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Аннотация. Для полунепрерывных сверху конечномерных многозначных отображений с 
выпуклыми или асферичными замкнутыми значениями мы доказываем существование спе-
циальных непрервных e -аппроксимаций, которые поточечно сходятся к измеримому по Бо-
релю селектору многозначного отображения при e , стремящимся к нулю. Для выпуклознач-
ного случая сходимость имеет место на всей области определения, а для отображений с асфе-
ричными значениями — на некотором счетном всюду плотном подмножестве. 

Ключевые слова: Полунепрерывные сверху многозначные отображения; выпусклые за-
мкнутые значения; асферичные замкнутые значения; e -аппроксимации; поточечная сходи-
мость.

Abstract. For upper semicontinuous finite-dimensional set-valued mappings with either convex 
closed or aspheric closed values we prove the existence of special continuous e -approximations 
that point-wise converge to a Borel measurable selector of the set-valued mapping as e  tends to 
zero. For convex-valued case the convergence holds on the entire domain while for aspheric-valued 
case — on a certain countable everywhere dense subset. 

Key words: Upper semicontinuous set-valued mapping; convex closed values; aspheric closed 
values; e -approximations; point-wise convergence. 

1. INTRODUCTION

The main aim of this paper is to show the ex-
istence of e -approximations of the upper semi-
continuous set-valued finite-dimensional map 
that point-wise converge to a Borel measurable 
selector as e Æ 0 . Unlike the case of ordinary 
differential inclusions, such approximations are 
very much useful for investigation of stochastic 
differential inclusions. 

Recall that e -approximations are proved to ex-
ist for upper semicontinuious set-valued map either 
with convex closed values or with aspheric closed 
ones (see below). We consider both cases, but for 
convex-valued mappings we prove the existence of 
point-wise converging e -approximations on the 
entire domain while for aspheric-valued ones only 
on a certain countable everywhere dense subset. 

The paper is partially a survey of some results 
from [1,2] (convex-valued case) and partially it 
contains new results (aspheric-valued case). 

The structure of paper is as follows. In Section 
2 we give a short introduction into the Theory of 
Set-Valued Mappings. More details can be found, 
e.g., [3,4] where in particular the proofs of many 
results, presented here, are given. 

In Section 3 we deal with convex-valued 
mappings. Taking into account applications to 
stochastic differential inclusions, we consider 
two classes of set-valued mappings: those de-
pending on points of phase space and those 
depending on curves but non-anticipating with 
respect to a special filtration generated by s -
algebras of cylinder sets. We prove the existence 
of point-wise converging sequences of e -ap-
proximation depending on points or non-an-
ticipating with respect to the same filtration, 
respectively. 

In Section 4 we construct a sequence of e -ap-
proximations for aspheric-valued mappings that 
point-wise converge to a selector on a countable 
everywhere dense subset X . In this case for every 
point of X  there exists a number such that for all 
greater numbers the values of all terms of the 
sequence at that point are stabilized (i.e., have the 
same value). 

The research is supported in part by RFBR 
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2. A BRIEF INTRODUCTION INTO THE 
THEORY OF SET-VALUED MAPPINGS

A set-valued mapping F  from a set X  into a 
set Y  is a correspondence that assigns a non-© Gliklikh Yu. E., 2009
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empty subset F x Y( ) Ã  to every point x XŒ ; 
F x( )  is called the value of x . 

In order to distinguish set-valued mappings 
form single-valued ones we shall denote a set-
valued mapping F  sending X  to Y , by the sym-
bol F X Y: �  while for a single-valued mapping 
we shall keep the notation f X Y: Æ . 

If X  and Y  are metric spaces, for set-valued 
mappings there are several different analogues of 
continuity that in the case of single-valued map-
pings are transformed into the usual one (here we 
do not deal with the description of such notion for 
set-valued mappings of topological spaces, see, 
e.g., [3]).

Definition 1. A set-valued mapping F  is called 
upper semicontinuous at the point x XŒ  if for each 
e > 0  there exists a neighbourhood U x( )  of x  such 
that from ¢ Œx U x( )  it follows that F x( )¢  belongs to 
the e -neighbourhood of the set F x( ) . F  is called 
upper semicontinuous on X  if it is upper semicon-
tinuous at every point of X .

Definition 2. A set-valued mapping F  is called 
lower semicontinuous at the point x XŒ  if for each 
e > 0  there exists a neighbourhood U x( )  of x  such 
that from ¢ Œx U x( )  it follows that F x( )  belongs to 
the e -neighbourhood of F x( )¢ .  F  is called lower 
semicontinuous on X  if it is lower semicontinuous 
at every point of X .

Definition 3. If F  is both upper and lower 
semicontinuous, it is called continuous (sometimes 
is also called Hausdorff continuous). 

The continuous set-valued mapping F  such that 
for each x  its value F x( )  is a closed bounded set, are 
continuous with respect to the so called Hausdorff 
metric on the space of all non-empty closed bounded 
subsets in Y . In order to describe it we first intro-
duce the submetric H A B a B

a A
( ) sup ( ), = ,

Œ
r  where 

r  is the metric in Y . Then the Hausdorff metric is 
defined by the formula 

 H A B H A B H B A( , ) max( ( , ), ( , )).=  (1)

A set-valued mapping is called closed if its 
graph is a closed subset in X Y¥ . If F  is closed 
and for each point x XŒ  there exists a neighbour-
hood U x( )  such that F U x( ( ))  is relatively com-
pact, F  is upper semicontinuous. 

Definition 4. We say that F t x( ),  satisfies upper 
Carathéodory conditions if: 

1) for every x XŒ  the map F x I Y( )◊, : �  is 
measurable, 

2) for almost all t IŒ  the map F t X Y( ), ◊ : �  
is upper semicontinuous.

Definition 5. Let I l R= , Ã[ ]0 . The set-valued 
mapping F I X Y: ¥ �  is called almost lower 
semicontinuous if there exists a countable sequence 
of disjoint compact sets { }In , I In Ã  such that: ( )i  
the measure of I \ In n»  is equal to zero; ( )ii  the 
restriction of F  on each I Xn ¥  is lower semicon-
tinuous.

An important technical role in investigating 
set-valued mappings is played by single-valued 
mappings that approximate the set-valued ones 
in some sense. We describe two kinds of such 
single-valued mappings: selectors and e -ap-
proximations. 

Definition 6. Let F X Y: �  be a set-valued 
mapping. A single-valued mapping f X Y: Æ  such 
that for each x XŒ  the inclusion f x F x( ) ( )Œ  
holds, is called a selector of F .

Not every set-valued mapping has a continuous 
selector. For lower semicontinuous set-valued map-
pings with convex closed values their existence is 
proved in the classical Michael’s Theorem. 

Theorem 7. (Michael’s Theorem) If X  is an 
arbitrary metric space and Y  is a Banach space, a 
lower semicontinuous mapping such that the value 
of every point of X  is a convex closed set, has a 
continuous selector.

If the values of a lower semicontinuous set-val-
ued mapping (generally speaking) are not convex, 
it may not have continuous selectors. Then the fol-
lowing construction is often very much useful. 

Definition 8. Let E  be a separable Banach 
space. A non-empty set M Ã , ;L l E1 0([ ] )  is called 
decomposable if f gm l \m* + * Œ,c c[ ]0 M  for all 
f g, ŒM  and for every measurable subset m  in 
[ ]0, l  where c  is the characteristic function of the 
corresponding set. 

The reader can find more details about decom-
posable sets in [4] and [5]. 

Theorem 9. (Bressan—Colombo Theorem) Con-
sider a separable metric space ( )W,d . Let X  be a Ba-
nach space and ( )J , ,A m  be a measurable space with 
a s -algebra A  and a non-atomic measure m  such 
that m( )J = 1 . Consider the space Y L JX= , ,1 ( )A m  
of integrable mappings from ( )J , ,A m  into X . If a 
set-valued mapping F Y: W �  is lower semicon-
tinuous and has close decomposable values, F  has 
a continuous selector.

The assertion of Theorem 9 is proved, e.g., as 
Lemma 9.2 in [5]. 

Upper semicontinuous mappings arise in ap-
plications more often than lower semicontinuous 
ones. Generally speaking, they do not have con-
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tinuous selectors (but they have measurable ones). 
The so called e -approximations are very much 
useful for investigating the upper semicontinuous 
mappings. 

Definition 10. For given e > 0  a continuous 
single-valued mapping f X Ye : Æ  is called an 
e -approximation of a set-valued mapping 
F X Y: �  if the graph of f  as a set in X Y¥ , 
belongs to the e -neighbourhood of the graph of F .

We mention the following classes of upper 
semicontinuous set-valued mappings of finite-
dimensional spaces, for which the existence of 
e -approximations is proved for each e > 0 : 

— the mappings with convex closed values; 
— the so called mappings with values that 

are aspheric in all dimensions from 1  to n - 1  
and weakly aspheric in the dimension n  (see 
[6]). This class of of set-valued mappings was 
first time considered by A. D. Myshkis in 1954 
[7]. In [6] and [8] topological characteristics of 
topological index and Lefschetz number types 
were constructed for such mappings. Later (in 
80-th years of XX century) this class was redis-
covered and called ”the mappings whose values 
at every point have the so-called uvk -property 
for k … n= , ,1 ” (see exact definition, e.g., in 
[9]). 

Let X  be a Banach space and F X X: �  be 
an upper semicontinuous set-valued mapping with 
convex closed values. Let also for each bounded 
subset W Ã X  its image F( )W  is relatively com-
pact. Then if F  sends a ball B  of X  into itself, 
in B  there exists a fixed point x F xŒ ( )  of F  (an 
analog of Schauder’s principle known as Glicks-
berg-Ky Fan Theorem). 

Let F R R Rn n: ¥ �  be a set-valued mapping. 
A differential inclusion 

 �x F t xŒ ,( )  (2)

is an analogue of differential equation and 
transforms into the latter if F  is single-valued.

A solution of (2) is an absolutely continuous 
curve x t( )  such that (2) is satisfied for it almost 
everywhere. 

If F  is upper semicontinuous and has convex 
closed bounded values, for each couple x Rn

0 Œ , 
t R0 Œ  there exists a local in time solution of (2) 
with the initial condition x t x( )0 0= . It is also 
known that for an upper semicontinuous F  with 
closed bounded (not necessarily convex) values 
there exists a solution of Cauchy problem for the 
differential inclusion 

 �x coF t xŒ , ,( )  

where coF t x( ),  is the convex closure of F t x( ), . 
Existence of solutions of (2) for lower semi-

continuous F  is possible also for non-covex val-
ues. Often such existence can be proved by apply-
ing Bressan-Colombo Theorem 9. 

3. SPECIAL e -APPROXIMATIONS 
FOR CONVEX-VALUED UPPER 
SEMI-CONTINUOUS MAPPINS

Here, following [1, 2], we prove existence of 
special e -approximations for upper semicontinu-
ous mappings in finite-dimensional spaces with 
convex closed values such that they point-wise 
converge to a Borel measurable selector of the 
set-valued mapping as e Æ 0 .  

Theorem 11. Let F : � �n n�  be an upper 
semi-continuous set-valued map with convex closed 
bounded values. For a sequence ei Æ 0  there exists 
a sequence of continuous ei  approximations for F  
that point-wise converges to a Borel measurable 
selector of F . If F  takes values in a convex set X  
in �n , those e -approximations take values in X  
as well. 

Proof. It is shown in [10] that in the case un-
der consideration for any ei  there exists a lower 
semi-continuous set-valued map Yi

n n: � ��  
with closed convex bounded values such that: (i) 
for any x nŒ �  the inclusion F Y( ) ( )x xiÃ  holds 
and (ii) the graph of Yi  belongs to the ei -neigh-
bourhood of the graph of F . From the construc-
tion it follows that if F  takes values in a convex 
set X  in �n , then the values of all Yi x( )  belong 
to X . Notice that for an upper semi-continuous 
mapping with compact values the sum of such 
mappings and the products with a continuous 
function are upper semi-continuous. Hence, from 
the proof of Theorem 2 [10] it follows that in the 
case under consideration all Yi  are continuous 
set-valued mapping and, in particular in our case, 
they are continuous with respect to Hausdorff 
metric. 

Consider the minimal selector y i( )◊  of Yi( )◊ , 
i.e., y i x( )  is the closest to origin point in Yi x( ) , 
x nŒ � . We refer the reader to [11] for complete 
description of minimal selectors. In particular, 
it is shown there that minimal selectors are 
continuous. Thus, y i  is an ei -approximation 
of F . 

Specify an arbitrary point x nŒ � . Since 
F Y( ) ( )x xiÃ  for each i , for the Hausdorff sub-
metric H  we have H x xk( ( ) ( ))F Y, = 0 . Hence 

On some special types of e-approximations for set-valued mappings
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for the Hausdorff metric H  we obtain that 
H x x H x xi i( ( ) ( )) ( ( ) ( ))Y F Y F, = ,  for each i . 

Now specify ek . By definition of upper semi-
continuity for any x nŒ �  there exists dk > 0  such 
that for any ¢x  from dk -neighbourhood of x  the 
value F( )¢x  belongs to the ek -neighbourhood of 
F( )x . Since ei Æ 0 , e dk l k+ <  for some l l k x= ,( )  
and without loss of generality we may take 
l k x( ), ≥ 0 . Thus H x x k( ( ) ( ))F F¢ , < e  for each ¢x  
from ek l+ -neighbourhood of x . 

Since the graph of Yk l+  belongs to ek l+ -neigh-
bourhood of the graph of F , there exists a point 

¢¢x  in the ek l+ -neighbourhood of x  such that 
Yk l x+ ( )  belongs to ek l+ -neighbourhood of F( )¢¢x , 
i.e., H x xk l k l( ( ) ( ))Y F+ +, ¢¢ < e . 

Thus 

 

H x x H x x

H x x H x
k l k l

k l

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( (

Y F Y F
Y F F

+ +

+

, = , £
£ , ¢¢ + ¢¢)) ( )), <

< + < .+

F x

k l k ke e e2
 

Hence at each x  the convex set Yi x( )  tends to the 
convex set F( )x  with respect to Hausdorff metric 
as i Æ • .  Then y i x( )  tends to the point 
j( ) ( )x xŒ F  that is the closest to the origin. The 
fact that the point-wise limit j( )◊  of the sequence 
of continuous mappings y i( )◊  is a Borel measurable 
mapping, completes the proof. ■  

Introduce � �W = , ,C T n0 0([ ] ) , the Banach space 
of continuous curves in �n  given on [ ]0,T , with 
usual uniform norm, and the s -algebra �F  on �W  
generated by cylinder sets. By Pt  we denote the 
s -subalgebra of F  generated by cylinder sets 
with bases over [ ] [ ]0 0, Ã ,t T . Recall that �F  is the 
Borel s -algebra on �W  (see [12]). 

Let B T Z: , ¥ Æ[ ]0 �W  be a mapping to some 
metric space Z. Below we shall often suppose that 
such mappings with various spaces Z satisfy the 
following condition:

Condition 12. For each t TŒ ,[ ]0  from the fact 
that the curves x1( )◊ , x2( )◊ Œ �W  coincide for 
0 £ £s t , it follows that B t x B t x( ( )) ( ( )), ◊ = , ◊1 2 . 

Remark 13. Note that the fact that a mapping 
B  satisfies Condition 12, is equivalent to the fact 
that B  at each t  is measurable with respect to Borel 
s -algebra in Z  and Pt  in �W , see [13]. 

Theorem 14. Specify an arbitrary sequence 
of positive numbers ek Æ 0  as k Æ • . Let B  be 
an upper semi-continuous set-valued mapping 
with compact convex values sending [ ]0, ¥T �W  to 
a finite-dimensional Euclidean vector space Y  
and satisfying Condition 12. Then there exists a 
sequence of continuous single-valued mappings 

B T Yk : , ¥ Æ[ ]0 �W  with the following proper-
ties: 

(i) each Bk  satisfies Condition 12; 
(ii) the sequence Bk  point-wise converges to a 

selector of B  that is measurable with respect to 
Borel s -algebra in Y  and the product s -algebra 
of Borel one on [ ]0,T  and �F  on �W ; 

(iii) at each ( ( )) [ ]t x T, ◊ Œ , ¥0 �W  the inequality 
B t x t xk( ( )) ( ( )), ◊ £ , ◊B  holds for all k ; 

(iv) if B  takes values in a closed convex set 
X Ã Y , the values of all B k  belong to X . 

Proof. In this proof we combine and modify 
the ideas used in the proofs of [10] by Gel’man 
and Theorem 11 above. 

For t TŒ ,[ ]0  introduce the mapping ft : Æ� �W W  
by the formula 

 f x
x s s t
x t t s Tt ( )

( )
( )

◊ =
£ £

£ £ .
Ï
Ì
Ó

  
  

if
if

0
 (3)

Obviously f xt ( )◊  is continuous jointly in t TŒ ,[ ]0  
and x( )◊ Œ �W . Since B  satisfies Condition 12, 
B B( ( )) ( ( ))t x t f xt, ◊ = , ◊  for  each x( )◊ Œ �W  and 
t TŒ ,[ ]0 . 

Specify an element ek  from the sequence. 
Since B  is upper semi-continuous, for every 
( ( )) [ ]t x T, ◊ Œ , ¥0 �W  there exists dk t x( ), > 0  such 
that for every ( ( ))t x* *, ◊  from the dk t x( ),  neigh-
bourhood of ( ( ))t x, ◊  the set B( ( ))t x* *, ◊  is contained 

in the 
ek

2
-neighbourhood of the set B( ( ))t x, ◊ . 

Without loss of generality we can suppose 
0 < , <d ek kt x( )  for every ( ( ))t x, ◊ . Consider the 
dk t x( ),

4
-neighbourhood of ( ( ))t x, ◊  in [ ]0, ¥T �W  

and construct the open covering of [ ]0, ¥T �W  by 
such neighbourhoods for all ( ( ))t x, ◊ . Since 
[ ]0, ¥T �W  is paracompact, there exists a locally 
finite refinement { }Vj

k  of this covering. Without 
loss of generality we can consider each Vj

k  as an 
hk j

k
j
kt x( ), -neighbourhood of a certain ( ( ))t xj

k
j
k, ◊  

w h e r e  b y  c o n s t r u c t i o n  t h e  r a d i u s 

h
d

k j j
k j jt x

t x
( )

( )
, £

,
4

. 

Consider a continuous partition of unity { }j j
k  

adapted to { }Vj
k  and introduce the set-valued 

mapping Fk
j

j
k

j
kt x t x co V( ( )) ( ( )) ( ), ◊ = , ◊Â j B  where 

co  denotes the convex closure. Since B( ( ))t x, ◊  is 
upper semi-continuous and has compact values, 
without loss of generality we can suppose dk t x( ),  
to be such that the images B( )Vj

k  are bounded in 
Y  and so the sets co Vj

kB( )  are compact. Denote 
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by k t xF ( ( )), ◊  the closure of Fk t x( ( )), ◊ . Then one 
can easily see that k T YF W: , ¥ Æ[ ]0 �  is a Haus-
dorff continuous set-valued mapping with com-
pact convex values. 

Introduce Y Wk T Y: , ¥ Æ[ ]0 �  by formula 
Y Fk k tt x t f x( ( )) ( ( )), ◊ = , ◊  and consider the set-val-
ued mapping k t xY ( ( )), ◊ . Since ft  is continuous, 
every kY  is a Hausdorff continuous set-valued 
mapping with compact convex values and by con-
struction it satisfies Condition 12. 

The couple ( ( ))t f xt, ◊  belongs to a finite collec-
tion of neighbourhoods Vj

k
i

 with centers at 
( ( ))t xj

k
j
k

i i
, ◊ , i … n= , ,1  and so by construction 

B B B( ( )) ( ( )) ( )t x t f x Vt j
k
i

, ◊ = , ◊ Ã  for each i . Hence 
B B( ( )) ( ( )) ( ( ))t x t f x t xt k, ◊ = , ◊ Ã , ◊Y  for every couple 
( ( ))t x, ◊ . 

Let l  be the number from the collection of 
indices ji  as above such that hk l

k
l
kt x( ),  takes the 

greatest value among hk j
k

j
kt x

i i
( ), . Then all ( ( ))t xj

k
j
k

i i
, ◊  

are contained in the 2hk l
k

l
kt x( ), -neighbourhood of 

( ( ))t xl
k

l
k, ◊  and so every Vj

k
i

 is contained in 
3hk l

k
l
kt x( ), -neighbourhood of (t l

k
l
kx, ◊( ))  that is 

contained in dk l
k

l
kt x( ( )), ◊ -neighbourhood of ( )t xl

k
l
k,  

by construction. Then, also by construction, 

Yk t x( ( )), ◊  belongs to the 
ek

2
-neighbourhood of 

B( ( ))t xl
k

l
k, ◊ . Since both Yk t x( ( )), ◊  and B( ( ))t xl

k
l
k, ◊  

are convex, this means that k t xY ( ( )), ◊  also belongs 

to the 
ek

2
-neighbourhood of B( ( ))t xl

k
l
k, ◊ . Notice 

that this is true for each k . 
Since B( ( )) ( ( )) ( ( ))t x t x t xk k, ◊ Ã , ◊ Ã , ◊Y Y , for 

the Hausdorff submetric H  we have 

 H t x t xk( ( ( )) ( ( )))B , ◊ , , ◊ = .Y 0
Hence for the Hausdorff metric H  we obtain 

that 

 H t x t x H t x t xk k( ( ( )) ( ( ))) ( ( ( )) ( ( )))Y Y, ◊ , , ◊ = , ◊ , , ◊ .B B
Since ek Æ 0 , for ( ( ))t x, ◊  there exists an inte-

ger q q= , ◊ >( ( ))t x 0  such that e dqk k t x+ < , ◊( ( )) . 
Without loss of generality we can suppose that 
q ≥ 1 . 

Thus B( ( ))t xl
k

l
k+ +, ◊q q  belongs to the 

ek

2
-neigh-

bourhood of B( ( ))t x, ◊  and so 

 H t x t xl
k

l
k k( ( ( )) ( ( )))B B+ +, ◊ , , ◊ < .q q e

2

Since k t x+ , ◊qY ( ( ))  belongs to the 
e qk+

2
-neigh-

bourhood of B( ( ))t xl
k

l
k+ +, ◊q q  (see above), we obtain 

that 

 H t x t xk l
k

l
k k( ( ( )) ( ( ))))

+
+ + +, ◊ , , ◊ < .q

q q qe
Y B

2
Thus 

 

H t x t x

H t x t x

H

k

k

k

( ( ( )) ( ( )))

( ( ( )) ( ( )))

(

+

+

+

, ◊ , , ◊ =
= , ◊ , , ◊ £

£

q

q

Y
Y

B
B

qq
q q

q q

Y ( ( )) ( ( )))

( ( ( )) ( (

t x t x

H t x t x

l
k

l
k

l
k

l
k

, ◊ , , ◊ +

+ , ◊ , ,

+ +

+ +

B

B B ◊◊ < + < .+)))
e e

eqk k
k2 2

So, at each ( ( ))t x, ◊  we have that H t xk( ( ( ))Y , ◊ ,  
t x( ( ))), ◊ ÆB 0  as k Æ •  and B( ( )) ( ( ))t x t xk, ◊ Ã , ◊Y  

for all k . 
Consider the minimal selector B t xk( ( )), ◊  of 

k t xY ( ( )), ◊ , i.e., B t xk( ( )), ◊  is the closest to origin 
point in i t xY ( ( )), ◊ . We refer the reader to [11] for 
complete description of minimal selectors. In 
particular, it is shown there that minimal selectors 
in our situation are continuous. By construction 
all Bk  satisfy Condition 12. 

By construction the minimal selectors 
B t xk( ( )), ◊  of k t xY ( ( )), ◊  point-wise converge 
to the minimal selector B t x( ( )), ◊  of B( ( ))t x, ◊  
as k Æ •  since at any ( ( ))t x, ◊  we have that 
H t x t xk( ( ( )) ( ( )))Y , ◊ , , ◊ ÆB 0  a s  k Æ •  a n d 
B( ( )) ( ( ))t x t xk, ◊ Ã , ◊Y  for all k  (see above). It is a 
well-known fact that the point-wise limit B  of the 
sequence of continuous mappings Bk  is measur-
able with respect to Borel s -algebras in Y  and 
in [ ]0, ¥T �W  (see [14]). The latter coincides with 
the product s -algebra of Borel one on [ ]0,T  and 
�F  on �W  (see [12]). Properties (iii) and (iv) im-

mediately follow from the construction. ■  
Remark 15. Unlike k t xY ( ( )), ◊ , the set-valued 

mapping k t xF ( ( )), ◊  may not satisfy Condition 12 
since two different curves x1( )◊  and x2( )◊  coinciding 
on [ ]0,t , may have different neighbourhoods Vj

k , to 
which they belong, and so the values k t xF ( ( )), ◊1  and 

k t xF ( ( )), ◊2  may be different. On the other hand, it 
follows from [10] that kF  is an ek -approximation 
of B  while it is not true for kY . 

4. SPECIAL e -APPROXIMATIONS FOR 
UPPER SEMI-CONTINUOUS MAPPINGS 

WITH ASPHERIC CLOSED VALUES 

We start this section from the exact definition 
of a set-valued mapping with aspheric values (see 
[6, 7, 8]). 

Below in this section we consider a set-valued 
upper semi-continuous mapping F X E: �  from 
a n -dimensional polyhedron X  lying in some 
Euclidean space, to a certain Euclidean space E . 

On some special types of e-approximations for set-valued mappings



92 ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2009, № 1

The assumption that X  is a polyhedron does not 
lose generality. In particular, we can consider 
F X X: �  and F E E: �  since an Euclidean 
space can be presented as a polyhedron. 

By O A r( ),  we denote an r -neighbourhood of 
the set A  and by d A( )  — the diameter of A . 

Recall that from the definition of upper semi-
continuity of F  it follows that for every e > 0  and 
b > 0  there exists a e b( ),  such that in a b -neigh-
bourhood O T( ), b  of an arbitrary set T  with di-
ameter less than a  there exists a point x0 , called 
satellite of T , for which O F x F T( ( ) ) ( )0 , …e . 

Definition 16. The mapping F X X: �  is 
called aspheric in a dimension k  if in every neigh-
bourhood O F x( ( ) ), e  of each value F x( )  there exists 
a neighbourhood Q x k( ), ,e  containing d d e= ( )  
neighbourhood of F x( )  (d  does not depend on x ), 
such that pk Q( ) = 0  where pk Q( )  is the k -th ho-
motopy group of Q . 

Everywhere below we suppose that F  is 
aspheric in dimensions k …= , , ,0 1  n - 1 . Recall 
that p0 0( )Q =  means that Q  is arcwise con-
nected. For such upper semicontinuous mappings 
with closed values we describe the construction of 
e -approximations following [6]. 

Let m  be a real number such that O F x( ( ) ), m  
belongs to an aspheric in dimension n - 1  neigh-
bourhood of F x( ) , m  does not depend on x . Con-
struct a sequence 

 
m e e d e
e e d e e

> > > >
> > > > >

+

-

2 1 2 2

2 1 2 2 1

n n n

n …
( )
( ) ,

 (4)

where d e( )i  is a number that determines d e( )i -
neighbourhood of the value F x( )  contained in 

k

n

iQ x k
=0
∩ ( , , )e . Then construct a sequence { }bi

n
1

1+  
and a number a0  such that 

   0
1
4 1 0 2 1 2 1< < ; + < - ,+ + +b b b a a e e bk k k k k k( ),  (5)

where a e b( ),  is introduced above in this section. 
Such sequences evidently can be constructed 
starting from greater indices. 

Now construct a triangulation of X  whose 
mesh is such that the diameter of every simplex is 
less than d < min( , ( , ))a a e b0 1 1 . To every 0 -di-
mensional simplex Ti

0  we assign a point 
f T F Ti i( ) ( )0 0Œ . For every 1 -dimensional simplex 
Ti

1  we get d Ti( ) ( )1
1 1< ,a e b . So, there exists a 

satel l i te  xi
1  such that  x O Ti i

1 1
1Œ ,( )b  and 

F T O F xi i( ) ( ( ) )1 1
1Ã , e . Hence the following inclu-

sions take place: 

 f T f T F T O F xi i i i( ) ( ) ( ) ( ( ) )
1 2

0 0 1 1
1» Ã Ã , e  (6)

and 

 
O F x O F x

Q x O F x
i i

i i

( ( ) ) ( ( ) ( ))

( ) ( ( ) ),

1
1

1
2

1
2

1
20

, Ã , Ã

Ã , , Ã ,

e d e

e e
 (7)

where Ti1
0  and Ti2

0  are sides of Ti
1 . Since Q  is 

aspheric in dimension 0 , f  can be extended to Ti
1  

as a continuous mapping and 

 f T Q x O F xi i i( ) ( ) ( ( ) )1 1
2

1
20Ã , , Ã , .e e  (8)

Let Ti
2  be a 2 -dimensional simplex with 1 -di-

mensional sides Ti1
1 , Ti2

1  and Ti3
1 . Let xi1

1 , xi2
1  and 

xi3
1  be the satellites corresponding to those sides. 

They form the set iT 1�  , for which 

 d T i( ) ( )1
1 0 3 2 22� < + < - , .b a a e e b  

There exists a satellite xi
2  of , such that 

 x O T F T O F xi i i i
2 1

2
1 2

2Œ Ã( , ) ( ) ( ( ), ).� �b e  and
Taking into account (7) and (8) we derive 

 
j

i i if T O F T O F x
j= , ,

Ã , Ã , .
1 2 3

1 1
2

2
2∪ �( ) ( ( ) ) ( ( ) )e e  (9)

By (4) we have the inclusions 

 
O F x O F x

Q x O F x
i i

i i

( ( ) ) ( ( ) ( ))

( ) ( ( )

2
3

2
4

2
4

2
41

, Ã , Ã

Ã , , Ã , .

e d e

e e
 (10)

Since p e2
2

4 1 0Q xi( ), , = , we can extend f  from the 
boundary of simplex Ti

2  onto the entire simplex 
as a continuous mapping. In addition we obtain 
that 

 f T Q x O F xi i i( ) ( ) ( ( ) )2 2
4

2
41Ã , , Ã , .e e  (11)

And so on. On the last step we extend f  from 
the ( )n - 1 -skeleton of X  onto entire X  as a con-
tinuous mapping. By construction, the graph of 
f  lies in an e2 1n+ -neighbourhood on the graph of 
F . 

Theorem 17. For F  as above there exists a 
sequence f k( )  of continuous e2 1n

k
+ -approximations 

of the type constructed above, e2 1 0n
k

+ Æ  as k Æ • , 
such that for every point x  of some countable ev-
erywhere dense subset X Ã X  there exists an integer 
K  such that for every k K>  the inclusion 
f x F xk( )( ) ( )Œ  holds and f x f xk l k( ) ( )( ) ( )+ =  for every 
integer l > 0 . 

Proof. By construction, for every x  from the 
0 -dimensional skeleton of X  for f  constructed 
above, we have f x F x( ) ( )Œ . Now construct a se-
quence of barycentric subdivisions of X . Denote 
by Xk

0  the 0 -dimensional skeleton of k -th sub-
division. On every step k + 1  for x XkŒ 0  keep the 
value f x f xk k( ) ( )( ) ( )+ =1  and introduce an arbitrary 
value f x F xk( )( ) ( )+ Œ1  for x X \ Xk kŒ +

0
1

0
( ) ( ) . Then 

construct continuous f k( )+1  on the entire X  in the 
same manner as above. The limit X  of X k

0
( )  as 

k Æ •  is the set we are looking for. ■  

Yuri E. Gliklikh 
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Corollary 18. In notation of Theorem 17 the 
sequence f k( )  on X  point-wise converges to a selec-
tor f  of F  so that for every x ŒX  the values f xk( )( )  
stabilize starting from a certain integer K x( ) . From 
the point-wise convergence if follows that f  is Borel 
measurable on X . 

Remark 19. In [6,8] it is shown that under 
additional assumption that F  is weakly aspheric 
in dimension n  (i.e., there exists a certain e > 0  
such that pnQ = 0  as in Definition 16) the homo-
topy class of approximations f k( )  stabilizes for k  
large enough. This allows one to introduce the ho-
motopic characteristics for F  as those for stabilized 
f k( ) . 
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