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ON THE INITIAL-BOUNDARY VALUE PROBLEM FOR EQUATIONS 
OF ANOMALOUS DIFFUSION IN POLYMERS
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We study the system of partial differential equations which describes the diffusion of a penetrant 
liquid in a polymer. We construct weak solutions to the initial-boundary value problem for this 
system in a bounded domain. 
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1. INTRODUCTION

It is well known that diffusion in continuums 
is described by the following conservation law: 

 
∂
∂

= -u
t

div J  (1.1)

where u u t x= ,( )  is the concentration and 
J J t x= ,( )  is the concentration flux vector (they 
depend on time t  and the spatial point x ). 

The classical Fick’s law states that the flux is 
proportional to the concentration gradient: 

 J D u u= - —( )  (1.2)

where D u( )  is the diffusion coefficient (generally 
speaking, it is a positive-definite tensor). Formulas 
(1.1) and (1.2) yield the classical diffusion 
equation 

 
∂
∂

= — .u
t

div D u u( ( ) )  (1.3)

If D u DI( ) ∫  (where I  is the unit tensor and 
D  is a positive number), then (1.3) becomes the 
heat equation 

 
∂
∂

= D .u
t

D u  (1.4)

Experiments show that the concentration 
behaviour in diffusion processes in polymers can-
not be described by (1.3) or (1.4) (see e.g. [16]). 
Let us mention two examples of such phenomena. 
The first one is so-called “case II diffusion” where 
concentration fronts can move with constant speed 
(the Fick’s law implies that a front should propa-
gate with speed proportional to 1

t
). The second 

one is called “sorption overshoot”. It means that 
the mass of penetrant absorbed by the polymer 
increases sharply until some point and then de-

creases, little by little, to a steady-state value 
[3]. 

Thus, Fick’s law (1.2) should be replaced by 
another relation in order to explain the observed 
phenomena. One of such relations (based on the 
relaxation (viscoelastic) mechanism) was pro-
posed by Cohen et al. [3,4] for the diffusion of a 
penetrant liquid in a polymer: 

 

J D u u

E u u x d f u s x
u s xt

t

s

= - — -

- — ,
Ê

ËÁ
ˆ

¯̃
, , ∂ ,

-•
Ú Ú

( )

( ) exp ( ( )) ( )
( )b x x
∂∂

Ê
ËÁ

ˆ
¯̃

.
s

ds

  (1.5)

Here E D, ,b  are functions of a scalar argu-
ment, f  is a scalar function of two scalar argu-
ments, D  and E  are called the diffusion and 
stress-diffusion coefficients, respectively. The 
function b  is the inverse of the relaxation time. 
A typical example of b  is [3]: 

 b b b b b
d

( ) ( ) ( )tanh( )u
u u

R G R G
RG= + + -

-1
2

1
2

where b b dR G RGu, , ,  are positive constants, 
b bR G> .  

The constitutive law (1.5) may be rewrit-
ten as a system of two differential equa-
t i o n s  u s i n g  t h e  n e w  v a r i a b l e 

s b x x( ) exp ( ( )) ( ( ) )( )t x u x d f u s x ds
t

t

s
u s x

s, = ,
Ê

ËÁ
ˆ

¯̃
, ,

-•

∂ ,
∂Ú Ú  

which is called stress (but has no exact connection 
with the classical stress tensor): 

 J t x D u u E u( ) ( ) ( ), = - — - — ,s  (1.6)

 
∂
∂

+ = , ∂
∂

.s b s
t

u f u
u
t

( ) ( )  (1.7)

Then (1.6) and (1.1) yield the diffusion equa-
tion: 

 
∂
∂

= — + — .u
t

div D u E[ ]s  (1.8)
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Generally speaking [2], D  and E  depend on 
t x u, ,  and s . 

A typical (but simple) form for the function f  
is 
 f u u u u( ), ¢ = + ¢m n  (1.9)

where m  and n  are constants. This relation was 
used, for instance, in [4, 5, 14] (and in [3] with 
n = 0 ). In this paper we assume, however, that m  
is not a constant. 

Initial-boundary value problems for some 
particular cases of the general system (1.1), (1.6), 
(1.7) were studied in [1, 2, 7]. H. Amann [2] con-
siders a wide class of these particular cases and 
shows existence of maximal (not global in time) 
solutions. A global existence result is given in [7] 
but under additional conditions on initial and 
boundary data. Another result on global in time 
solvability is presented in [1] for f u= m  and 
D E const= = . It is formulated for 0 1< <x , but 
the technique used there seems to be applicable 
for x Œ W  where W Ã �n  is a bounded domain 
with smooth boundary. Global existence of dis-
sipative (ultra weak) solutions was shown in [17] 
for W = �n  (again, the ideas used there seem to 
be suitable for W Ã �n  also). 

In [11], a slightly different model of this kind 
was studied. 

2. NOTATIONS

We use the standard notations Lp( )W , Wp
m( )W , 

H Wm m( ) ( )W W= 2  ( )m Z pŒ , £ £ •1 , H Wm m
0 2( ) ( )W W=

�
 

( )m Œ�  for Lebesgue and Sobolev spaces of func-
tions defined on a bounded open set (domain) 
W Ã �n , n Œ� . 

The scalar product and the Euclidian norm in 
L Lk k

2 2( ) ( )W W= , � , are denoted by ( )u v,  and u , 
respectively (k  is equal to 1  or n ). In H 0

1( )W , we 
use the following scalar product and norm: 
( ) ( )u v u v u u, = — , — , = —1 1 . We recall Fried-
richs’ inequality 

 u K u£ .W 1  (2.1)

Similarly, in H 0
2( )W , we use the scalar product and 

norm: ( ) ( )u v u v u u, = D , D , = D2 2 . 
As usual, we identify the space H m- ( )W , 

m = ,1 2 , with the space of linear continuous func-
tionals on H m

0 ( )W  (the dual space). 
Sometimes we shall write simply Lp , H m  for 

L Hp
k m k( ) ( )W W,  etc., k n= ,1 . 

The Laplace operator D : Æ -H H0
1 1( ) ( )W W  is 

an isomorphism. Therefore 

 D : Æ- -1 1
0
1H H( ) ( )W W  (2.2)

is also an isomorphism. Set X X H= = D-( ) ( ( )).W W1
0
1  

The scalar product and norm in X  are 
( ) ( )u v u vX, = D , D 1 , u uX = D 1 . 

The symbols C E( )J ; , C Ew( )J ; , L E2( )J ;  etc. 
denote the spaces of continuous, weakly continu-
ous, quadratically integrable etc. functions on an 
interval J Ã �  with values in a Banach space E . 
We recall that a function u E: ÆJ  is weakly 
continuous if for any linear continuous functional 
g  on E  the function g u( ( ))◊ : ÆJ �  is continu-
ous. 

If E  is a function space (L H m
2( ) ( )W W,  etc.), 

then we identify the elements of C E( )J ; , L E2( )J ;  
etc. with scalar functions defined on J ¥ W  ac-
cording to the formula 

 u t x u t x t x( )( ) ( )= , , Œ , Œ .J W
We shall also use the function spaces (T  is a 

positive number): 

 

W W T

L T H L T H

W L T H

= , =

= Œ , ; , ¢ Œ , ;
=

-

, ;

( )

{ ( ( )) ( ( ))}

(

W

W Wt t
t t

2 0
1

2
1

0

0 0

2 00
1

2
10( )) ( ( ))W W+ ¢ ;, ; -t L T H

 

W W T

L T X L T H

W L T

1 1

2 2
1

0

0 0

1 2

= , =

= Œ , ; , ¢ Œ , ;
=

-

, ;

( )

{ ( ( )) ( ( ))}

(

W

W Wt t
t t XX L T H( )) ( ( ))W W+ ¢ ;, ; -t

2
10

 

W W T

L T H L T H

W L

2 2

2 0
2

2
2

0

0 0

2 2

= , =

= Œ , ; , ¢ Œ , ;
=

-

,

( )

{ ( ( )) ( ( ))}

(

W

W Wt t
t t TT H L T H; , ;+ ¢ .-

0
2

2
20( )) ( ( ))W Wt

Lemma III.1.2 from [15] implies continuous 
e m b e d d i n g s  W W C T L, Ã , ;2 20([ ] ( ))W ,  W1 Ã  

C T H 0
10Ã , ;([ ] ( ))W  (see also [6]). 

Denote by �n n¥  the space of matrices of the 
order n n¥  with the norm 

 A An n
n

n� �
�

¥ = .
=

max
x

x
1

Let � �+
¥ ¥Ãn n n n   be the set of such matrices A  

that 

 ( ) ( )( )A d A
R Rn nx x x x, ≥ ,

for some d A( ) > 0  and all x Œ �n . 

3. WEAK FORMULATION 
OF THE PROBLEM

We consider a polymer filling a bounded do-
main W Ã �n , n Œ� . The most important par-
ticular cases are n = 2  (diffusion in polymer films) 
and n = 3 . We study the diffusion of a penetrant 
in this polymer which is described by the following 
initial-boundary value problem: 
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∂
∂

= , , , — + , , , — ,

, Œ , ¥ ,

u
t

div D t x u u E t x u

t x T

[ ( ) ( ) ]

( ) [ ]

0 0

0

s s s

W
 (3.1)

∂
∂

+ , , , = , , , + ∂
∂

,

, Œ , ¥ ,

s b s s m s n
t

t x u t x u u
u
t

t x T

0 0 0

0

( ) ( )

( ) [ ] W
 (3.2)

 u t x t x t x T( ) ( ) ( ) [ ], = , , , Œ , ¥ ∂ ,j 0 W  (3.3)

 u x u x x x x( ) ( ) ( ) ( )0 00 0, = , , = , Œ .s s W  (3.4)

Here u u t x T= , : , ¥ Æ( ) [ ]0 W �  is the un-
known concentration of the penetrant (at the 
spatial point x  at the moment of time t ), 
s s= , : , ¥ Æ( ) [ ]t x T0 W �  is the unknown stress, 
u u x0 0= ( ) , s s0 0= : Æ( )x W �  are given initial 
data, j : , ¥ ∂ Æ[ ]0 T W �  is a given boundary 
condition, n0  is a given positive constant, 
D0 ,  E n n n n

0
3: = ¥ ¥ ¥ Æ ,+

+
¥� � � � � �  m0 , 

b0
3: Æ+� �n  are given functions. 

In order to come to a definition of a weak solu-
tion to this problem, let us carry out some chang-
es of variables and other heuristic operations. For 
this purpose, assume for a while that all the func-
tions (given and unknown) involved in the equa-
tions and the domain W  are sufficiently regular. 
Suppose also that 

 | , |£u t x( ) 1  (3.5)

(remember that u  is the concentration, so it 
cannot exceed 100 %). W.l.o.g. below we assume 
that the function j  is defined on [ ]0, ¥T W , 
satisfies the same estimate as (3.5) and j | ==t u0 0  
(cf. [9, Theorem 1.1]). 

Denote V s n= - 0u , V s n0 0 0 0= - u , g V( )◊, ◊, , =u  
m V n n b V n( ) ( )= ◊, ◊, , + - ◊, ◊, , +u u u u0 0 0 0 0 , D t x u1( ), , , =V  
D t x u u E t x u u n n

0 0 0 0 0( ) ( ) ,= , , , + + , , , + Œ +
¥V n n V n �  

E u E u u1 0 0( ) ( )◊, ◊, , = ◊, ◊, , +V V n ,  b V b V n1 0 0( ) ( ).◊, ◊, , = - ◊, ◊, , +u u u  
Then we can rewrite (3.1), (3.2) and (3.4) in the 
following form: 

    
∂
∂

= , , , — + , , , — ,u
t

div D t x u u E t x u[ ( ) ( ) ]1 1V V V  (3.6)

 
∂
∂

= , , , + , , , ,V b V V g V
t

t x u t x u u1( ) ( )  (3.7)

 u ut t| = , | = .= =0 0 0 0V V  (3.8)

Equations (3.7) and (3.8) yield 

V V b x x V x x( ) ( )exp ( ( ) ( ))

exp

t x x x u x x d
t

t

s

t

, = , , , , ,
Ê

ËÁ
ˆ

¯̃
+

+

Ú

Ú Ú

0
0

1

0

bb x x V x x

g V

1( ( ) ( ))

( ( ) ( )) ( )

, , , , ,
Ê

ËÁ
ˆ

¯̃
¥

¥ , , , , , ,

x u x x d

s x u s x s x u s x dds.

 

(3.9)

Thus, if | |V0( )x  is uniformly bounded, V  is 
also uniformly bounded by a constant dependent 
on T : 

 | , |£ .V( )t x KT  (3.10)

Now, for each fixed x Œ W , consider the Cau-
chy problem 

 
∂
∂

= , , , + , , , ,y b j y y g j y j
t

t x t x1( ) ( )  (3.11)

 y V| = .=t 0 0  (3.12)

The solution y( )t x,  of this problem is a prio-
ri bounded by KT . Therefore it exists and is unique 
on the whole segment [ ]0,T . Observe that V |∂W =
y |∂W . 

Apply the Laplace operator to both sides of 
(3.7): 

D ¢ = — , , , + — , , , .V b V V g Vdiv t x u t x u u[ ( ( ) ) ( ( ) )]1  (3.13)

Hence, 

D ¢ = , , , — + ∂
∂

, , , +

+ ∂
∂

, , , — + ∂

V b V V b V V

b V V

div t x u
x

t x u

u
t x u u

[ ( ) ( )

( )

1
1

1 bb
V

V V V

g V g V

g

1

∂
, , , — +

+ , , , — + ∂
∂

, , , +

+ ∂
∂

, ,

( )

( ) ( )

(

t x u

t x u u
x

t x u u

u
t x u,, — + ∂

∂
, , , — .V g

V
V V) ( ) ]u u t x u u

 

(3.14)

Let c : Æ� �  be a bounded continuous func-
tion such that c( )s s=  for | |< + .s KT1  Then 

D ¢ = ∂
∂

, , , — + , , , — +

+ ∂
∂

, , ,

V b V c V g V

g V c

div
u

t x u u t x u u

u
t x u

[ ( ) ( ) ( )

( ) (

1

uu u t x u

t x u t x u u

) ( )

( ) ( ) ( ) (

— + , , , — +

+ ∂
∂

, , , — + ∂
∂

, , ,

b V V

b
V

V c V V g
V

V c

1

1 ))

( ) ( ) ]

— +

+ ∂
∂

, , , + ∂
∂

, , , .

V

b V V g V1

x
t x u

x
t x u u

 

(3.15)

Denote v u= - j , t V y= - , b t( )t x v, , , =
= , , + , + + + , , + , + +

+ , , + , +

∂
∂

∂
∂

b

g

j t y c t y g j t y

j t y

1
u

u

t x v t x v

t x v

( ) ( ) ( )

( )) ( ), ( ) (

) ( ) (

c j m t b

j t y j t y c tb
V

v t x v t x v

t x v

+ , , , = , , +

+ , + + , , + , +∂
∂

1

1 ++ + , , +

+ , + + , , , = -— ¢ + , , +

∂
∂

∂
∂

y

j t y c j t y

g
V

b

) (

) ( ), ( ) (

t x v

v g t x v t x vu
1 jj t

y c t y j g j t y j
j t y c j

g

, +

+ + — + , , + , + — + , , +
+ , + +

∂
∂) ( ) ( ) (

) ( )
t x v t x v

v
u

—— + , , + , + — +

+ , , + , + + — + ,∂
∂

∂
∂

j b j t y y

j t y c t y yb
V

g
V

1

1

( )

( ) ( ) (

t x v

t x v t x ,, + , +

+ + — + , , + , + + +

+ , , + ,

∂
∂

∂
∂

v

v t x v

t x v
x

x

j t

y c j y j t y t y

j

b

g

) ( ) ( )( )

(

1

tt y j+ +)( ).v
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Then we can rewrite (3.15) in the following 
form: 

D ¢ =
= , , , — + , , , — + , , , .

t
b t m t t tdiv t x v v t x v g t x v[ ( ) ( ) ( )]

 
(3.16)

Similarly, using the notations D t x v( ), , , =t  
D t x v( )= , , + , +j t y1 , E t x v E t x v( ) ( ),, , , = , , + , +t j t y1  

f t x v D t x v( ) ( ), , , = -—D ¢ + , , + , + — +-t j j t y j1
1  

E t x v( )+ , , + , + —j t y y1 , we rewrite (3.6) as 

¢ =
= , , , — + , , , — + , , , .

v
div D t x v v E t x v f t x v[ ( ) ( ) ( )]t t t t

 
(3.17)

Observe that the initial and boundary condi-
tions for v  and t  are 

 v t t| = , | = ,= =0 00 0t  (3.18)

 v | = , | = .∂ ∂W W0 0t  (3.19)

Definition 3.1. A pair of functions ( )v,t  from 
the class 

 v W T H T HŒ , , Œ , ;( ) ( ( ))W Wt 1
0
10  (3.20)

is a weak solution to problem (3.16)—(3.19) if it 
satisfies (3.18) and equalities (3.16), (3.17) hold 
in the space H -1( )W  a.e. on ( )0,T . 

Note that (3.18) makes sense due to the em-
beddings 

 
W C T L H T H

C T H

Ã , ; , , ; Ã

Ã , ; .

([ ] ( )) ( ( ))

([ ] ( ))

0 0

0
2

1
0
1

0
1

W W

W
Condition (3.19) is “hidden” in the space 

H 0
1( )W . 

As we have seen, for any regular solution ( )u,s  
of the problem (3.1)—(3.4) satisfying (3.5), the 
corresponding pair ( )v,t  is a weak solution to 
problem (3.16)—(3.19). Conversely, let ( )v,t  be 
a weak solution to problem (3.16)—(3.19). As-
sume that the functions v, , ,t y j  are sufficiently 
regular, (3.11) holds, and the corresponding pair 
( )u v= + , = +j V t y  satisfies (3.5) and (3.10). 
Then we have (3.6) and (3.13), and the latter gives 
(3.7) due to (3.11). Moreover, we have (3.8) with 
u t0 0= | ,=j  V y0 0= | .=t  Thus, ( )u u, = +s V n0  is a 
solution to (3.1)—(3.4). 

When dealing with weak solutions, it is not 
necessary to assume that the functions in (3.16)—
(3.19) and W  are so regular as it was above. Let 
us describe the conditions which we impose. It is 
not hard to see that these conditions are fulfilled 
provided the functions in (3.1)—(3.4) and W  are 
sufficiently regular (as it was above). 

For the sake of generality we assume that the 
functions b  and m  are matrix-valued and replace 
(3.18) with more general initial condition 

 v v L Ht t| = Œ , | = Œ= =0 0 2 0 0 0
1t t  (3.21)

(with the corresponding change in Defini-
tion 3.1). 

Let W Ã �n , n Œ� , be any bounded open set 
such that 

 X Wp( ) ( )W WÃ
0

1  (3.22)

for some p0 2> . 
Assume that  
i) D , E , m , b : Æ ;+ ¥� �n n n3  f g n n, : Æ+� �3 .
ii) Each of these six functions (e.g. D t x v( ), , ,t

) is measurable in ( )t x,  for fixed ( )v,t . 
iii) Each of these functions is continuous in 

( )v,t  for fixed ( )t x, . 
iv) These functions satisfy the estimates 

 D t x v K
R Dn n( ), , , £ ,¥t  (3.23)

 E t x v K
R En n( ), , , £ ,¥t  (3.24)

 b t b( )t x v K
Rn n, , , £ ,¥  (3.25)

 m t m( )t x v K
Rn n, , , £ ,¥  (3.26)

 f t x v K v f t x
R fn( ) ( ) ( ), , , £ + + , ,t t �  (3.27)

 g t x v K v g t x
R gn( ) ( ) ( ), , , £ + + ,t t �  (3.28)

with some constants K … KD g, ,  and functions 
f g L T� �, Œ , ¥2 0(( ) )W . 

v) 

 ( ( ) ) ( )D t x v d
R Rn n, , , , ≥ , ,t x x x x  (3.29)

where d > 0  is independent of ( )t x v n, , , Œ +t � 3  and 
x Œ �n . 

Theorem 3.1. Under these conditions, for every 
v L0 2Œ ( )W  and t 0 0

1ŒH ( )W , there exists a weak 
solution to problem (3.16),(3.17),(3.19),(3.21) in 
class (3.20). 

4. AUXILIARY PROBLEM

Consider the following auxiliary problem: 

 
∂
∂

+ D = , , , — +

+ , , , — + , , , ,

v
t

v div D t x v v

E t x v f t x v

e l t

t t t

2 [ ( )

( ) ( )]
 

(4.1)

 
∂
∂

+ D = D , , , — +

+ , , , — + , , , ,

-t e t l b t

m t t t
t

div t x v v

t x v g t x v

2 1 [ ( )

( ) ( )]
 

(4.2)

 v vt| = ,=0 0  (4.3)

 t t| = .=t 0 0  (4.4)

Here e > 0 , l Œ ,[ ]0 1  are parameters. 
Definition 4.1. Given v L0 2Œ ( )W , t 0 0

1ŒH ( )W , 
a pair of functions ( )v,t  from the class 
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 v W T W TŒ , , Œ ,2 1( ) ( )W Wt  (4.5)

is a weak solution of problem (4.1)—(4.4) if 
equality (4.1) holds in the space H -2( )W  a.e. on 
( )0,T , (4.2) holds in the space H -1( )W  a.e. on 
( )0,T , (4.3) holds in L2( )W , and (4.4) holds in 
H 0

1( )W . 
The last two conditions make sense due to the 

embeddings 

 W C T H W C T L1 0
1

2 20 0Ã , ; , Ã , ; .([ ] ( )) ([ ] ( ))W W
The proof of Theorem 3.1 is based on three 

lemmas. 
Lemma 4.1. Let ( )v,t  be a weak solution to 

problem (4.1)—(4.4). Then the following a priori 
estimate holds: 

  
e e t

l

v v

v

L T H L T X L T L

L T H

2 0
2

2 2

2

0

2

0

2

0

2

0

( ( )) ( ) ( ( ))

(

, ; , ; , ;

, ;

+ + +

+
•W W

00
1

0
1

2
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(4.6)

where C  is independent of l  and e . 
Lemma 4.2. Let ( )v,t  be a weak solution to 

problem (4.1)—(4.4). Then there is the following 
bound of the time derivatives: 

    ¢ + ¢ £ +, ; , ;- -v CL T H L T H2
2

2
10 0 1( ( )) ( ( )) ( )W Wt e  (4.7)

where C  is independent of l  and e . 
Lemma 4.3. Given v L0 2Œ ( )W , t 0 0

1ŒH ( )W , 
there exists a weak solution to problem (4.1)—(4.4) 
in class (4.5). 

The proof of this lemma is based on degree 
theory arguments, and then Theorem 3.1 follows 
via passage to the limit as e Æ 0  (cf. [18, 19]). 
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