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Annorarus. /|51 mosryHenpepbIiBHBIX CBEPXY KOHETHOMEPHBIX MHOTO3HAYHBIX OTOOPaKEH Il ¢
BBITYRJIBIMU 1 achepunyHbIMI 3aMKHYTBIMI 3HAYEHNSAMN MBI JIOKa3bIBaeM CyIIeCTBOBaHUE Clie-
NUATLHBIX HEIIPEPBHBIX &€ -alPOKCUMAIINil, KOTOPbIe TIOTOYeYHO CXOJATCH K n3aMepuMomy 1o bo-
PEeJIIo CeJIeKTOPY MHOTO3HAYHOTO 0TOOPasKeHUsT 1pu € , cTpeMsiuMes K nysio. [las Beinyriaosnay-
HOTO CJIyuast CXO[MMOCTh UMEeT MeCTO Ha BCeil 00sacTut onipejeseHus, a Jjis orodpaskeHuii ¢ acde-
PUYHBIMU 3HAYEHUSMI — Ha HEKOTOPOM CUETHOM BCIOJY TIIIOTHOM TIOJIMHOKECTRBE.

Rimouessie ciaoBa: [lonyHernpepbiBHbIe CBepXYy MHOTO3HAUHBIE 0TOOPAYKEHST; BBITTYCKIIbIE 3a-
MRHYTBIE 3HAaueHst; achepnyHble 3aMKHYThIe 3HAYeHNsT; € -l PORCUMATINN; TTOTOYeUHAsT CXO/|1-
MOCTb.

Abstract. For upper semicontinuous finite-dimensional set-valued mappings with either convex
closed or aspheric closed values we prove the existence of special continuous € -approximations
that point-wise converge to a Borel measurable selector of the set-valued mapping as € tends to
zero. For convex-valued case the convergence holds on the entire domain while for aspheric-valued

case — on a certain countable everywhere dense subset.
Key words: Upper semicontinuous set-valued mapping; convex closed values; aspheric closed
values; € -approximations; point-wise convergence.

1. INTRODUCTION

The main aim of this paper is to show the ex-
istence of €-approximations of the upper semi-
continuous set-valued finite-dimensional map
that point-wise converge to a Borel measurable
selector as € = 0. Unlike the case of ordinary
differential inclusions, such approximations are
very much useful for investigation of stochastic
differential inclusions.

Recall that € -approximations are proved to ex-
ist for upper semicontinuious set-valued map either
with convex closed values or with aspheric closed
ones (see below). We consider both cases, but for
convex-valued mappings we prove the existence of
poinl-wise converging & -approximations on the
entire domain while for aspheric-valued ones only
on a certain countable everywhere dense subset.

The paper is partially a survey of some results
from [1,2] (convex-valued case) and partially it
contains new results (aspheric-valued case).

The structure of paper is as follows. In Section
2 we give a short introduction into the Theory of
Set-Valued Mappings. More details can be found,
e.g., [3,4] where in particular the proofs of many
results, presented here, are given.
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In Section 3 we deal with convex-valued
mappings. Taking into account applications to
stochastic differential inclusions, we consider
two classes of set-valued mappings: those de-
pending on points of phase space and those
depending on curves but non-anticipating with
respect to a special filtration generated by o -
algebras of cylinder sets. We prove the existence
of point-wise converging sequences of €-ap-
proximation depending on points or non-an-
ticipating with respect to the same filtration,
respectively.

In Section 4 we construct a sequence of € -ap-
proximations for aspheric-valued mappings that
point-wise converge to a selector on a countable
everywhere dense subset = . In this case for every
point of E there exists a number such that for all
greater numbers the values of all terms of the
sequence at that point are stabilized (i.e., have the
same value).

The research is supported in part by RFBR
Grants 07-01-00137 and 08-01-00155.

2. A BRIEF INTRODUCTION INTO THE
THEORY OF SET-VALUED MAPPINGS

A set-valued mapping F' from a set X into a
set Y is a correspondence that assigns a non-
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empty subset F(z)cY to every point z € X;
F(z) is called the value of z .

In order to distinguish set-valued mappings
form single-valued ones we shall denote a set-
valued mapping F' sending X to Y, by the sym-
bol F' : X — Y while for a single-valued mapping
we shall keep the notation f: X - Y.

If X and Y are metric spaces, for set-valued
mappings there are several different analogues of
continuity that in the case of single-valued map-
pings are transformed into the usual one (here we
do not deal with the description of such notion for
set-valued mappings of topological spaces, see,
e.g., [3]).

Definition 1. A set-valued mapping F is called
upper semicontinuous at the point x € X if for each
€ > 0 there exists a neighbourhood U(z) of x such
that from z’ € U(x) it follows that F(z") belongs to
the € -neighbourhood of the set F(z). F is called
upper semicontinuous on X if it is upper semicon-
tinuous at every point of X .

Definition 2. A set-valued mapping F is called
lower semicontlinuous at the point x € X if for each
€ > 0 there exists a neighbourhood U(z) of x such
that from z” € U(x) it follows that F(zx) belongs to
the € -neighbourhood of F(z"). F is called lower
semicontinuous on X if il is lower semiconlinuous
al every point of X .

Definition 3. If F is both upper and lower
semiconlinuous, il is called conlinuous (somelimes
is also called Hausdorff continuous).

The continuous set-valued mapping F' such that
foreach z itsvalue F(z) isaclosed bounded set, are
continuous with respect to the so called Hausdorff
metric on the space of all non-empty closed bounded
subsets in Y . In order to describe it we first intro-
duce the submetric H(A, B) = sup p(a, B) where

acA

p isthe metricin Y . Then the Hausdorff metric is
defined by the formula

H(A,B) = max(H(A,B),H(B, A)). (1)

A set-valued mapping is called closed if its
graph is a closed subset in X XY . If F is closed
and for each point x € X there exists aneighbour-
hood U(z) such that F(U(x)) is relatively com-
pact, F' is upper semicontinuous.

Definition 4. We say that F(t,x) satisfies upper
Carathéodory conditlions if:

1) for every x € X the map F(-,z):1—Y is
measurable,

2) foralmostall t € I themap F(t,-): X —Y
LS upper semiconlinuous.

Definition 5. Let I =[0,1] € R. The set-valued
mapping F:1x X —oY is called almost lower
semiconlinuous if there exists a countable sequence
of disjoint compact sets {1}, I, < I suchthat: (i)
the measure of 1\ U, I is equal to zero; (ii) the
restriction of F' on each I, x X is lower semicon-
linuous.

An important technical role in investigating
set-valued mappings is played by single-valued
mappings that approximate the set-valued ones
in some sense. We describe two kinds of such
single-valued mappings: selectors and &-ap-
proximations.

Definition 6. Let F : X — Y be a set-valued
mapping. A single-valued mapping f : X =Y such
that for each x € X the inclusion f(z)e F(z)
holds, is called a selector of F' .

Nolt every set-valued mapping has a continuous
selector. FFor lower semicontinuous set-valued map-
pings with convex closed values their existence is
proved in the classical Michael’s Theorem.

Theorem 7. (Michael’s Theorem) If X is an
arbitrary metric space and Y is a Banach space, a
lower semicontinuous mapping such that the value
of every point of X is a convex closed sel, has a
continuous selector.

[fthe values of a lower semicontinuous set-val-
ued mapping (generally speaking) are not convex,
it may not have continuous selectors. Then the fol-
lowing construction is often very much useful.

Definition 8. Let E be a separable Banach
space. A non-empty set M c L'([0,I} E) is called
decomposable if [*x, +g* x4y, €M Jor all
f,g € M and for every measurable subset m in
[0,1] where y is the characteristic function of the
corresponding set.

The reader can find more details about decom-
posable sets in [4] and [5].

Theorem 9. (Bressan—Colombo Theorem) Con-
sider a separable metric space (,d) . Let X be a Ba-
nach space and (J, A, ) be a measurable space with
a o -algebra A and a non-atomic measure W such
that u(J) = 1. Consider the space Y = L (J, A, i)
of integrable mappings from (J, A, ) into X . If a
sel-valued mapping F :Q —Y is lower semicon-
tinuous and has close decomposable values, F has
a continuous selector.

The assertion of Theorem 9 is proved, e.g., as
Lemma 9.2 in [5].

Upper semicontinuous mappings arise in ap-
plications more often than lower semicontinuous
ones. Generally speaking, they do not have con-
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tinuous selectors (but they have measurable ones).
The so called €-approximations are very much
useful forinvestigating the upper semicontinuous
mappings.

Definition 10. For given € >0 a continuous
single-valued mapping f.: X =Y is called an
g-approximation of a sel-valued mapping
F: X —oY ifthe graph of f as a setin X XY,
belongs to the € -neighbourhood of the graph of F .

We mention the following classes of upper
semicontinuous set-valued mappings of finite-
dimensional spaces, for which the existence of
€ -approximations is proved for each € > 0:

— the mappings with convex closed values;

— the so called mappings with values that
are aspheric in all dimensions from 1 to n—1
and weakly aspheric in the dimension n (see
[6]). This class of of set-valued mappings was
first time considered by A. D. Myshkis in 1954
[7]. In [6] and [8] topological characteristics of
topological index and Lefschelz number types
were constructed for such mappings. Later (in
80-th years of XX century) this class was redis-
covered and called "the mappings whose values
at every point have the so-called uv" -property
for k=1,...,n"7 (see exact definition, e.g., in
[91).

Let X be a Banach space and F': X — X be
an upper semicontinuous set-valued mapping with
convex closed values. Let also for each bounded
subset Q c X its image F(Q) is relatively com-
pact. Then if F' sends a ball B of X into itself,
in B there exists a fixed point z € F(z) of F' (an
analog of Schauder’s principle known as Glicks-
berg-Ky Fan Theorem).

Let F: RX R" — R" beasel-valued mapping.
A differential inclusion

z e F(t,x) (2)
is an analogue of differential equation and
transforms into the latter if F' is single-valued.

A solution of (2) is an absolutely continuous
curve z(t) such that (2) is satisfied for it almost
everywhere.

If F is upper semicontinuous and has convex
closed bounded values, for each couple z, € R",
t, € R there exists a local in time solution of (2)
with the initial condition z(¢,) = z,. It is also
known that for an upper semicontinuous F with
closed bounded (not necessarily convex) values
there exists a solution of Cauchy problem for the
differential inclusion

T € coF(t,x),
where coF(t,z) is the convex closure of F(t,z).
Existence of solutions of (2) for lower semi-
continuous F' is possible also for non-covex val-
ues. Often such existence can be proved by apply-
ing Bressan-Colombo Theorem 9.

3. SPECIAL £ -APPROXIMATIONS
FOR CONVEX-VALUED UPPER
SEMI-CONTINUOUS MAPPINS

Here, following [1, 2], we prove existence of
special € -approximations for upper semicontinu-
ous mappings in finite-dimensional spaces with
convex closed values such that they point-wise
converge to a Borel measurable selector of the
set-valued mapping as € - 0.

Theorem 11. Let @ : R" — R" be an upper
semi-continuous sel-valued map with convex closed
bounded values. For a sequence €, — 0 there exisls
a sequence of continuous g, approximations for ®
that point-wise converges lo a Borel measurable
selector of ®. If @ takes valuesin a convex sel E
in R", those €-approximations take values in 2
as well.

Proof. It is shown in [10] that in the case un-
der consideration for any g, there exists a lower
semi-continuous set-valued map ¥, : R" — R"
with closed convex bounded values such that: (i)
forany z € R" the inclusion ®(z) c ¥, (z) holds
and (ii) the graph of ¥, belongs to the ¢, -neigh-
bourhood of the graph of @. From the construc-
tion it follows that if @ takes valuesin a convex
set 2 in R", then the values of all ¥, (z) belong
to Z. Notice that for an upper semi-continuous
mapping with compact values the sum of such
mappings and the products with a continuous
function are upper semi-continuous. Hence, from
the proof of Theorem 2 [10] it follows that in the
case under consideration all ¥, are continuous
set-valued mapping and, in particular in our case,
they are continuous with respect to Hausdorff
metric.

Consider the minimal selector y, () of ¥,(-),
i.e., ¥ (z) is the closest to origin pointin ¥, (z),
z € R". We refer the reader to [11] for complete
description of minimal selectors. In particular,
it is shown there that minimal selectors are
continuous. Thus, vy, is an € -approximation
of ®.

Specify an arbitrary point z € R". Since
®(z) c ¥, (z) foreach i, for the Hausdorff sub-
metric H we have H(®(z),¥,(r))=0. Hence
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for the Hausdorff metric H we obtain that
H(Y (z),®(z)) = H(¥ (z),®(z)) for each i.

Now specify ¢g,. By definition of upper semi-
continuity forany z € R" there exists 6, > 0 such
that for any 2’ from &, -neighbourhood of z the
value ®(z”) belongs to the g, -neighbourhood of
®(z). Since €, > 0, g,,, <6, forsome [ =I(k,x)
and without loss of generality we may take
I(k,2) 2 0. Thus H(®(z"),®(z)) < g, for each 2’
from g, ,-neighbourhood of z .

Since the graph of ¥, belongs to ¢,,,-neigh-
bourhood of the graph of @, there exists a point
z” in the g, ,-neighbourhood of z such that
W, (z) belongs to £k+l—neighbourhood of ®(z”),
Le. H(\le( ), @(z7)) < &, -

Thus

H(Y,, (z),®(z)) = H(\PM(ZE)’ D(z)) <
<H(Y,, (2 ) D(z")) + H(D(z"), ®(2)) <

g, tE <2¢.

Hence ateach z the convexset W,(z) tends to the
convex set ®(z) with respect to Hausdorff metric
as i—eo. Then w,(z) tends to the point
¢(z) € ®(x) that is the closest to the origin. The
fact that the point-wise limit ¢(:) of the sequence
of continuous mappings () isa Borel measurable
mapping, completes the proof. B

Introduce Q = C°([0,T), R"), the Banach space
of continuous curves in R" given on [0,7'], with
usual uniform norm, and the o -algebra F on Q
generated by cylinder sets. By B we denote the
o -subalgebra of F generated by cylinder sets
with bases over [0,t] [0, T]. Recall that F is the
Borel o -algebra on Q (see [12]).

Let B:[0,T]xQ — Z be a mapping to some
metric space Z. Below we shall often suppose that
such mappings with various spaces Z satisfy the
following condition:

Condition 12. For each t € [0,T] from the fact
that the curves w,(-), z,()€Q coincide for
0<s<t,itfollowsthat B(t,z,(-)) = B(t,z,()) .

Remark 13. Note that the fact that a mapping
B salisfies Condition 12, is equivalent to the facl
that B ateach t is measurable with respect to Borel
o -algebrain Z and F in Q, see [13].

Theorem 14. Specify an arbitrary sequence
of positive numbers €, — 0 as k — oo . Lel B be
an upper semi-continuous set-valued mapping
with compact convex values sending [0,T]x Q Lo
a finite-dimensional Euclidean vector space Y
and satisfying Condition 12. Then there exists a
sequence of conlinuous single-valued mappings

B, :[0,T]xQ =Y with the following proper-
ties:

(i) each B, satisfies Condition 12;

(ii) the sequence B, point-wise converges to a
selector of B that is measurable with respect to
Borel o -algebra in'Y and the product o -algebra
of Borel one on [0,T] and F on Q;

(iii) at each (t, x()) [0, 7] x Q the inequality
|B.(t. ()| < | B(t, x()|| holds for all k :

(iv) Lf B takes values in a closed convex set
EcY, thevaluesof all B, belongto Z .

Proof. In this proof we combine and modify
the ideas used in the proofs of [10] by Gel’'man
and Theorem 11 above.

Fort € [0, T] introducethemapping f : Q — Q
by the formula

z(s)if 0<s<t

) = {x(t) if t<s<T. )

Obviously f() is continuous jointly in ¢ € [0, 7]
and z(-) € Q. Since B satisfies Condition 12,
B(t,z()) = B(t, fz()) for each 2()eQ and
te[0,T].

Specify an element g, from the sequence.
Since B is upper semi-continuous, for every
(t,z(-)) € [0,T]x Q there exists §,(t,z) >0 such
that for every (¢,2°()) from the ,(¢,z) neigh-
bourhood of (¢, z(-)) theset B(t",z"(-)) is contained

in the % -neighbourhood of the set B(t,z(-)).

Without loss of generality we can suppose
0<6,(t.x)<¢g, for every (t,z(-)). Consider the

t N
4.(t.x) -neighbourhood of (¢,z(:)) in [0,T]x Q

and construct the open covering of [0,7]x Q by
such neighbourhoods for all (¢,(})). Since
[0,T]x Q is paracompact, there exists a locally
finite refinement {V } of this covering. Without
loss of generality we can consider each V' as an
nk(t]]?, f) neighbourhood of a certain (tj,a:j())
where by construction the radius
o .(t,x,
n(t,z,) < %

Consider a continuous partition of unity {(p }
adapted to {V } and introduce the set-valued

mapping @, (¢, z(- 2 @) (t, x( )coB(V’) where

co denotes the convex closure Since B(t,z(-)) is
upper semi-continuous and has compact values,
without loss of generality we can suppose 9, (¢, z)
to be such that the images B(V") are bounded in
Y and so the sets coB(V/") are compact. Denote
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by @,(t,2(-)) the closure of ®,(£,2(-)). Then one
can easily see that @, :[0,7]x Q — Y isa Haus-
dorff continuous set-valued mapping with com-
pact convex values.

Introduce ¥, :[0,T7]xQ — Y by formula
W, (t,z() = D.(¢ fz(-)) and consider the set-val-
ued mapping ‘Pk(t z(-)). Since f, is continuous,
every y, is a Hausdorff continuous set-valued
mapping with compact convex values and by con-
struction it satisfies Condition 12.

The couple (¢, fz(-)) belongs to a finite collec-
tion of neighbourhoods V with centers at
(', 2 (), i=1,...,n and s0 by construction

B(t,z(-)) = B(t, fz ()) (V7) for each 7. Hence
(B(t,(:z;())) B(t, fz(-)) < ¥, (t, z()) foreverycouple
t,z()).

Let I be the number from the collection of
indices j, as above such that n(t, ) takes the
greatestvalueamong 1, (¢! ,z} ) . Thenall (t], 25 ()
are contained in the an( k) nmghbourhood of
(', 2 () and so every ij is contained in
Bnk(tlk,zf)—neighbourhood of (tF,zF()) that is
contained in 8, (¢, z) () -neighbourhood of (¢, z)")
by construction. Then, also by construction,

WY, (t,z(-)) belongs to the %k -neighbourhood of

B(t!, (). Since both ¥, (t,2(-)) and B(t,z/(-))
are convex, this means that (¢, z(-)) also belongs

to the 8—2’“-neighbourhood of B(t',z'()). Notice

that this is true for each k.
Since B(t,z(-)) ¢ W, (L, 2()) <, (t,2()), for
the Hausdorff submetric H we have
H(B(t,z(-), g (t, 2(-))) = 0.
Hence for the Hausdorff metric H we obtain
that

H(y,(t,2()), B(t,2())) = H(p,(t 2()), B(t, z()))

Since g, — 0, for (t,z(-)) there exists an inte-
ger 0 =0(t,z(-)) >0 such that g, <9,(t,z(-)).
Without loss of generality we can suppose that
0=>1.

Thus B(t",z*°(-)) belongs to the %k -neigh-
bourhood of B(t,z(-)) and so

(B, (). B(t.a() < .

>

8k+9

Since (¢, z(-)) belongs to the -neigh-

bourhood of B(t*°,z*°(")) (seeabove), we obtain
that

€

H( ot 20)) B, 777 0)) < =%

Thus
H(y,,4t 2()), B(t,
= H(p,.,(t.2()), B(t,2())) <
< H(W .ot 2()) B () +

+H(B(™, 2 (), B(t, 2("))) < %ﬂ + %k <e,.

() =

So, at each (¢t,z(-)) we have that H(y (¢, z()),
B(t,z(-))) = 0 as k — o and B(t,z()) c ¥, (t,2(-))
forall k.

Consider the minimal selector B, (t,z(-)) of
y,(t,z(-), i.e., B.(t z(-)) is the closest to origin
pointin (¢, 2(-)). We refer the reader to [11] for
complete description of minimal selectors. In
particular, itis shown there that minimal selectors
in our situation are continuous. By construction
all B, satisfy Condition 12.

By construction the minimal selectors
B,(t,z(-)) of g, (t,z()) point-wise converge
to the minimal selector B(t,z(-) of B(t,z())
as k — oo since at any (¢,z(-)) we have that
H(y,(t,z(),B(t,z(-))) >0 as k—>e and
B(t,z()) c W, (t,z(-)) forall k (see above). Itisa
well-known fact that the point-wise limit B of the
sequence of continuous mappings B, is measur-
able with respect to Borel o -algebras in Y and
in [0,T]xQ (see [14]). The latter coincides with
the product o -algebra of Borel one on [0,7T"] and
F on Q (see [12]). Properties (iii) and (iv) im-
mediately follow from the construction. l

Remark 15. Unlike p,(t,z(-)), the set-valued
mapping ®,(t,z(-)) may not satisfy Condition 12
since two different curves z,(-) and z,(-) coinciding
on [0,t], may have different neighbourhoods V]’” ,to
which they belong, and so the values @,(t,z,(-)) and
®,(t,z,(-)) may be different. On the other hand, it
follows from [10] that &, is an g, -approximalion
of B while il is not true for g, .

4. SPECIAL ¢ -APPROXIMATIONS FOR
UPPER SEMI-CONTINUOUS MAPPINGS
WITH ASPHERIC CLOSED VALUES

We start this section from the exact definition
of a set-valued mapping with aspheric values (see
[6,7,8]).

Below in this section we consider a set-valued
upper semi-continuous mapping F : X — E from
a n-dimensional polyhedron X lying in some
Fuclidean space, to a certain Euclidean space E'.
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The assumption that X is a polyhedron does not
lose generality. In particular, we can consider
F:X—-oX and F:E— F since an Euclidean
space can be presented as a polyhedron.

By O(A,r) we denote an r -neighbourhood of
the set A and by d(A) — the diameter of A.

Recall that from the definition of upper semi-
continuity of F' itfollows that forevery € >0 and
B > 0 there exists o(g, B) such thatina B -neigh-
bourhood O(T, B) of an arbitrary set 7" with di-
ameter less than o there exists a point z,, called
satellite of T', for which O(F(z,),€) o F(T).

Definition 16. The mapping F: X — X is
called aspheric in a dimension k if in every neigh-
bourhood O(F(x),€) of each value F(x) there exists
a neighbourhood Q(z,€,k) containing & = 6(€)
neighbourhood of F(z) (6 does not depend on x ),
such that m,(Q)=0 where m,(Q) is the k-th ho-
molopy group of @ .

Everywhere below we suppose that F is
aspheric in dimensions k£ =0,1,..., n—1. Recall
that 7 (@) =0 means that ¢ is arcwise con-
nected. For such upper semicontinuous mappings
with closed values we describe the construction of
€ -approximations following [6].

Let u be a real number such that O(F(z), i)
belongs to an aspheric in dimension n —1 neigh-
bourhood of F(x), u doesnotdepend on z . Con-
struct a sequence

u>e, .  >¢, >06(g,)>

2n+1 (4)

>€, | >...>& >0(g,)>¢,

2n-1
where 6(g;) is a number that determines d(,) -
neighbourhood of the value F(z) contained in
N Q(z,€,,k) . Then construct a sequence {8}
4fd a number ¢, such that

- £2k’ﬂk+1)7 (5)

where o(g, B) is introduced above in this section.
Such sequences evidently can be constructed
starting from greater indices.

Now construct a triangulation of X whose
mesh is such that the diameter of every simplex is
less than d < min(e,,a(e, B,)). To every 0-di-
mensional simplex T we assign a point
f(T") e F(T?). Forevery 1-dimensional simplex
T' we get d(T') < g, B,). So, there exists a
satellite z; such that z e O(T',B,) and
F(T') < O(F(z}),¢,) . Hence the following inclu-
sions take place:

AT v f(T) < F(T,

1
0< B, < Zﬂkﬂ;ﬁk +0, < o€y,

)< OF(z).) (6)

and
O(F(z}).€,) < O(F(z;),8(¢,)) 0
< Q(z;,£,,0) < O(F(x;),&,),
where T and T. are sides of T'. Since Q is

aspheric i in dlmensmn 0, f canbe extended to T}
as a continuous mapping and

A1) € Qz},,,0)  O(F(z)).8,).  (8)
Let T? bea 2 -dimensional simplex With 1 -di-
menswnal sides T, T and T, . Let z, , ; and

z; be the satellites correspondmg to those 51des
They form the set 7!, for which

d(T)) < 2B, + o, < g, — &5, B,).
There exists a satellite x of , such that

z; € O(T;, B,) and F(T)) < O(F(x7), &,).
Taking into account (7) and (8) we derive

U A(T)) € O(F(T)).€,) < O(F(x7),&,). (9)
)W ehave the inclusions

O(F(x}).&,) < O(F(x7),8(¢,)) < (10)

c Q(z?,¢e,,1) c O(F(22, €,).
Since m,Q(z7,€,,1) =0, we can extend f from the
boundary of simplex 77 onto the entire simplex

as a continuous mapping. In addition we obtain
that

By (/

A(T?) € Qa?,e,1)  O(F(a)e,). (1)

And so on. On the last step we extend f from
the (n —1) -skeleton of X ontoentire X asacon-
tinuous mapping. By construction, the graph of
f liesinan g,  -neighbourhood on the graph of
F.

Theorem 17. For F as above there exists a
sequence f% of continuwous 82”+1 -approximalions
of the type constructed above, €5, — 0 as k — oo,
such that for every point x of some countable ev-
erywhere dense subset & < X there exists an inleger
K such that for every k> K the inclusion
f*%(z) € F(z) holds and f**(z) = f¥(z) forevery
integer [ > 0.

Proof. By construction, for every z from the
0 -dimensional skeleton of X for f constructed
above, we have f(z) € F(z). Now construct a se-
quence of barycentric subdivisions of X . Denote
by X! the 0-dimensional skeleton of k-th sub-
division. On every step k+1 for z € X! keep the
value f*(z) = f¥(z) and introduce an arbitrary
value f*(z) e F(z) for z € X!V \ XV, Then
construct continuous f**V on the entire X in the
same manner as above. The limit £ of X¥
k — oo is the set we are looking for. l

2n+1
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Corollary 18. In notation of Theorem 17 the
sequence f% on Z point-wise converges to a selec-
tor f of F sothatforevery x € E thevalues f*(z)
stabilize starting from a certain integer K(x). From
the poinl-wise convergence if follows that f is Borel
measurable on Z .

Remark 19. In [6,8] it is shown that under
additional assumption that F is weakly aspheric
in dimension n (i.e., there exists a certain € >0
such that w Q =0 as in Definition 16) the homo-
topy class of approximations f stabilizes for k
large enough. This allows one to introduce the ho-
molopic characteristics for F' as those for stabilized

f(k) )
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