ВОЗДЕЙСТВИЕ СВЕРХКОРОТКИХ ИМПУЛЬСНЫХ ПЕРЕГРУЗОК НА ПТШ, ИЗГОТОВЛЕННЫЕ НА ПОЛУИЗОЛИРУЮЩИХ ПОДЛОЖКАХ ИЗ РАЗНЫХ ПАРТИЙ

А. М. Бобрешов, И. С. Коровченко, В. А. Степкин, Г. К. Усков

Воронежский государственный университет

Поступила в редакцию 21.03.2011 г.

Аннотация: Проведено экспериментальное исследование обратимых эффектов воздействия сверхкоротких видеоимпульсов на арсенид-галлиевые транзисторы с затвором Шоттки. Особенное внимание уделяется влиянию разброса технологических параметров полуизолирующих подложек в рамках допусков современного производства на количественные характеристики обратимых эффектов.

Ключевые слова: обратимые эффекты, сверхкороткий видеоимпульс, полуизолирующая подложка, глубокие уровни, полевой транзистор с затвором Шоттки, малошумящий усилитель.

Abstract: Experimental investigation of GaAs MESFET under ultra-short pulses exposure was carried out. Substrate batch effect on characteristics of this exposure was considered. **Key words:** recovery effects, ultra-short pulses, semi-insulated substrate, deep levels, GaAs MESFET, low-noise amplifier.

1. ВВЕДЕНИЕ

Устойчивая работа входных малошумящих усилителей (МШУ) при воздействии помех различного типа во многом определяется сохранением на приемлемом уровне его функциональных характеристик. В работах [1, 2] рассматривалось влияние на МШУ последовательности сверхкоротких видеоимпульсов (СКВИ), длительность которых составляет сотни пикосекунд. Воздействие СКВИ выражается во временном ухудшении работы усилителей, причиной которого являются обратимые эффекты в активных элементах усилителей. В современной радиоэлектронике наиболее широкое применение в качестве активных элементов МШУ получили арсенид-галлиевые полевые транзисторы с затвором Шоттки (ПТШ). Присутствие СКВИ на входе ПТШ приводит к перераспределению объемного заряда в полуизолирующей подложке подобно эффекту обратного управления по подложке (backgating) [1-3] и связано с глубокими уровнями. Характерное время рассасывания объемного заряда зависит от концентрации глубоких

© Бобрешов А. М., Коровченко И. С., Степкин В. А., Усков Г. К., 2011

уровней, температуры окружающей среды, технологических параметров подложки и транзисторной структуры в целом. В настоящее время влиянию технологических параметров на качественные и количественные характеристики эффектов воздействия СКВИ уделено недостаточно внимания.

В представленной работе было проведено исследование устойчивости ПТШ, изготовленных на подложках из разных партий, к сверхкоротким импульсным перегрузкам. Это позволило оценить влияние разброса значений концентраций глубоких уровней в подложках, на характеристики процессов, возникающих при воздействии СКВИ.

2. ФИЗИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ОБРАТИМЫХ ОТКАЗОВ

Во время воздействия последовательности СКВИ происходит уменьшение тока стока и изменение связанных с ним параметров с последующим их восстановлением после прекращения действия импульсной серии. В работах [1, 2] было показано, что наибольшее воздействие оказывают СКВИ отрицательной полярности. При воздействии таких СКВИ физика Воздействие сверхкоротких импульсных перегрузок на ПТШ, изготовленные на полуизолирующих...

обратимых отказов объясняется присутствием глубоких уровней в полуизолирующей подложке ПТШ, участвующих в процессе образования объемного заряда [1, 2, 3].

Если амплитуда импульса отрицательной полярности во входной цепи затвор-исток по величине превышает значение напряжения отсечки [3], в подложке начинается образование избыточного объемного заряда, происходит расширение области объемного заряда со стороны канала и уменьшение толщины активного слоя. Это приводит к уменьшению тока стока и, следовательно, к уменьшению мощности сигнала на выходе транзистора [7]. После действия импульса за счет спонтанных переходов происходит разрядка глубоких уровней, что вновь приводит к перераспределению объемного заряда. Время разрядки в основном определяется температурой окружающей среды и концентрацией глубоких уровней. Если воздействует серия СКВИ, и период следования импульсов не превышает времени разряда глубоких уровней, то каждый последующий импульс приводит к накоплению заряда (кумулятивный эффект) [3]. Доля заряженных уровней растет до тех пор, пока не установится некоторое равновесное состояние, т.е. ситуация, когда все глубокие уровни вблизи границы канал-подложка уже заряжены [1, 2].

Количественные характеристики указанных процессов, как было показано в [8 – 10], зависят не только от внешних условий, но и определяются технологическими параметрами полупроводниковой структуры транзисторов. Конкретные величины технологических параметров, например, концентрации примесей, профили легирования и т. п., могут меняться от партии к партии. В частности, такие различия в партиях полуизолирующих подложек могут существенно влиять на параметры обратимых эффектов в ПТШ.

3. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

В качестве измеряемого оценочного параметра был выбран ток стока, величина которого однозначно связана с толщиной активного слоя канала транзистора [7]. Экспериментальное исследование проводилось на установке, структурная схема которой представлена на рис. 1. Для формирования последовательности СКВИ

Puc. 1. Структурная схема экспериментальной установки

использовался генератор ТМГ250085ВП01 (блок 2). Амплитуда каждого импульса положительной полярности на его выходе была 85 В, а длительность составляла 250 пс по уровню 0,5. Частота следования СКВИ в серии и время воздействия задавались с помощью генератора испытательных импульсов И1-15 (блок 1). Наибольший интерес представляли СКВИ отрицательной полярности, для формирования которых использовался фазоинвертор (блок 3), представляющий собой широкополосный симметрирующий трансформатор [11], конструктивно выполненный на высокочастотном ферритовом кольце. Изменение амплитуды СКВИ производилось набором аттенюаторов (блок 4) с полосой пропускания 18 ГГц. Указанные приборы позволяли контролировать энергетические параметры последовательности видеоимпульсов, которая подавалась на вход МШУ СВЧ диапазона (блок 5). Была использована типовая усилительная схема включения с общим истоком. Рабочий режим транзистора задавался внешними источниками напряжения. Для контроля тока стока в выходной цепи транзистора был установлен резистор, напряжение на котором измерялось дифференциальным входом аналого-цифрового преобразователя (АЦП) (блок 6), который регистрировал значения напряжения на резисторе каждые 50 мс, пересчитывая их в значения тока стока. В конструкции испытательного модуля были решены задачи изоляции источников питания от высокочастотной цепи и подавления самовозбуждения транзистора. Схема модуля позволяла свести к минимуму влияние измерительных приборов на характеристики транзисторной схемы и проводить исследования воздействия СКВИ на характеристики ПТШ.

Для проведения испытаний были выбраны транзисторы 3П344А-2, изготовленные на подложках АГПЧ-8 из разных партий. Это позволило сопоставить результаты испытаний и выявить влияние разброса технологических параметров в подложках. Для более полной картины происходящих в транзисторе процессов исследования проводились для различных режимов работы транзисторов. При этом амплитуда сверхкоротких импульсов менялась от –3 В до –45 В. Частота следования импульсов в серии составляла: 100 Гц, 1 кГц, 10 кГц и 100 кГц. Время воздействия ($T_{возд}$) последовательности СКВИ на вход усилителя составляло 5 секунд.

На рис. 2 показан график временной зависимости тока стока I_{μ} при воздействии последовательности СКВИ с определенной амплитудой и периодом следования для одного из режимов работы ПТШ. После начала воздействия импульсной серии наблюдалось резкое падение тока стока, и далее его величина во время действия последовательности СКВИ стремилась к некоторому стационарному значению I_{c1} , зависящему от амплитуды импульсов и периода их следования. Время установления значения тока стока I_{c1} составляло 1—2 секунды после начала воздействия. При отключении воздействия СКВИ наблюдалось восстановления стока стока в течении времени $T_{\text{восст}}$. На рис. 2. видны две стадии восстановления – быстрая, 0.2—0.3 секунды, и медленная, которая может

Рис. 2. Временная зависимость тока стока ПТШ при воздействии последовательности СКВИ

Puc. 3. Зависимости нормированных на начальные значения тока стока транзисторов от амплитуды СКВИ, действующих в течение 5 с при частоте следования 1 кГц

занимать от десятков секунд до нескольких минут.

На рис. 3 представлены зависимости нормированного значения тока от амплитуды импульсов для транзисторов из разных партий. Нормированное значение тока I_{c1}/I_{c0} использовалось для количественной оценки и сравнения обратимых эффектов в транзисторах при разных режимах работы. С увеличением амплитуды импульсов эффекты проявляются в большей степени, однако для разных партий транзисторов наблюдаются различия в характеристиках. Из рисунка 3 видно, что зависимости нормированного тока стока для образцов транзисторов 3П344А-2 на подложках из первой партии (кривая 1) находятся ниже, чем из второй (кривая 2). Эту закономерность можно наблюдать для всех режимов работы транзисторов.

На рисунке 4 показаны зависимости времени восстановления тока стока транзисторов от амплитуды импульсов. С увеличением амплитуды время восстановления увеличивается. Представлены две зависимости для разных партий подложек. Видно, что время восстановления тока стока больше у транзисторов, изготовленных на подложках из второй партии (кривая 2). С увеличением амплитуды разница в значениях времени восстановления увеличивается.

Рассматривая зависимости, представленные на рисунках 3 и 4, можно сделать вывод о том, что различие технологических параметров в подложках из разных партий оказывает влияние на характеристики ПТШ при импульсном воздействии. Разброс технологических параметров при этом полностью удовлетворяет требованиям, предъявляемым разработчиками радиоэлектронной аппаратуры, и соответствует допуску современной технологии изготовления полуизолирующих подложек.

4. ЗАКЛЮЧЕНИЕ

Различия значений технологических параметров, удовлетворяющие современным допускам и требованиям к производству арсенидгаллиевых полуизолирующих подложек, не приводит к значительному разбросу величин основных параметров транзисторов [12], однако оказывает существенное влияние на количественные характеристики обратимых эффектов при воздействии СКВИ. На практике это означает временное ухудшение усилительных свойств МШУ, зависящее от концентрации глубоких уровней в подложке.

Предложенные методики измерения могут быть использованы для отбора наиболее стойких к воздействию СКВИ транзисторов еще на этапе их производства. Это позволит снизить уязвимость радиоэлектронной аппаратуры, работающей в условиях импульсных воздействий.

Работа выполнена в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы, ГК №П1140.

СПИСОК ЛИТЕРАТУРЫ

1. *Бобрешов А. М.* Экспериментальное определение стойкости полевых транзисторов к импульсным перегрузкам / А.М. Бобрешов [и др.] //

Рис. 4. Зависимости времени восстановления транзисторов от амплитуды СКВИ, действующих в течение 5 с при частоте следования 1 кГц

Приборы и техника эксперимента. — 2007. — № 5. — С. 108—113.

2. Бобрешов А. М. Исследование обратимых отказов GaAs ПТШ при импульсных перегрузках электроперегрузок [Текст] / А. М. Бобрешов [и др.] // Известия вузов. Электроника. — 2006. — № 5. — С. 69—77.

3. Kocot C. Backgating in GaAs MESFET's [Text] / C. Kocot, C. A. Stolte // IEEE Trans. Electron Devices, 1982. — v. 29. — \mathbb{N} 7. — P. 1059—1064.

4. Антипин В. В. Деградация малошумящих СВЧ полевых транзисторов с затвором Шотки на арсениде галлия при воздействии мощных импульсных микроволновых помех [Текст] / В. В. Антипин [и др.] // Радиотехника, 1994. — №8. — С. 34—38.

5. Антипин В. В. Влияние мощных импульсных микроволновых помех на полупроводниковые приборы и интегральные микросхемы [Текст] / В. В. Антипин [и др.] // Зарубежная радиоэлектроника, 1995. — № 1. — С. 37—53.

6. Баранов И. А. Стойкость твердотельных модулей СВЧ к кратковременным электроперегрузкам [Текст] / И. А. Баранов [и др.] // Обзоры по электронной технике. Сер.1, СВЧ—техника. — М. : ЦНИИ «Электроника», 1997. — 111 с.

7. Itoh T. Stability of Performance and Interfacial Problems in GaAs MESFET`s [Text] / T. Itoh, H. Yanai // IEEE Transactions on Electron Devices, 1980. — v. ED-27. — \mathbb{N}° 6. — P. 1037—1045.

Бобрешов Анатолий Михайлович — доктор физико-математических наук, профессор кафедры электроники ВГУ.

Тел. (473) 220-82-84 E-mail: bobreshov@phys.vsu.ru

Коровченко Игорь Сергеевич — кандидат физико-математических наук, ассистент кафедры электроники ВГУ.

Тел. (473) 220-82-84 E-mail: korovchenko@phys.vsu.ru

Степкин Владислав Андреевич — аспирант кафедры электроники ВГУ. Тел. (473) 220-82-84 E-mail: stepkin@phys.vsu.ru

Усков Григорий Константинович — кандидат физико-математических наук, доцент кафедры электроники ВГУ. Тел. (473) 220-82-84

E-mail: uskov@phys.vsu.ru

8. Бобрешов А. М. Механизмы обратимых отказов GaAs ПТШ при мощных импульсных воздействиях [Текст] / А. М. Бобрешов, И. С. Коровченко [и др.] // Физика волновых процессов и радиотехнические системы. — 2008. — № 3. — С. 60— 68.

9. Бобрешов А. М. Исследование влияния партии подложки на параметры GaAs ПТШ при воздействии сверхкоротких видеоимпульсов [Текст] / А. М. Бобрешов [и др.] // СВЧ-техника и телекоммуникационные технологии : 18-я Междунар. Крымская конф. — 2008. — Т. 2. — С. 672—673.

10. Bobreshov A. M. Substrate batch effect in GaAs MESFET under ultra-short pulses [Text] / A. M. Bobreshov [et al.] // Electromagnetic Compatibility, 2009 20th International Zurich Symposium on. — 2009. — P. 389—392.

11. Ред Э. Справочное пособие по высокочастотной схемотехнике: Схемы, блоки, 50-омная техника [Текст] / Пер. с нем. — М. : Мир, 1990. — 256 с.

12. Линдквист П. Ф. Полуизолирующие подложки из арсенида галлия // Полевые транзисторы на арсениде галлия. Принципы работы и технология изготовления: пер. с англ. [Текст] / П. Ф. Линдквист, У. М. Форд; под ред. Д. В. Ди Лоренцо, Д. Д. Канделуола. — М. : Радио и связь, 1988. — С. 7—36.

13. Полуизолирующие соединения $A^{\rm III}B^{\rm V}$: Пер. с англ. [Текст] / под ред. Дж. У. Риса. — М.: Металлургия, 1984. — 256 с.

Bobreshov Anatoly Mikhailovich — Ph.D. of radiophysics, full professor of Physical department of Voronezh state university.

Tel. (473) 220-82-84 E-mail: bobreshov@phys.vsu.ru

Korovchenko Igor Sergeevich — Ph.D. of radiophysics, assistant of Physical department of Voronezh state university. Tel. (473) 220-82-84

E-mail: korovchenko@phys.vsu.ru

Stepkin Vladislav Andreevich — aspirant of Physical department of Voronezh state university. Tel. (473) 220-82-84 E-mail: stepkin@phys.vsu.ru

Uskov Grigory Konstantinovich — Ph.D. of radiophysics, associate professor of Physical department of Voronezh state university. Tel: (473) 220-82-84 E-mail: uskov@phys.vsu.ru