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Аннотация. Описываются соотношения между инфинитезимальными генераторами слева 
и справа с одной стороны и производными в среднем слева и справа с другой стороны для 
случайных процессов на многообразиях. Эти соотношения формулируются в терминах порож-
денного аффинной связностью отображения из расслоения векторов второго порядка в обыч-
ное (т.е. первого порядка) касательное расслоение. Также показано, что так называемая 
квадратичная производная в среднем может быть получена из генератора с помощью другого 
морфизма соответствующих расслоений. 
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Abstract. We describe the relation between the forward (backward) infinitesimal generator on 
the one hand and forward (backward, respectively) mean derivative on the other hand for a stochastic 
process on manifold. The relation is formulated in terms of a mapping from the second order tangent 
bundle to the first order one, generated by a given connection. It is also shown that the so-called 
quadratic mean derivative can be obtained from the generator by another morphism between the 
corresponding bundles.
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manifolds; second order tangent vectors.

There are two types of differential operators 
associated to a stochastic process: the infinitesi-
mal generators (forward and backward) and mean 
derivatives (forward, backward and quadratic). 
Recall that the generators are determined invari-
antly as the so-called second order tangent vec-
tors, quadratic mean derivatives are invariant as 
well and take values in (2, 0) -tensors while the 
forward and backward mean derivatives on a 
manifold are well defined for a given connection 
and then take values in first order vectors.

In this paper we show that given a connection, 
one can construct forward (backward) mean de-
rivative from forward (backward, respectively) 
generator by application of a natural mapping 
from second order tangent bundle to the first order 
one, generated by the connection. The quadratic 
mean derivative can be obtained from the genera-
tor by another special operator between the cor-
responding bundles that is independent of the 
choice of connection.

Let M  be a smooth manifold of dimension n .
Let Ua  be a chart on M . Denote by q qn1, ,…  

the local coordinates in Ua  and by 
∂

∂
º ∂

∂q qn1 , ,  

the corresponding basis vectors in tangent spaces 
to Ua  (we do not distinguish in notations the 
tangent vectors and the corresponding first order 
differential operators). Consider a differential 
operator in Ua  of order no greater than 2  without 
constant term of the form 

 B t m b
q q q

i
i

ij
i j( , ) =

2∂
∂

+ ∂
∂ ∂

b ,  (1)

where the coefficients b ij  form a symmetric 
matrix ( )b ij .

Definition 1. A second order tangent vector to 
a manifold M  at a point m MŒ  is a differential 
ope ra tor of the order no greater that 2  without 
constant term as in (1) that has symmetric matrix 
of coefficients at second order derivatives. The lin-
ear space of second order tangent vectors at m MŒ  
is called the second order tangent space and is de-
noted by tmM . The second order tangent bundle is 
denoted by t( )M . 
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Notice that at every m MŒ  the first order 
tangent space T Mm  is a subspace in tmM  — the 
first order vectors have zero matrix ( )b ij . On the 
other hand, if that matrix is not zero, the column 
( )bi  is not a first order tangent vector since it has 
another rule for transformations: under coordinate 
changes the pure second order term transforms 
into the one with additional first order term. Nev-
ertheless anyhow the field of matrices ( )b ij  is a 
symmetric (2, 0) -tensor field.

At every m MŒ  there is a canonical isomor-
phisms between the space T M T Mm m�  (where 
T Mm  is the first order, i.e., ordinary tangent space, 
�  denotes the symmetric tensor product) and the 
quotient space tm mM T M/ , and so between 
TM TM�  and tM TM/ . Denote by 

 Q : tM TM TMÆ �  

the field of linear projectors 

 Qm m m mM T M T M: t Æ �  

determined by the above factorization. Note that 
the sections of TM TM�  are symmetric (2, 0) -
tensor fields and that by construction 

 

Q

Q

B t m

b
q q q

i
i

ij
i j

ij

( , ) =

= ( ).
2

= ∂
∂

+ ∂
∂ ∂

Ê
ËÁ

ˆ
¯̃

b b
 (2)

Specify an arbitrary connection H  on M  with 
Christoffel symbols of second kind Gij

k . It determi-
nes the morphism H : tM TMÆ  (i.e., the smooth 
field of linear operators Hm m mM T M: t Æ ) of the 
form 

 HB t m b
q q

k
k ij

k ij
k( , ) =

∂
∂

+ ∂
∂

G b  (3)

(see [1—3]). One can easily verify that the right-
hand side of (3) transforms like a first order 
tangent vector under the changes of coordinates.

Let RN  be a certain N -dimensional linear 
space. Denote by L N n( , )R R  the space of linear 
operators sending RN  to Rn  where n  is the di-
mension of M  as above.

Definition 2. (cf. [4—7]) The Itô bundle I M( )  
over M  is the bundle such that over a chart Ua  on 
M  i t  i s  p re s e n t e d  a s  d i re c t  p ro d u c t 
Ua ¥ ¥( ( , ))R R Rn N nL  (i.e., R R Rn N nL¥ ( , )  is the 
standard fiber of I M( )) and under the change of 
coordinates jba  from Ua  to another chart Ub  it 
transforms according to the rule 

 

( ,( , ))

,
1
2

( , ), .

m X A

m X tr A A A





 j j j jba ba ba ba¢ + ¢¢ ¢Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 (4)

where ¢jba  and ¢¢jba  are the first and the second 
derivatives of jba , respectively.

The (generally speaking non-autonomous) sec-
tions of I M( )  are called Itô equations.

The backward Itô bundle I M*( )  over M  is the 
bundle such that over a chart Ua  on M  it is pre-
sented as direct product Ua ¥ ¥( ( , ))R R Rn N nL  
(i.e., R R Rn N nL¥ ( , )  is the standard fiber of I M( )) 
and under the change of coordinates jba  from Ua  
to another chart Ub  it transforms according to the 
rule 

 

( ,( , ))

,
1
2

( , ), .

m X A

m X tr A A A





 j j j jba ba ba ba¢ - ¢¢ ¢Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 (5)

where ¢jba  and ¢¢jba  are the first and the second 
derivatives of jba , respectively.

The (generally speaking non-autonomous) sec-
tions of I M*( )  are called backward Itô equations.

In the chart Ua  an Itô equation is presented 
as a couple ( ( , ), ( , ))â t m A t m  where A t m( , )  is a 
linear operator from RN  to the tangent space 
T Mm . We keep the notation of Itô equation as the 
couple everywhere in spite of the fact that it is 
well-posed only in a chart.

Note that â t m( , )  is not a tangent vector to M . 
Nevertheless with respect to the given trivializa-
tion of I M( )  over Ua  we can represent â t m( , )  as 
a column of coordinates ( )âi . Denote by ( )( , )A t mi

j  
the matrix of A t m( , )  with respect to the same 
trivialization.

Introduce a Wiener process w t( )  in RN  given 
on a certain probability space. Then we can con-
sider an Itô stochastic differential equation 

 d t a t t dt A t t dw tx x x( ) = ( , ( )) ( , ( )) ( )ˆ +  (6)

in Ua . Taking into account the It ô  formula, one 
can easily see that a solution x( )t  of (6) is 
presented in U b  in the form 

 
d t adt tr A A dt

Adw t

j x j j

j

ba ba ba

ba

( ) =
1
2

( , )

( ).

¢ + ¢¢ +

+ ¢

ˆ
 (7)

Thus from (4) and (7) it obviously follows that a 
solution x( )t  is well-posed on the entire manifold 
(see details in [4—7]). We shall call it a solution 
of ( ( , ), ( , ))â t m A t m  on M .

Take a relatively compact chart Ua . Denote 
by q

aU  the random time of the first entrance to 
the boundary of Ua  by a stochastic process x( )◊  
with x a( )t Œ U  and by q

aU
*  its last exit time from 

the boundary.
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We define the infinitesimal generator of x( )◊  
as the field of differential operators G t m( , )  that 
acts on a smooth enough real valued function 
f M: Æ R  by the formula 

 

G t m f

E
f t t f t

t
t m

t

U

( , )

( (( ) ) ( ( ))
( )

0

=

=
+ Ÿ -

=
Ê

Ë
Á

ˆ

¯
˜Æ+

lim |
D

D

D

x q x
xa

and the backward infinitesimal generator G t m*( , )  
as 

 

G t m f

E
f t f t t

t
t m

t

U

*

0

( , )

( ( )) ( (( ) * )
( )

=

=
- - ⁄

=
Ê

Ë
Á
Á

ˆ

¯
Æ+

lim |
D

D

D

x x q
xa ˜̃

˜
.
 

By routine calculations one can easily see that 
in Ua  the generator L  of a solution x( )t  of Itô 
equation ( ( , ), ( , ))â t m A t m  takes the form 

 L t x a
q q q

i
i

ij
i j( , ) =

1
2

2

ˆ
∂

∂
+ ∂

∂ ∂
a  (8)

where the matrix ( )( , )a ij t m  is the matrix product 
( )( )*A Al

k
l
k  and ( )*Al

k  is the transposed matrix to 
(Al

k ) , i.e., the matrix of conjugate operator. It is 
also easy to see that operator L  from (8) is a 
second order tangent vector field on M .

A couple ( ( , ), ( , ))a t m A t m  where a t m( , )  is a 
(first order) vector field and A t m( , )  is a field of 
linear operators from RN  to T Mm , is called an Itô 
vector field. Notice that the transformation rule 
under changes of coordinates on M  for an Itô 
vector field coincides with that for ordinary tan-
gent vectors.

Of course Itô equations and Itô vector fields 
cannot coincide since they have different transfor-
mation rules under changes of coordinates. They 
may coincide for given trivializations over a certain 
chart but this coincidence will become failed in 
other trivializations (over the other charts).

Specify a connection H  on M .
Definition 3. We say that an Itô vector field 

( ( , ), ( , ))a t m A t m  and an Itô equation ( ( , ), ( , ))ˆ ˆa t m A t m  
canonically correspond to each other with respect 
to connection H  if at every m MŒ  and for all t  
f r o m  t h e  d o m a i n ,  a t m a t m( , ) = ( , )ˆ  a n d 
A t m A t m( , ) = ( , )ˆ  with respect to trivialization of 
normal chart of H  at m . 

From definition of A t m( , )  and Â t m( , )  it fol-
lows that if A t m A t m( , ) = ( , )ˆ  in a certain chart, 
the equality remains true in every chart.

Theorem 4. An Itô vector field ( ( , ), ( , ))a t m A t m  
and an Itô equation ( ( , ),â t m  Â t m( , ))  canonically 

correspond to each other with respect to connection 
H  if and only if A t m A t m( , ) = ( , )ˆ  and in every 
c h a r t  f o r  e v e r y  k n= 1, ,…  t h e  e q u a l i t y 

â t m a t mk k
ij
k ij( , ) = ( , )

1
2

- G a  h o l d s  w h e r e 

( ) = ( )( )*a ij
k
i

j
kA A  and Gij

k  are Christoffel symbols 
of second kind for H  in the chart. 

Theorem 1 is a reformulation of lemma 9.8 
from [5] (see also lemma 11.21 in [7]).

The object with coordinates Gij
k ija  is tr A AmG ( , )  

where Gm( , )◊ ◊  is the so called local connector of H  
in the chart (we shall not describe this notion here, 
see details, e.g., in [5—7]). Thus for a given con-
nection equation (6) can be presented in equiva-
lent form 

 
d t a t t dt

tr A A dt A t t dw tt

x x

xx

( ) = ( , ( ))
1
2

( , ) ( , ( )) ( )( )

-

- +G
 (9)

where ( , )a A  is the Itô vector field canonically 
corresponding to ( , )â A  with respect to H . 
Equation (9) is known as Itô equation in 
Backsendale’s form. It is a presentation in local 
chart of invariant equations known as Itô equation 
in Belopolskaya—Daletskii form (see [4—7]).

Theor em 2.  Let  the  I tô  vector  f ie ld 
( ( , ), ( , ))a t m A t m  canonically correspond to an Itô 
equation ( ( , ), ( , ))â t m A t m  with respect to connection 
H  and let L  be the generator of solutions of 
( ( , ), ( , ))â t m A t m . Then a t m L( , ) = H  where H  is 
given by (3). 

Proof. Indeed, by (10) in a chart Ua  we have 

L t x a
q q q

i
i

ij
i j( , ) =

1
2

2

ˆ
∂

∂
+ ∂

∂ ∂
a . Then by (3) 

 HL a
q q

k
k ij

k ij
k=

1
2

.ˆ
∂

∂
+ ∂

∂
G a  

But by Theorem 1 â t m a t mk k
ij
k ij( , ) = ( , )

1
2

- G a . 

This completes the proof. ■
Let x( )t  be a stochastic process with values in 

M  given on a certain probability space ( , , )W F P .  
Denote by Et

x  the conditional expectation with 
respect to the s -subalgebra Nt

x  generated by 
preimages of Borel sets in M  relative to the map-
ping x( ) :t MW Æ  (the ‘’present’’ of process x( )t ). 
In [8—13] the notion of forward mean derivative, 
backward mean derivative and quadratic mean 
derivative were introduced as follows.

Take a relatively compact normal chart Um  of 
connection H  at a specified point m MŒ . Denote 
by qUm

 the random time of the first entrance of 

On relations between infinitesimal generators and mean derivatives of stochastic processes on manifolds
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x( )◊  to the boundary of Um  with x( )t mŒ U . Intro-
duce the notation 

 D Dx x q x( ) = (( ) ) ( ).t t t tUm
+ Ÿ -  

For ¢ Œm mU  we can calculate the regression 

     Y t m E
t
t

t mUm t

0
| 0

( , )
( )

| ( ) .¢ = Ê
ËÁ

ˆ
¯̃

= ¢
È
Î
Í

˘
˚
˙Ø

lim
D

D
D
x x

Construct the vector fieldY t0( , )◊ , assigning to 
each m MŒ  the corresponding vector Y t m Um

0( , ) |  
in Um . Thus by construction Y 0  is a measurable 
section of tangent bundle TM , i.e., a vector 
field.

Definition 4. The random vector 

 D t Y t tHx x( ) = ( , ( ))0  

is called forward mean derivative of process x( )t  
on M  at time instant t  with respect to H .

In analogy with above construction we give 
the definition of backward mean derivative. For a 
relatively compact normal chart Um  of H  contain-
ing a point m MŒ  denote by qUm

*  the random time 
of the last exit of x( )◊  from the boundary of Um  
with x( )t mŒ U . Introduce the notation 

 D D* ( ) = ( ) (( ) ).x x x qt t t t Um
- - ⁄  

Then for ¢ Œm mU  calculate the regression 

    Y t m E
t

t
t mUm t*

0
| 0

*( , )
( )

| ( ) .¢ = Ê
ËÁ

ˆ
¯̃

= ¢
È
Î
Í

˘
˚
˙Ø

lim
D

D
D
x x

Construct the vector field Y t*
0( , )◊ , assigning to 

each m MŒ  the corresponding vector Y t m
m*

0( , ) |U  
in Um . Thus by construction Y*

0  is a measurable 
section of tangent bundle TM , i.e., a vector 
field.

Definition 5. The random vector 

 D t Y t t* *
0( ) = ( , ( ))Hx x  

is called beckward mean derivative of process x( )t  
on M  at time instant t  with respect to H . 

Definition 6. The limit 

 D t E
t t

tt t2 0
( ) =

( ) ( )x x xxlim
D Ø

ƒÊ
ËÁ

ˆ
¯̃

D D
D

 (10)

where ƒ  is the tensor product in model space 
containing a chart, is called the quadratic mean 
derivative of x( )t  on M  at time instant t . 

Note that the quadratic mean derivative is well-
posed independently of any connection. It should 
be also pointed out that if we define an object by 
(10) where Dx( )t  is replaced by D* ( )x t , for a solu-
tion of ( , )â A  we shall obtain D t2 ( )x  as well.

The next statement follows from the results of 
[11—13].

Theor em 3.  Let  the  I tô  vector  f ie ld 
( ( , ), ( , ))a t m A t m  canonically correspond to an Itô 
equation ( ( , ), ( , ))â t m A t m  with respect to a connec-
tion H . Then for a solution x( )t  of ( ( , ), ( , ))â t m A t m  
we have: 

 
D t a t t
D t t t

Hx x
x a x

( ) = ( , ( )),
( ) = ( , ( ))2 ,

 

where a( , )t m  is the symmetric (2, 0) -tensor field 
a( , ) = ( , ) ( , )*t m A t m A t m ,  and A t m*( , )  is  the 
conjugate operator to A t m( , ) .

Thus from Theorems 2 and 3 and from for-
mula (2) it follows that for above x( )t  with gen-
erator L  we have 

 D t L t tH Hx x( ) = ( )( , ( ))  (11)

and 

 D t L t t2 ( ) = 2( )( , ( ))x xQ  (16)

where H  is introduced in (3) and Q  in (2).
If H  is specified, we shall not indicate it in the 

notation of mean derivatives.
Remark 1. Let f M M: 1Æ  be a smooth map-

ping of manifolds. Note that, since the value of a 
mean derivative depends on the “now’’ s -algebra 
of the process, the tangent mapping Tf  sends mean 
derivatives of a process h( )t  to mean derivatives of 
the process x h( ) = ( ( ))t f t  only in the following form: 
Tf D t D t( ( )) = ( ( ))h xh  or Tf D t D t( ( )) = ( )xh x  but 
generally speaking Tf D t D t( ( )) ( )h xπ . Analogous 
fact in true for backward mean derivatives: 
Tf D t D t( ( )) = ( ( ))* *h xh  Tf D t D t( ( )) = ( )* *

xh x  b u t 
generally speaking Tf D t D t( ( )) ( )* *h xπ . 

Notice that if we apply the same connection 
both for transition from ( , )â A  to ( , )a A  and for 
determining the mean derivative, we obtain for a 
solution x( )t  that D t a t tx x( ) = ( , ( )) . Moreover, if 
we change the connection, the Itô vector filed 
( , )a A  canonically corresponding to ( , )â A , and the 
forward mean derivative D tx( )  will be changed 
but the equality D t a t tx x( ) = ( , ( ))  for those new 
values will remain true.

Now let us turn to relations between backward 
mean derivatives and backward infinitesimal 
generators.

For the sake of simplicity, if x( )t  is a solution 
of ( , )â A  we rename the vector Y t m*

0( , )  as a t m*( , ) , 
thus D t a t t* *( ) ( , ( ))x x= .

I n t r o d u c e  D w t* ( )x  b y  f o r m u l a 

D w t E
w t w t t

tt t* 0
( )

( ) ( )x x= - -
Æ+

lim
D

D
D

 where Et
x  is the 

conditional expectation with respect to the «pre-
sent» s -algebra of x( )t  (see above).
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Definition 7 The process w t D w s ds
t

T

* *( ) = ( )x xÚ + 

w t w T( ) ( )+ -  is called the backward Wiener pro-
cess with respect to x( )t . 

Specify a connection H  on M . Let ( , )a A  be 
an It ô  vector field on M . Denote by —A  the 
covariant derivative of the field A t m( , )  with re-
spect to connection H ; —A  is a field of bilinear 
operators — ◊ ◊ ¥ ÆA t m T M T Mm

n
m( , )( , ) : R . Con-

sider the field — ◊ ◊ ¥ ÆA t m A T Mn n
m( , )( , ) : R R  

and the related vector field 

 tr A A t m tr A t m A t m— — ◊ ◊( )( , ) = ( , )( ( , )( ), ).
Determine on M  the following equation in the 

local coordinates of a chart Ua  as follows: 

 

d t a t t dt tr A A t t dt

A t t D w t dt

x x x

x x

( ) = ( , ( )) ( )( , ( ))

( , ( )) ( )*

+ — -

- -

-

�

11
2

( , ) ( , ( )) ( ).( )Gx xt A A dt A t t dw t+

 (12)

Direct verification shows that (12) transforms 
correctly (covariantly) under changes of 
coordinates. This means that equation (12) is well 
defined on entire M .

Theorem 4. Let x( )t , x(0) = 0m , be a strong 
solution to (12).  Then D t a t t* ( ) = ( , ( ))x x  for 
t lŒ(0, ]. 

Theorem 4 is proved as theorem 12.32 in [7].
Specify a certain time moment t . From the 

above formulae it follows that the process h( )t  
such that x h( ) = ( )t t  and satisfying for s t<  the 
relation 

 

h h t h t t

t t h th t

( ) ( ) = ( , ( ))

1
2

( , ) ( , ( ))

*

( )

t s a d

A A d A d

s

t

s

t

s

t

- +

+ +

Ú

Ú ÚG ** * ( )wx t ,

 (13)

where a t m a t m tr A A A t m D w t* *( , ) ( , ) ( , ) ( , ) ( )= - — ◊ ◊ + x  
and the last summand in the right-hand side is 
the backward stochastic integral, has the same 
backward mean derivative at t  as x( )t .

Relation (13) is called Itô equation in back-
ward differentials.

Thus for small enough s t<  such h( )s  ap-
proximatesx( )s .

Introduce the notation â t m a t t* *( , ) ( , ( ))= +x  

A At( )

1
2

( , )+ xG . Taking into account the interrela-

tions between the transformation rule for local 
connector and the second derivative of a change 
of coordinates jba  (see, e.g., [7]) we obtain that 
under the change of coordinates jba  between the 

charts Ua  and Ub  the triple ( ,( , ))*m a Aˆ  transforms 
by the rule 

( ,( , ))

,
1
2

( , ), ( )

*

*

m a A

m a r A A A

a a a

ba
a

ba
a

ba
a a

ba
aj j j j

ˆ

ˆ





 ¢ - ¢¢ ¢Ê
Ë

tÁÁ
ˆ
¯̃
.

Thus ( , )*̂a A  is a backward Itô equation according 
to Definition 2 (formula (5)).

Definition 8. The Itô equation ( , )â A  and the 
backward It ô  equation ( , )*̂a A  introduced above, 
are called coupled to each other.

Denote by L*  the backward generator of ( , )*̂a A  
coupled with ( , )â A  that describes the process x( )t . 
In local coordinates it obviously expressed in the 
form 

 L a
q

AA
q q

i
i

ij
i j* *

*
2

= ( ) .- ∂
∂

+ ∂
∂ ∂

ˆ

Theorem 5. 

 D t L* *( ) = ( ).H Hx -  (14)

Proof. By construction D t a t t* *( ) = ( , ( ))Hx x  
and 

 
ˆ

ˆ

a t t a A A
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1
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∂
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∂

G

G
 

On the other hand, we obtain that H( )* *L a
q

k
k= - ∂

∂
+ˆ  

( ) = ( )*
* *AA

q
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q
AA

qij
k ij

k
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k ij
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k+ ∂
∂

- ∂
∂

- ∂
∂

+G G  
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k ij

k kAA
q

a
q
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∂

∂
- ∂

∂
.  ■

Formula (14) is «symmetric» to (11).
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