ВЛИЯНИЕ ГРАНИЦ ЗЕРЕН НА ДИНАМИЧЕСКУЮ ЭЛЕКТРОПРОВОДНОСТЬ СЕГНЕТОЭЛЕКТРИЧЕСКОЙ КЕРАМИКИ ТИТАНАТОВ БАРИЯ-СТРОНЦИЯ

А. М. Солодуха, Г. С. Григорян

Воронежский государственный университет

Методом импедансной спектроскопии исследованы зависимости диэлектрической проницаемости и электрического сопротивления от температуры и частоты тестового сигнала для образцов твердых растворов сегнетоэлектрической керамики (Ba,Sr) TiO₃. Определена энергия активации процессов проводимости и диэлектрической релаксации. Установлены области температур в параэлектрической фазе образцов, где имеет место положительный температурный коэффициент сопротивления (ПТКС). На основе модели Хейванга произведен расчет плотности электронных состояний на границе кристаллитов.

КЛЮЧЕВЫЕ СЛОВА: сегнетоэлектрическая керамика, импедансная спектроскопия, ПТКС.

введение

Керамические материалы со структурой перовскита находят широкое применение в различных областях радиоэлектроники. Особое место среди них занимают керамические твердые растворы на основе титаната бария и титаната стронция. Они имеют четкий сегнетоэлектрический фазовый переход, температура которого меняется в зависимости от соотношения компонент, что позволяет изменять рабочие области температур в широких пределах. При этом появляется возможность использовать как сегнетоэлектрическое, так и параэлектрическое состояние вещества, что значительно увеличивает прикладные возможности данных материалов. Кроме больших значений диэлектрической проницаемости и ее нелинейной зависимости от величины приложенного электрического поля большой интерес вызывают процессы электропроводности, которые демонстрируют изменение электрического сопротивления от температуры как с отрицательным, так и с положительным температурным коэффициентом. На основе последнего эффекта разработаны такие приборы как позисторы, электросопротивление которых резко возрастает в определенном температурном интервале. Они широко применяются в качестве датчиков температуры, саморегулирующихся нагревательных элементов, ограничителей тока и напряжения и т. п. [1]. Одними из наиболее перспективных материалов этой группы является твердые растворы на основе BaTiO₃, у которых область положительного температурного коэффициента сопротивления (ПТКС) наблюдается вблизи сегнетоэлектрической точки Кюри. Позисторный эффект в сегнетоэлектрической керамике обусловлен барьерными слоями на границах зерен. Сопротивление этих областей зависит от диэлектрической проницаемости материала, а размеры составляют десятки и сотни нанометров.

ТЕОРИЯ

Модель Хейванга — общепринятая модель для объяснения ПТКС, которая описывает температурное поведение сопротивления и основывается на представлениях о двойном барьере Шоттки [2]. Высота барьера φ в границах зерен описывается как

$$\boldsymbol{\varphi} = eN_s^2 / 2\boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r N, \qquad (1)$$

где N_s — плотность состояний на границе зерен с акцепторными свойствами, N — концентрация носителей заряда, e — заряд электрона, ε_0 — диэлектрическая постоянная и ε_r — относительная диэлектрическая проницаемость в области границ зерен.

Удельное сопротивление R для транспорта носителей через потенциальный барьер φ определяется как

$$R = R_0 \exp(e\varphi / kT), \qquad (2)$$

где R_0 — постоянная, k — постоянная Больцмана, T — абсолютная температура.

Согласно закону Кюри—Вейсса в параэлектрической фазе

$$\boldsymbol{\varepsilon}_r = C_{\text{K-B}} / (T - T_c), \qquad (3)$$

где $C_{\text{к-в}}$ — постоянная Кюри — Вейсса, T_c — температура Кюри — Вейсса.

Как видно из выражения (1) N_s , N и ε_r могут сильно повлиять на высоту барьера φ .

Для диэлектрической проницаемости вблизи границ зерен (grain boundary) можно записать [3]

$$\boldsymbol{\varepsilon}_{ab} = \boldsymbol{\varepsilon}_r (d \,/\, 2b),\tag{4}$$

где d — средний размер зерен, b — ширина барьера, равная полуширине обедненного слоя в области пространственного заряда. Учитывая, что каждый из барьеров может быть рассмотрен как конденсатор, \mathcal{E}_{gb} получается из следующего выражения

$$\boldsymbol{\varepsilon}_{ab} = C_{ab} t \,/\, \boldsymbol{\varepsilon}_0 S,\tag{5}$$

где C_{gb} — электрическая емкость, t — толщина образца, S — площадь электродов. Из уравнений 1, 2 и 4 выводим

$$R(T) = R_0 \exp(e^2 N_s d / 4\varepsilon_0 \varepsilon_{gb} kT)$$
(6)

или

$$\ln R(T) = \ln R_0 + e^2 N_s d / 4\varepsilon_0 \varepsilon_{ab} kT, \qquad (7)$$

где N_s может быть вычислена из наклона зависимости $\ln R$ от $1/\varepsilon_{ab}T$ следующим образом

$$N_s = 4\varepsilon_0 kg / e^2 d, \qquad (8)$$

где *g* определяется тангенсом угла наклона графика данной зависимости.

МЕТОДИКА

В настоящей работе выполнены исследования структурных характеристик и электрических свойств образцов двух составов на основе титаната бария: $Ba_{0.95}Sr_{0.05}TiO_3$, $Ba_{0.67}Sr_{0.33}TiO_3$, синтезированных по обычной керамической технологии [4]. Исследования образцов проводили методом импедансной спектроскопии с использованием измерителя LCR «Wayne Kerr 4270» в диапазоне частот от 300 Гц до 1 МГц и в интервале температур от 20 °C до 500 °C. Импеданс Z и угол сдвига фаз между активной и реактивной составляющей импеданса измерялись на образцах в виде дисков диаметром 10 мм и толщиной около 2 мм с серебряными электродами, полученными вжиганием серебряной пасты. Перед каждым измерением образец предварительно выдерживался при температуре измерения в течение 20 минут для достижения термодинамического равновесия. Температура измерялась термопарой и определялась с помощью потенциометра постоянного тока ПП-63 с точностью до 1 °С. Относительная погрешность измерения импеданса не превышала $\delta Z = \pm (0, 1 - 0, 4) \%$. Погрешность измерения фазового угла определялось формулой $\Delta \varphi = \pm (1, 2\delta_z / 1 \% + 0, 1)^\circ$. Импеданс соединительных проводов был незначителен по сравнению с импедансом образца. Кристаллическая структура керамик определялась рентгеновским структурным анализом на приборе ДРОН-3М, а микроструктура и фазовый состав — с помощью сканирующего электронного микроскопа JSM-6380 LV.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

На рис. 1 показаны фотографии поверхности образцов после раскалывания. Хорошо различаются границы зерен, что позволяет провести оценку среднего размера кристаллитов и определить величину *d* из формулы (4) (см. табл. 3).

В таблице 1 и 2 приведены данные элементного и весового состава образцов. Элементный состав соответствует исходным компонентам, которые изначально смешивают, однако наблюдается избыточное количество углерода, входящего в исходный состав углекислого бария.

На рис. 2 представлена температурная зависимость действительной части проводимости в координатах Аррениуса. На кривых хорошо различимы участки, где имеет место явление ПТКС, а также линейные участки роста проводимости с ростом температуры, по наклону которых можно определить энергию активации E, построив зависимость Y(T) в координатах Аррениуса (см. табл. 3).

Рост потенциального барьера, согласно модели Хейванга, связан с уменьшением диэлектрической проницаемости в параэлектрической фазе по закону Кюри-Вейсса, что подтверждается данными из рис. З. При этом в зависимости от соотношения элементов Sr и Ba в твердом растворе температура перехода сегнетофаза-парафаза изменяется. Так, по мере замещения ионов Ba²⁺ на ионы Sr²⁺ точка Кюри (Т_с) линейно понижается, а параметры кристаллической решетки уменьшаются [6]. Однако при увеличении температуры, особенно на низких частотах измерительного поля, наблюдается отклонение от закона Кюри-Вейсса. Для этой области температур характерны релаксационные процессы, что следует из рис. 4 а и б, где представлены зависимости мнимой части

Влияние границ зерен на динамическую электропроводность сегнетоэлектрической керамики...

Puc. 1. Микрофотографии образцов $Ba_{0.95}Sr_{0.05}TiO_3$ (а) и $Ba_{0.95}Sr_{0.05}TiO_3$ (б), полученные с помощью сканирующего электронного микроскопа

			1	Таблица 1		
Massari	00000000	obnaoua	D_{α}	C.	$T_{i}O$	

Фазовый состав образца $Ba_{0.95}Sr_{0.05}TiO_3$

Элемент	Весовой %	Атомный %
С	6.41	17.33
0	29.35	59.50
Р	1.82	1.91
Ti	14.37	9.73
\mathbf{Sr}	1.39	0.51
Ba	46.66	11.02
Итог	100.00	100.00

Таблица	2
---------	---

 Φ азовый состав образца $Ba_{0.67}Sr_{0.33}TiO_3$

Элемент	Весовой %	Атомный %
С	7.50	21.51
0	23.19	49.93
Al	0.17	0.23
Ti	18.70	13.45
Sr	15.64	6.15
Ba	34.80	8.73
Итог	100.00	100.00

диэлектрического модуля образцов от частоты для различных температур. Из рисунков видно, что максимумы зависимостей смещаются с ростом температуры в область более высоких частот (т. е. частота $\omega_{\max}(T)$ растет с ростом T), что соответствует дебаевскому механизму, который описывается следующим выражением для времени релаксации τ

$$\tau = \tau_0 \exp(U \,/\, kT),\tag{9}$$

где τ_0 — постоянная, U — энергия активации релаксационного процесса.

Рис. 2. Зависимость проводимости от температуры в координатах Аррениуса для исследованных образцов: 1, 2 — на 1 кГц и на 100 кГц для $Ba_{0.95}Sr_{0.05}TiO_3$; 3, 4 — на 1 кГц и на 100 кГц для $Ba_{0.67}Sr_{0.33}TiO_3$

Как было показано ранее [4], для величин τ и $\omega_{\rm max}$ выполняется соотношение

$$\boldsymbol{\omega}_{\max} t = (\boldsymbol{\varepsilon}_s \,/\, \boldsymbol{\varepsilon}_{\infty})^{1/\,\alpha}, \qquad (10)$$

где \mathcal{E}_s и \mathcal{E}_{∞} обозначают статическую и высокочастотную диэлектрическую проницаемость, соответственно, а параметр α характеризует степень размытия релаксационного спектра.

Подставляя выражение для τ из (10) в (9) и логарифмируя, получим уравнение

ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2008, № 1

Рис. 3. Зависимость обратной величины действительной части диэлектрической проницаемости от температуры: 1, 2 — на 1 кГц и на 100 кГц для Ва_{0.95}Sr_{0.05}TiO₃; 3, 4 — на 1 кГц и на 100 кГц для Ва_{0.67}Sr_{0.33}TiO₃. Отрезки прямых указывают на закон Кюри—Вейсса

$$\ln \omega_{\rm max} = {\rm const} - U / kT.$$

Построение данной зависимости в координатах Аррениуса позволяет по наклону графика найти величину U (см. рис. 5).

На рис. 6 показаны зависимость логарифма сопротивления образцов от величины $1/(\varepsilon_{gb}T)$, из наклона которой была найдена плотность электронных состояний N_s на границе зерен, которые имеют характер акцепторных уровней и определяются согласно выражению (8).

В заключение все характерные величины, связанные с процессами переноса и релаксации заряда, и полученные из данных эксперимента, приведены в итоговой таблице 3.

выводы

Проведенные эксперименты и основанные на них расчеты характеристик динамической электропроводности керамических образцов титанатов бария-стронция позволяют сделать вывод о наличии двух механизмов переноса заряда, проявляющихся в параэлектрической

Рис. 4. Изотермы зависимости мнимой части диэлектрического модуля от частоты: а — $Ba_{0.95}Sr_{0.05}$, б — $Ba_{0.67}Sr_{0.33}$

Таблица З

Значения основных величин, характеризующих процессы переноса и релаксации заряда в исследованных образцах

Состав образцов	N _s , 1/м² (1 кГц)	N _s , 1/м² (100 кГц)	U, эВ (релакс. процесс)	Е, эВ (провод. 1 кГц)	С _{к-в} , 1/К	b, мкм
$\mathrm{Ba}_{0.95}\mathrm{Sr}_{0.05}\mathrm{TiO}_3$	$1,68 \cdot 10^{16}$	$8,84 \cdot 10^{15}$	0,98	0,75	$1,58.10^{5}$	7,1
$\operatorname{Ba}_{0.67}\operatorname{Sr}_{0.33}\operatorname{TiO}_3$	$5,50.10^{15}$	$7,67 \cdot 10^{15}$	0,95	0,70	$5,68.10^{4}$	15,2

Влияние границ зерен на динамическую электропроводность сегнетоэлектрической керамики...

Рис. 5. Зависимость частоты максимумов *М*" от температуры исследуемых образцов в координатах Аррениуса для определения энергии активации релаксационного процесса *U*

фазе этих соединений. Один механизм связан с барьером Шоттки на границах зерен и приводит к явлению ПТКС. Второй обладает релаксационными характеристиками и демонстрирует активационный характер дебаевского типа, что вызывает отклонение от закона Кюри—Вейсса по мере увеличения температуры.

ЛИТЕРАТУРА

1. Аморфные и поликристаллические полупроводники / под ред. В. Хейванга. — М. : Мир, 1987. — 160 с.

2. Heywang W. Semiconducting Barium Titanate / W. Heywang // J. Mater. Sci. - 1971. - Vol. 6. -P. 1214-1226.

Рис. 6. Графики зависимости логарифма сопротивления от $1/(\varepsilon_{gb}T)$ исследуемых образцов для нахождения плотности электронных состояний на границах зерен N_c

3. Zhang F. Investigation of surface acceptor state density and resistivity jamp of ytterbium-doped (Ba,Sr)TiO₃ materials / F. Zhang, Z. Zhang, Q. Mi, Z. Tang, P. Zhu // J. Mater. Sci. -1999. - Vol. 34. - P. 5051-5054.

4. Окадзаки К. Технология керамических диэлектриков / К. Окадзаки. — М. : Энергия, 1976. — 336 с.

5. Солодуха А. М. Определение диэлектрических параметров керамики на основе дисперсии комплексного электрического модуля / А. М. Солодуха, З. А. Либерман // Вестник ВГУ. Сер. физ., мат. — 2003. — № 2. — С. 68—72.

6. *Яффе Б.* Пьезоэлектрическая керамика / Б. Яффе, У. Кук, Г. Яффе. — М. : Мир, 1974. — 288 с.