ВЛИЯНИЕ БУФЕРНОГО ПОРИСТОГО СЛОЯ GaAs И ЛЕГИРОВАНИЯ ДИСПРОЗИЕМ В ГЕТЕРОСТРУКТУРАХ GaInP:Dy/por-GaAs/GaAs(100)

П. В. Середин¹, Э. П. Домашевская¹, Н. Н. Гордиенко¹, А. В. Глотов¹, И. А. Журбина¹, И. Н. Арсентьев², М. В. Шишков²

¹Воронежский государственный университет ² Физико-технический институт им. А. Ф. Иоффе РАН

В образцах с пористым буферным слоем остаточные внутренние напряжения, вызванные рассогласованием параметров кристаллических решеток поверхностного тройного твердого раствора GaInP и подложки GaAs, перераспределяются в пористый слой, который в данном случае играет роль «губки» и способствует полному исчезновению внутренних напряжений.

КЛЮЧЕВЫЕ СЛОВА: эпитаксиальные гетероструктуры, пористые слои, легирование, внутренние напряжения.

1. ВВЕДЕНИЕ

Интерес к гетероструктурам на полупроводниковых материалах АЗВ5 обусловлен их использованием при производстве мощных светоизлучающих устройств. Кроме того, так как редкоземельные элементы обладают сильными магнитными свойствами, введение их в полупроводники, а также полупроводниковые твердые растворы на основе АЗВ5 может внести новые степени свободы в материал за счет взаимодействия свободных носителей и магнитных ионов, что в свою очередь открывает новые возможности таких материалов в электронной промышленности [1]. Использование пористых полупроводниковых прослоек в таких гетероструктурах в качестве переходных слоев согласующих параметры между эпитсаксиальным слоем и подложкой, может оказаться перспективным.

2. ПОДГОТОВКА ОБРАЗЦОВ И МЕТОДЫ ИССЛЕДОВАНИЯ

В работе исследовались эпитаксиальные гетероструктуры, полученные методом МОС-гидридной эпитаксии. Эпитаксиальные слои тройных твердых растворов GaInP толщиной ~0.2 µm, легированные диспрозием $n \sim 10^{15}$ см⁻³, были выращены либо непосредственно на монокристаллических подложках GaAs (100) $n \sim 10^{17}$ см⁻³, либо на буферным пористом слое GaAs толщиной ~10 µm, сформированном анодным травлением подложки GaAs (100). Согласование параметров эпитаксиального слоя и подложки контролировали с помощью дифрактометра ДРОН 4-07. Анализ поверхности и сколов образцов был проведен с использованием растрового электронного микроскопа JEOL JSM-6380LV. ИК-спектры отражения получали на Фурье ИК-спектрометре Vertex 70 Bruker.

Анализ дисперсии отражений спектров ИК от монокристаллической подложки GaAs (100) был проведен с помощью одноосцилляторного приближения Спицзера, Клеймана, Фроша [2]. Коэффициент отражения представляет собой выражение:

$$R(\omega) = \frac{(n(\omega) - 1)^2 + k(\omega)^2}{(n(\omega) + 1)^2 + k(\omega)^2}.$$
 (1)

Учитывая данные соотношения:

$$\varepsilon_{1}(\omega) = n(\omega)^{2} - k(\omega)^{2},$$

$$\varepsilon_{2}(\omega) = 2n(\omega)k(\omega),$$
(2)

можно выразить вещественную и мнимую составляющие диэлектрической проницаемости $\varepsilon_1(\omega)$ и $\varepsilon_2(\omega)$ в виде:

$$\varepsilon_{1}(\omega) = \varepsilon_{\infty} \left[1 + \frac{(\omega_{LO}^{2} - \omega_{TO}^{2})(\omega_{TO}^{2} - \omega^{2})}{(\omega_{TO}^{2} - \omega^{2}) + \omega^{2} + \gamma^{2})} \right],$$
(3)
$$\varepsilon_{2}(\omega) = \varepsilon_{\infty} \left[\omega \gamma \frac{\omega_{LO}^{2} - \omega_{TO}^{2}}{(\omega_{TO}^{2} - \omega^{2}) + \omega^{2} + \gamma^{2})} \right],$$

где $\omega_{LO}, \omega_{TO}, \gamma, \varepsilon_{\infty}$ — частоты продольных и поперечных колебаний, коэффициент затухания и высокочастотной диэлектрической проницаемости соответственно.

Для моделирования ИК-спектров отражения от пористых образцов расчеты производи-

[©] Середин П. В., Домашевская Э. П., Гордиенко Н. Н., Глотов А. В., Журбина И. А., Арсентьев И. Н., Шишков М. В., 2008

лись с использованием программируемой модели, представляющей полу бесконечную подложку с функцией диэлектрической проницаемости ε_s и тонкого поверхностного слоя (пористого слоя) толщиной d и функцией диэлектрической проницаемости ε_f . В такой модели коэффициент отражения при нормальных углах падения [3]:

$$R = \left| \frac{r_f(\boldsymbol{\omega}) + r_{fs}(\boldsymbol{\omega}) \cdot \exp(i2\boldsymbol{\beta})}{1 + r_f(\boldsymbol{\omega}) \cdot r_{fs}(\boldsymbol{\omega}) \cdot \exp(i2\boldsymbol{\beta})} \right|^2, \qquad (4)$$

где

$$r_f(\boldsymbol{\omega}) = \frac{1 - \sqrt{\varepsilon_f(\boldsymbol{\omega})}}{1 + \sqrt{\varepsilon_f(\boldsymbol{\omega})}}, \ r_{fs} = \frac{\sqrt{\varepsilon_f(\boldsymbol{\omega})} - \sqrt{\varepsilon_s(\boldsymbol{\omega})}}{\sqrt{\varepsilon_f(\boldsymbol{\omega})} + \sqrt{\varepsilon_s(\boldsymbol{\omega})}}, \ (5)$$

где $\boldsymbol{\beta} = rac{2\pi d \sqrt{arepsilon_f(\omega)}}{\lambda}, \ \boldsymbol{\lambda} = 10000 \, / \, \boldsymbol{\omega} \, -$ длина вол-

ны.

Функция диэлектрической проницаемости определяется следующим соотношением:

$$\varepsilon_f(\omega) = \varepsilon_{\infty} + \sum_i \frac{4\pi f_i(\omega_{TOi})^2}{(\omega_{TOi})^2 - \omega^2 + i\omega\gamma_i}, \quad (6)$$

где $f_i, \boldsymbol{\omega}_i, \boldsymbol{\gamma}_i$ — сила, резонансная частота и коэффициент затухания *i*-х осцилляторов.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. ДИФРАКТОМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ И МИКРОСКОПИЯ

Сложность обработки данных о дифракции для исследуемых гетероструктур находится в наложении независимой дифракции К α 1,2-дублетов, наблюдаемых от пленки и подложки, которая не позволяет однозначно определить интенсивности пиков при использовании классических методов. Аналогичным образом по причине структурной неустойчивости твердых растворов в некоторых случаях возможно появление смазанных профилей.

Таким образом, некоторые грубые ошибки возможны вследствие наложения дифракционных линий, которые характеризуют наличие отдельных фаз вещества в твердом растворе, определяют их интегральные интенсивности и постоянные кристаллической решетки материала. Поэтому важный критерий при отделении профилей дифракции — правильный выбор аналитической функции для их описания. Значение погрешности, возникающей в результате математического моделирования так же, как и однозначность разделения дублетов для различных фаз, зависит от выбора аналитической функции. Для описания дифракционных профилей мы использовали аналитическую функцию Гаусса, имеющую следующую форму:

$$I(x) = I_0 \exp(-k\theta^2), \ k = 0.6931 / (w/2)^2,$$

где I_0 – интенсивность максимума, ω — ширина на полувысоте пика, θ – угол Брэга.

Разложение экспериментальных профилей дифракции было выполнено с помощью программы «New profile 34», где можно применять аналитическую функцию Гаусса. Данная программа выделяет независимые пики из общего массива данных и строит их согласно заданной аналитической функции. На рисунке 1 приведены профили рентгеновской дифракции от К $\alpha_{1.2}$ линий (600) для образцов GaInP/GaAs(100) (рис. 1,а), GaInP:Dy/GaAs(100) (рис.1,б) и GaInP:Dy/por-GaAs/GaAs(100) (рис.1,в).

На дифрактограммах присутствуют два Ка_{1.2}-дублета: более интенсивный (при меньших углах) от твердого раствора и второй — менее интенсивный — от подложки. Простой расчет дифрактограм показывает, что параметр эпитаксиального слоя GaInP ($x \sim 0.50$) отличается от параметра кристаллической решетки монокристаллической подложки GaAs9100) на $\Delta a = 0.0064$ Å. Ввиду заметного различия параметров пленка-подложка в эпитаксиальном слое твердого раствора возникают существенные механические напряжения, и линии Ка_{1.2}-дублета от этого слоя оказываются очень широкими ($\Delta K \alpha_1 = 0.28^\circ$).

Легирование эпитаксиального слоя атомами диспрозия ($n_{Dy} \sim 10^{16} \, {\rm cm}^{-1}$) снижает напряжения в GaInP и почти в три раза уменьшает ширину дифракционной линии твердого раствора ($\Delta K \alpha_1 = 0.1^\circ$, на рис. 1,б). Выращивание того же легированного твердого раствора на пористом буферном слое в гетероструктуре GaInP:Dy/por-GaAs /GaAs(100) приводит к полному снижению напряжений в эпитаксиальном слое. Линии $K \alpha_{1,2}$ -дублета от этого слоя наиболее узкие — $\Delta K \alpha_1 = 0.08^\circ$, несмотря на большое рассогласование параметров.

Таким образом, в образцах с пористым буфером остаточные внутренние напряжения, вызванные различием параметров решетки поверхностного слоя тройного твердого раствора GaInP и монокристаллической подложки GaAs, перераспределяются в пористый слой, который выступает в роли своеобразной «губки»

П. В. Середин, Э. П. Домашевская, Н. Н. Гордиенко, А. В. Глотов, И. А. Журбина, И. Н. Арсентьев, М. В. Шишков

Puc. 1. Дифрактограммы линий (600) от гетероструктур: a — GaInP/GaAs(100), б — GaInP:Dy/GaAs(100), в — GaInP:Dy/ por-GaAs /GaAs(100)

109,4

 2θ , deg

109,6

109,2

109,8

110,0

110,2

0

108,6

108,8

109,0

и полностью снимает внутренние напряжения.

ющего электронного микроскопа (рис. 2) пока-

зывают, что в буферном пористом слое GaAs

наблюдается неоднородное распределение раз-

мера пор. Более крупные поры располагаются

на границе с подложкой GaAs (100), тогда как поры меньших размеров преобладают в верхней

части пористого слоя ближе к границе раздела

с эпитаксиальным слоем GaInP.

Данные, полученные с помощью сканиру-

3.2. ИК-СПЕКТРЫ ОТРАЖЕНИЯ

Математическое моделирование экспериментальных ИК-спектров было выполнено с использованием методики «пленка-подложка», описанной выше. Для разработки модели использовали экспериментальный спектр подложки GaAs (100).

На рис. З изображены ИК-спектры в области фононных мод монокристаллической подложки GaAs(100) легированной серой с концентрацией $n \sim 10^{-17}$ сm⁻³ — (1), не легированной

Puc. 2. Изображение, полученное при помощи сканирующего электронного микроскопа, поперечного скола образцов гетероструктур GaInP:Dy/GaAs (слева) и GaInP:Dy/ por -GaAs /GaAs(100) (справа)

Puc. 3. ИК спектры отражения гетероструктур: 1 — GaAs(100):S; 2 — GaInP/GaAs(100); 3 — GaInP:Dy/ por-GaAs/GaAs(100); 4 — GaAs(100)

ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2008, № 1

монокристаллической подложки GaAs(100) — (4) и две гетероструктуры GaInP/GaAs(100) — (2) и GaInP:Dy/por-GaAs/GaAs(100) — (3). Насколько мы видим из рисунка, спектр монокристаллической подложки содержит одну колебательную моду GaAs(100), но имеет такой вид, что можно заключить о присутствии плазмон-фононного резонанса.

Что касается спектров гетероструктур, то они включают главные колебательные моды, характерные для GaP и InP при частотах $380 \text{ u} 320 \text{ cm}^{-1}$ соответственно. Необычное увеличение отражательной способности в спектре GaInP:Dy/por-GaAs/GaAs(100) в диапазоне 420 cm^{-1} , так же как в диапазоне 250 cm^{-1} , наблюдается в результате образования плазменных колебаний в твердом растворе GaInP, легированным Dy.

Появление плазменного резонанса вызвано изменением дополнительного взаимодействия между свободными носителями заряда и инфракрасным излучением, к примеру при изменении плотности электронов. Кроме того, возникновение плазменных колебаний в пленке, легированной атомами Dy, приводит к изменению положения моды в отражательном спектре подложки GaAs(100). Если поперечные моды GaAs(100) в спектре гетероструктуры GaInP/ GaAs(100) с низкой интенсивностью ограничена в диапазоне 270 cm⁻¹, те же поперечные моды GaAs(100) в спектре гетероструктуры GaInP: Dy/por-GaAs/GaAs(100) сдвинуты в сторону меньших значений длины волны и могут указывать на изменение внутренних кристаллических напряжений в сплаве GaInP. Это подтверждено фактом подобного сдвига поперечных мод колебаний для GaP к более коротким длинам волны. Все эти факты означают некоторую определенную корреляцию в данных дифракции рентгеновских лучей, электронной микроскопии и ИК-спектроскопии.

выводы

В образцах с пористым буферным слоем остаточные внутренние напряжения были вызваны рассогласованием параметров кристаллических решеток приповерхностного тройного твердого раствора GaInP и подложки GaAs, перераспределяющейся в пористый слой, который в данном случае играет роль «губки» и способствует полному исчезновению внутренних напряжений.

Анализ ИК-спектров отражения показал, что при легировании эпитаксиальных слоев GaInP атомами диспрозием, благодаря относительно небольшой разнице в радиусах между атомами диспрозия и атомами металлического компонента (индия или галлия), диспрозий может входить как в эпитаксиальные слои, замещая атомы In, Ga, так и занимает междоузлия. Кроме того, в гетероструктурах с рог-GaAs, примесные атомы диспрозия проникают в буферный слой, накапливаясь в порах в виде кластеров.

ЛИТЕРАТУРА

 $\begin{array}{l} 1. \textit{Föll H.} A \text{ comparison of pores in silicon and pores} \\ \text{in III-V compound materials / H. Föll , J. Carstensen} \\ \text{[et. al.] // Phys. Stat. Sol. (a). - 2003. - Vol. 197,} \\ \text{Issue 1. - P. 197-203.} \end{array}$

2. *Spitzer W. G.* Infrared properties of cubic silicon carbide films / W. G. Spitzer, D. Kleinman [et. al.] // Phys. Rev. — 1959. — Vol. 113, Issue 1. — P. 133—136.

3. Verleur H. W. Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films/ H. W. Verleur // JOSA – 1968. — Vol. 58, Issue 10. — P. 1356—1360.