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Annoranus. ONUCHIBAIOTCS COOTHOTIIIEH IS MEFRILY NHOUHNUTE3NMATHLHBIMI TeHEPATOPAMU CJIeBa
u cropaBa ¢ OJ_LHO]?I CTOPOHBLI 1 ITPOU3BOAHBIMU B cpelHeM cJieBa U CIipaBa € J.prl‘Ol?l CTOPOHBbI JIJIA
CJIYUAITHBIX TTPOIECCOB HA MHOTOOOPA3MAX. ITH COOTHOIIEHNS (hOPMYTUPYIOTCS B TEPMUHAX TOPO3K-
nennoro adpuHHOI CBA3HOCTLIO OTOOPAYKEHUS 13 PACCIOCHUSI BEKTOPOB BTOPOTO MOPSIJIKA B 00bIY-
Hoe (T.e. MEPBOTO MOPSAKA) KacaTeabHoe paccioenne. Takmke MoKa3aHo, YTO TaK HazblBaeMast
KBaJIpaTnvaHasl MPOM3BOIHAS B CPeJIHEM MOKeT ObITh TTOTy4eHa 13 TeHepaTopa ¢ MOMOIIHIO IPYTOTro
Mopdu3mMa coOTBETCTBYIOIINX PACCTOEHNIT.

KJIIO‘IeBl)Ie CcJI0oBa: CleLla]‘/’lele IIporeccehl; MH(I)MHMTGSMMHJU)Hble redepaTophbl; MIPOU3BOJAHbIE B
CpeiHeM; CBSIBHOCTH HA MHOTOO0OPA3MAX; KacaTebHble BEKTOPHI BTOPOTO TTOPSIKA

Abstract. We describe the relation between the forward (backward) infinitesimal generator on
the one hand and forward (backward, respectively) mean derivative on the other hand for a stochastic
process on manifold. The relation is formulated in terms of a mapping from the second order tangent
bundle to the first order one, generated by a given connection. It is also shown that the so-called
quadratic mean derivative can be obtained from the generator by another morphism between the

corresponding bundles.

Key words: Stochastic processes; infinitesimal generators; mean derivatives; connections on
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There are two types of differential operators
associated to a stochastic process: the infinitesi-
mal generators (forward and backward) and mean
derivatives (forward, backward and quadratic).
Recall that the generators are determined invari-
antly as the so-called second order tangent vec-
tors, quadratic mean derivatives are invariant as
well and take values in (2,0) -tensors while the
forward and backward mean derivatives on a
manifold are well defined for a given connection
and then take values in first order vectors.

In this paper we show that given a connection,
one can construct forward (backward) mean de-
rivative from forward (backward, respectively)
generator by application of a natural mapping
from second order tangent bundle to the first order
one, generated by the connection. The quadratic
mean derivative can be obtained from the genera-
tor by another special operator between the cor-
responding bundles that is independent of the
choice of connection.
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Let M be a smooth manifold of dimension n .
Let U, be a chart on M . Denote by ¢',...,q"
9 9
YRR
the corresponding basis vectors in tangent spaces
to U, (we do not distinguish in notations the
tangent vectors and the corresponding first order
differential operators). Consider a differential
operatorin U, of order no greater than 2 without
constant term of the form
0 0

B(t,m) =0 —+ B’ ——
( ’m) aq1 +ﬁ aqzaqj )

the local coordinates in U, and by

(1)

where the coefficients B” form a symmetric
matrix (87).

Definition 1. A second order tangent vector to
a manifold M at a point m € M is a differential
operator of the order no greater thal 2 without
constant term as in (1) that has symmetric matrizx
of coefficients al second order derivatives. The lin-
ear space of second order tangent vectors at m € M
is called the second order tangent space and is de-
noted by T, M . The second order tangent bundle is
denoted by t(M) .
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Notice that at every m € M the first order
tangent space 1) M is a subspace in 7, M — the
first order vectors have zero matrix (). On the
other hand, if that matrix is not zero, the column
(b') is not a first order tangent vector since it has
another rule for transformations: under coordinate
changes the pure second order term transforms
into the one with additional first order term. Nev-
ertheless anyhow the field of matrices (87) is a
symmetric (2,0) -tensor field.

At every m € M there is a canonical isomor-
phisms between the space T, M © T M (where
T M isthefirstorder, i.e., ordinary tangent space,
© denotes the symmetric tensor product) and the
quotient space t, M/T M, and so between

m m

TM ®TM and t™/TM . Denote by
Q:tM - TM©TM
the field of linear projectors
Q 1. M->T MecT M
determined by the above factorization. Note that

the sections of TM ® TM are symmetric (2,0) -
tensor fields and that by construction

QB(t,m) =

- 9 i_ 9 | _ (g

Specify an arbitrary connection H on M with
Christoffel symbols of second kind T, . It determi-
nes the morphism H : tM — TM (i.é., the smooth
field of linear operators H,, : 7, M — T, M ) of the
form

(2)

_x 9  rwpi O
HB(t,m) =10 3 +T,8 3 (3)
(see [1—3]). One can easily verify that the right-
hand side of (3) transforms like a first order
tangent vector under the changes of coordinates.

Let R" be a certain N -dimensional linear
space. Denote by L(RY,R") the space of linear
operators sending R" to R" where n is the di-
mension of M as above.

Definition 2. (cf. [4—7]) The It6 bundle 1(M)
over M is the bundle such that over a chart U, on
M it is presented as direct product
U, x (R" x L(RY,R")) (i.e., R" x L(R",R") isthe
standard fiber of (M) ) and under the change of
coordinales @4, from U, to another chart Uy il
transforms according to the rule

(m, (X, 4)) —

, 1 ., , (4)
= | O, (pﬁaX+§tr(pﬂa(A,A),(pBaA .

where @g, and @y, are the first and the second
derivatives of @g, , respectively.

The (generally speaking non-autonomous) sec-
tions of I(M) are called It6 equations.

The backward Ité bundle I.(M) over M is the
bundle such that over a chart U, on M it is pre-
sented as direct product U, x (R" x L(RY,R"))
(i.e., R" x L(RY R") is the standard fiber of I(M))
and under the change of coordinales @y, from U,
to another chart Uy it transforms according to the
rule

(m, (X, 4)) —

)
- (%m, (o1, - S0 (4. %AD. vl
where @g, and @y, are the first and the second
derivalives of @, , respectively.

The (generally speaking non-autonomous) sec-
tions of I.(M) are called backward It6 equations.

In the chart U, an Itd equation is presented
as a couple (a(t,m),A(t,m)) where A(t,m) is a
linear operator from R" to the tangent space
T .M . We keep the notation of Itd equation as the
couple everywhere in spite of the fact that it is
well-posed only in a chart.

Note that a(¢,m) isnot a tangent vector to M .
Nevertheless with respect to the given trivializa-
tion of I(M) over U, we can represent a(t,m) as
acolumn of coordinates (a') . Denote by (A7) (t,m)
the matrix of A(t,m) with respect to the same
trivialization.

Introduce a Wiener process w(t) in R" given
on a certain probability space. Then we can con-
sider an It6 stochastic differential equation

dg(t) = a(t,&(t))dt + A(t, 5(t))dw(t)  (6)
in U, . Taking into account the Ito formula, one
can easily see that a solution &(t) of (6) is
presented in Uy in the form

09, E(t) = Qpidt + % i (A, A)dt +
ol Adul).

Thus from (4) and (7) it obviously follows that a
solution &(t) is well-posed on the entire manifold
(see details in [4—7]). We shall call it a solution
of (a(t,m), A(t,m)) on M .

Take a relatively compact chart U, . Denote
by 6, the random time of the first entrance to
the boundary of U, by a stochastic process &()
with &(t) e U, and by 6, its last exit time from
the boundary. ’
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We define the infinitesimal generator of &(:)
as the field of differential operators G(t,m) that
acts on a smooth enough real valued function
f: M — R by the formula

G(t,m)f =
L (f(éf((t + A0 £ 0, )~ S(EW)

At—+0

At

() = mJ

and the backward infinitesimal generator G.(t,m)
as

G.(t,m)f =
FE®) = FE((E=AD v 6,
I LU

By routine calculations one can easily see that
in U, the generator L of a solution &(¢) of It6
equation (a(t,m), A(t,m)) takes the form

2
a'— la”‘j 8 - (8)
a¢" 2 dq'a¢

where the matrix (”)(t,m) is the matrix product
(AN (AF) and (A) is the transposed matrix to
(A", i.e., the matrix of conjugate operator. It is
also easy to see that operator L from (8) is a
second order tangent vector field on M .

A couple (a(t,m), A(t,m)) where a(t,m) is a
(first order) vector field and A(t,m) is a field of
linear operators from R to T, M , is called an 1o
vector field. Notice that the transformation rule
under changes of coordinates on M for an Ito
vectlor field coincides with that for ordinary tan-
gent vectors.

Of course It6 equations and It6 vector fields
cannot coincide since they have different transfor-
mation rules under changes of coordinates. They
may coincide for given trivializations over a certain
chart but this coincidence will become failed in
other trivializations (over the other charts).

Specify a connection H on M .

Definition 3. We say that an 116 vector field
(a(t,m), A(t,m)) and an Ité equation (a(t,m), A(t,m))
canonically correspond to each other with respect
to connection H if at every m € M and for all t
Jrom the domain, a(t,m)=d(t,m) and
A(t,m) = A(t,m) with respect to trivialization of
normal chart of H at m . X

From definition of A(t,m) and A(t,m) it fol-
lows that if A(t,m)= A(t,m) in a certain chart,
the equality remains true in every chart.

Theorem 4. An It6 vector field (a(t,m), A(t,m))
and an Ité equation (a(t,m), A(t,m)) canonically

L(t,x) =

correspond to each other with respect to connection

H if and only if A(t,m)= A(t,m) and in every
chart for every k=1,....n the equalily

a*(t,m) = a"(t,m) —%I’th” holds where
(a”) = (A)(AY) and T are Christoffel symbols
of second kind for 'H in the chart.

Theorem 1 is a reformulation of lemma 9.8
from [5] (see also lemma 11.21 in [7]).

The object with coordinates T'a” is ¢rT,, (4, A)
where T (-,-) is the so called local connector of H
in the chart (we shall not describe this notion here,
see details, e.g., in [5—7]). Thus for a given con-
nection equation (6) can be presented in equiva-
lent form

d&(t) = a(t, §(t))dt —

_ % T (A, A)dt -+ A(t, E(8))du(?) ®)
where (a,A) is the Itd vector field canonically
corresponding to (a,A) with respect to H.
Equation (9) is known as [t6 equation in
Backsendale’s form. It is a presentation in local
chart of invariant equations known as It6 equation
in Belopolskaya— Daletskii form (see [4—7]).

Theorem 2. Let the Ilo veclor field
(a(t,m),A(t,m)) canonically correspond to an Ité
equation (a(t,m), A(t,m)) with respectto connection
H and let L be the generalor of solutions of
(a(t,m),A(t,m)). Then a(t,m)= HL where H is
given by (3).

Proof. Indeed, by (10) in a chart ¢/, we have

Ltw) =i 2+ Lo — % Then by (3)
’ ¢ 2 9¢9q¢ Y
a1, 2
HL:CLkW'FEFZOCJa—qk.

1 1. .
But by Theorem 1 a"(t,m) = a"(t,m) —51“;‘].05“ :

This completes the proof. B

Let &(t) be a stochastic process with values in
M given on a certain probability space (Q, F,P).
Denote by Ef the conditional expectation with
respect to the o -subalgebra N generated by
preimages of Borel setsin M relative to the map-
ping &(t) : Q = M (the “present” of process &(t)).
In [8—13] the notion of forward mean derivative,
backward mean derivative and quadratic mean
derivative were introduced as follows.

Take a relatively compact normal chart U, of
connection H at a specified point m € M . Denote
by 6, = the random time of the first entrance of
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&(*) to the boundary of U, with &(t) € U, . Intro-
duce the notation
AE(t) = E((t+ ) A O, ) - E(1).

For m” € U, we can calculate the regression

2 nr]

Construct the vector field Y°(¢,-), assigning to
each m € M the corresponding vector Y (t,m) |,
in U, . Thus by construction Y" is a measurable
section of tangent bundle TM , i.e., a vector
field.

Definition 4. The random vector

D"E(t) = Y"(t.&(1))
is called forward mean derivative of process &(t)
on M attime instant t with respect to 'H .

In analogy with above construction we give
the definition of backward mean derivative. For a
relatively compact normal charf U, of H contain-
ing a point m € M denote by 9 the random time
of the last eX1t of &() from the boundary of U,
with &(t) € U, . Introduce the notation

A&(l) = E(1)~&(t - AV 8, ).

Then for m” € U,, calculate the regression

o[58 20|

Construct the vector field Y. (¢,), 3551gn1ng to
each m € M the corresponding vector Y. (t,m) |,
in U, . Thus by construction Y. is a Inedsurdbie
section of tangent bundle TM , a vector
field.

Definition 5. The random vector

DIE(t) = Y2 (t,4(1))
is called beckward mean derivative of process &(t)
on M attime instant t with respect lo'H .
Definition 6. The limit

Dé()_lAltoEi(Aé(>+tAg()j (10)

where ® is the tensor product in model space
conlaining a chart, is called the quadratic mean
derivative of &(t) on M at time instant t .

Note that the quadratic mean derivative is well-
posed independently of any connection. It should
be also pointed out that if we define an object by
(10) where A&(t) is replaced by A.&(t), for a solu-
tion of (a, A) we shall obtain D,&(t) as well.

The next statement follows from the results of
[11—13].

Y°(t,m’), =lim

m Atlo

Y(t,m’), =lim

m Atdo

100

Theorem 3. Lel the It6 vector field
(a(t,m), A(t,m)) canonically correspond to an Ité
equation (a(t,m), A(t,m)) with respect to a connec-
tion 'H . Then for a solution &(t) of (a(t,m), A(t,m))
we have:

D (1) = alt, (1),
Dy&(t) = at,&(1)),
where oft,m) is the symmetric (2,0) -tensor field
a(t,m) = A(t,m)A (t,m), and A (t,m) is the
conjugate operator to A(t,m).
Thus from Theorems 2 and 3 and from for-

mula (2) it follows that for above &(¢) with gen-
erator L we have

D™E(t) = (HL)(t,&(t)) (11)

and

D,&(t) = 2(QL)(t,&(t))
where H isintroduced in (3) and Q in (2).

If 'H is specified, we shall notindicate itin the
notation of mean derivatives.

Remark 1. Let f: M — M, be a smooth map-
ping of manifolds. Note that, since the value of a
mean derivative depends on the “now’’ ¢ -algebra
of the process, the tangent mapping Tf sends mean
derivatives of a process N(t) to mean derivatives of
the process E(t) = f(n(t)) only in the following form:
Tf(Dn(t)) = D"(&(t)) or Tf(D*n(t)) = DE(t) but
generally speaking Tf(Dn(t)) # DE(t) . Analogous
fact in true for backward mean derivatives:
Tf(Dn(t)) = DIE(t)) Tf(D:n(t)) = D&(t) but
generally speaking Tf(Dn(t)) # D.&(t) .

Notice that if we apply the same connection
both for transition from (a,A) to (a,A4) and for
determining the mean derivative, we obtain for a
solution &(t) that DE(t) = a(t,&(t)) . Moreover, if
we change the connection, the 1t6 vector filed
(a, A) canonically corresponding to (G, A), and the
forward mean derivative D&(t) will be changed
but the equality D&(t) = a(t,&(t)) for those new
values will remain true.

Now let us turn to relations between backward
mean derivatives and backward infinitesimal
generators.

For the sake of simplicity, if &(¢) is a solution
of (a4, A) we rename the vector Y.'(t,m) as a.(t,m),
thus D.&(1) = a.(t,&(2)).

Introduce Dfw(t) by
Dfw(t) = lim E° w(t) = w(t = AY) where E¢ isthe

At—+0 At
conditional expectation with respect to the «pre-

sent» o -algebra of &(t) (see above).

(16)

formula
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Definition 7 The process w* J DEu( s)ds +

+w(t) —w(T) is called the backward Wiener pro-
cess with respect to &(t).

Specify a connection H on M . Let (a, A) be
an It 6 vector field on M . Denote by VA the
covariant derivative of the field A(t,m) with re-
spect to connection H; VA is a field of bilinear
operators VA(t,m)(--): T. M xR" — T, M . Con-
sider the field VA(t,m)(4,):R"xR" - T M
and the related vector field

trVA(A)(t,m) = trVA(t,m)(A(t,m)(-),").

Determineon M the following equation in the

local coordinates of a chart U, as follows:
d&(t) = alt,&(t))dt + trVA(A) (¢, E(t))dt —

~A(t,E(t)) o Dfw(t)dt — (12)
1

-5 Ly, (A, A)dt + A(t, &(t))dw(t).

Direct verification shows that (12) transforms

correctly (covariantly) under changes of

coordinates. This means that equation (12) is well

defined on entire M .

Theorem 4. Let &(t), &(0) =m,, be a strong
solution to (12). Then D.E(t) = a(t,&(t)) for
t €(0,1].

Theorem 4 is proved as theorem 12.32 in [7].

Specify a certain time moment ¢. From the
above formulae it follows that the process n(t)
such that &(t) = n(t) and satisfying for s < ¢ the
relation

t
() = n(s) = Ja(z,1(z))dr +

+-[ L. (4,A dr+.|‘A (t,n(7))dws (1),
where a.(t,;m) = a(t,m) — trVA(A-,") + A(t,m)Dsw(t)
and the last summand in the right-hand side is
the backward stochastic integral, has the same
backward mean derivative at ¢ as &(t).

Relation (13) is called 1t6 equation in back-
ward differentials.

Thus for small enough s < ¢ such n(s) ap-
proximates &(s).

Introduce the notation a.(t,m) = a.(t,&(t)) +

1
+ 5 I, (A, A). Taking into account the interrela-

tions between the transformation rule for local
connector and the second derivative of a change
of coordinates @g, (see, e.g., [7]) we obtain that
under the change of coordinates @g, between the
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charts U, and U, the triple (m
by the rule

,(a., A)) transforms

(m*,(aZ, A%)) —
o 7 A0 1 ’’ o o ’ o
g g = S gL (A" A, g3, (4%) |

Thus (a@.,A) is abackward It6 equation according
to Definition 2 (formula (5)).

Definition 8. The 1t6 equation (a,A) and the
backward It 6 equation (a.,A) introduced above,
are called coupled to each other.

Denote by L. the backward generator of (a., A)
coupled with (@, A) that describes the process &(t).
In local coordinates it obviously expressed in the
form

2
L. :—dii,+(AA* 8
dq' dq¢'0¢’

i

Theorem 5.
DME(t) = —H(L.). (14)
Proof. By construction DIE(t) = a.(t,&(t))
and

N 1
a.(t,&(t) = a + Er‘f(t)(A’ A) =
. 0 : s 0
=ar W+Fi(AA*)J a—k
Ontheotherhand, weobtain that H(L.) = —a! E)i" +
q
ety 2 = O praay 2y
aq aq" aq"
a 0
+ T (AA) —. 1
Formula (14) is «<symmetric» to (11).
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