B̃uds−
t∫

0

u′B dw(s),

where u′ is the linear operator of derivative of u in m ∈ T n. Recall that u(t,m) satisfies the Euler
equation without external force, i.e., ∂u

∂t = −P ((u · ∇)u). Since ∂
∂tEu(t,m − Bw(t)) = ∂

∂tU(t) and

E
(∫ t

0 u
′
Bdw(t)

)
= 0, we derive that

∂

∂t
U =

∂

∂t
E (u(t,m−Bw(t))) = PE

(
−(u · ∇)u(t,m−Bw(t)) + B̃u(t,m−Bw(t))

)
=

−E
(
(u · ∇)u(t,m−Bw(t))

)
+ B̃U + grad p.

So, (30) is satisfied. �
There are usual methods for transforming (30) into the standard Reynolds form. For a divergence-

free vector field X(m) on T n introduce the random divergence-free vector field

ŬX(t,m) = X(m−Bw(t)) − E(X(m −Bw(t)))

or in the infinite-dimensional notation

Ŭ(t) = QeTR
−1
W (T−t)X − E(QeTR

−1
W (T−t)X).

For X = u(t) we obtain

Ŭu(t,m) = u(m−Bw(t)) − E(u(m−Bw(t))) = u(t,m−Bw(t)) − U(t,m);

E(Ŭu(t,m)) = E(u(m−Bw(t)))−E(E(u(m−Bw(t)))) = E(u(m−Bw(t)))−E(u(m−Bw(t))) = 0,

and so
u(t,m−Bw(t)) = U(t,m) + Ŭu(t,m). (31)

From (31) we can see

E [((u · ∇)(t,m−Bw(T )))] = (U · ∇)U + E
[
(Ŭu(t) · ∇)Ŭu(t)

]
.

Thus (30) transforms into

∂

∂t
U + (U · ∇)U − B̃U − gradp = −E

[
(Ŭu(t) · ∇)Ŭu(t)

]
, (32)
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which is the analogue of standard form of Reynolds equation with the viscous term BU . It differs from

the Navier-Stokes type relation with such viscous term by the external force −E
[
(Ŭu(t) · ∇)Ŭu(t)

]
that

depends on u(t,m), not on U(t,m).
We can show that a slight modification of the above scheme of arguments allows us to annihilate

the external force in (32) by introducing a special random force field on Ds
µ(T n) into (24).

For a random divergence free a.s. Hs+1−vector field Xω(m) on T n (i.e., for a random vector Xω ∈
TeDs+1

µ (T n) ⊂ TeDs
µ(T n))), construct the random vector field ŬXω(t,m) which for any ω ∈ Ω is given

by the formula

ŬXω (t,m) = Xω(m−Bwω(t))− E(Xω(m−Bwω(t))).

Introduce the non-random Hs vector field PE
[
(ŬXω · ∇)ŬXω

]
and then construct the random vector

Fω(t,Xω) in TeDs
µ(T n) by the formula

Fω(t,Xω) = QeTRWω(t)PE
[
(ŬXω · ∇)ŬXω

]
.

Note that PE
[
(ŬXω · ∇)ŬXω

]
and so Fω(t,Xω) lose the derivatives, i.e., they are Hs-vector fields only

since Xω is Hs+1. Thus Fω(t,Xω) is well-posed only on an everywhere dense subset TeDs+1
µ (T n) in

TeDs
µ(T n).
Now introduce the right-invariant force vector field F̄ω(t, g, Yω), where Yω ∈ TgDs

µ(T n) on Ds
µ(T n)

that at g ∈ Ds+1
µ (T n) and ω ∈ Ω is determined by the formula

F̄ω(t, g, Yω) = TRgFω(t, TR
−1
g Yω)

where TR−1
g Yω is a divergence free a.s. Hs+1−vector field.

Consider the equation
D̄

dt
ġω(t) = F̄ω(t, gω(t), ġω(t)) (33)

on Ds
µ(T n) whose right hand side is well-posed on the everywhere dense subset Ds+1

µ (T n) in Ds
µ(T n).

Note that (33) has no diffusion term, so it’s an ordinary differential equation with parameter ω ∈ Ω.
Suppose that for the initial condition gω(0) = e and ġ(0) = u0 ∈ TeDs+1

µ (T n) it has a unique
Hs+1−solution gω which is a.s. well-posed on a non-random time interval t ∈ [0, T ]. Consider the
divergence free a.s. Hs+1−vector field uω(t,m) on T n given by the relation uω(t,m) = ġω(t,m) ◦
g−1
ω (t,m). The analogue of above-mentioned vector U now takes the form

U(t,m) = E(uω(t,m−Bwω(t))). (34)

As well as vector field U(t,m), this vector field is divergence free.

Theorem 2. The divergence free vector field U given by (34), satisfies the analogue of Navier-Stokes
equation with viscousity viscosity B and without external force:

∂

∂t
U+ (U · ∇)U−BU− gradp = 0

where B is the second order differential operator B = 1
2B̃

ij ∂
∂xi∂xj , (B̃

ij) = BB
∗.

Proof.
Since

U(t,m) = E(uω(t,m−Bwω(t))),

ВЕСТНИК ВГУ. СЕРИЯ: ФИЗИКА. МАТЕМАТИКА. 2013. № 1 153



Yu.E. Gliklikh & M.E. Zalygaeva

and

E(duω(t,m−Bwω(t))) = E(
∂

∂t
uω(t,m−Bwω(t)) +Buω(t,m−Bwω(t))) =

= E(−P [((uω · ∇)uω)] + Fω(t, uω(t)) +Buω(t,m−Bwω(t))),

we get
∂

∂t
U = E(

∂

∂t
uω(t,m−Bwω(t))) =

= −E [((uω · ∇)uω)(t,m−Bwω(t))] +BU+ gradp+ EQeTR
−1
W (t)Fω(t, uω(t)) =

= −(U · ∇)U+BU+ gradp −E
[
(Ŭuω(t) · ∇)Ŭuω(t)

]
+ EQeTR

−1
W (t)Fω(t, uω(t)) =

= −(U · ∇)U+BU+ gradp− E
[
(Ŭuω(t) · ∇)Ŭuω(t)

]
+ PE

[
(Ŭuω(t) · ∇)Ŭuω(t)

]
. (35)

Recall that for the divergence free fields Ŭ , the vector fields ∂
∂t Ŭ is divergence free. From definition

(12) of operator P we obtain

PE
[
(Ŭuω(t) · ∇)Ŭuω(t)

]
= E

[
(Ŭuω(t) · ∇)Ŭuω(t)

]
− gradp.

Introduce p1 and p2 by relations P ((U · ∇)U + BU) = (U · ∇)U + BU − gradp1 and

PE
[
(Ŭuω(t) · ∇)Ŭuω(t)

]
= E

[
(Ŭuω(t) · ∇)Ŭuω(t)

]
− gradp2.

Thus, using these relations we obtain (34) from (35), so ∂
∂tU+ (U · ∇)U−BU− gradp = 0.
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