МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ И МОДЫ ИК-СПЕКТРОВ В АМОРФНЫХ НАНОКОМПОЗИТАХ $(Co_{45}Fe_{45}Zr_{10})_{x}$ $(SiO_{2})_{1-x}$

А. В. Щекочихин¹, Э. П. Домашевская¹, С. И. Карпов¹, О. В. Стогней²

¹Воронежский государственный университет ²Воронежский государственный технический университет

На основе идентификации мод колебательных ИК-спектров, установлено межатомное взаимодействие между элементами металлической компоненты и диэлектрической матрицы в аморфных гранулированных композитах со сложным составом металлической компоненты $((Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{100-x})$. Установлена корреляция между интенсивностью мод колебаний и магниторезистивными свойствами аморфных нанокомпозитов.

КЛЮЧЕВЫЕ СЛОВА: ИК-спектр, корреляция, магниторезистивные свойства, металлическая компонента, диэлектрическая компонента, интенсивность моды.

введение

В настоящее время большой научный и практический интерес специалистов в области перспективных технологий вызывает синтез и исследование физических свойств материалов, состоящих из металлических наногранул, распределенных в диэлектрической матрице.

Явление магнитосопротивления в его экстремальных проявлениях: гигантское — в многослойных структурах ферромагнитный металл — немагнитный металл, туннельное — в гранулированных структурах ферромагнитный металл — диэлектрик, а также колоссальное в ферромагнитных полупроводниках давно приковывает внимание исследователей.

В работе [1] были изучены магнитные и магниторезистивные свойства гранулированных композитов со сложным составом металлической фазы ($(Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{100-x}$). Установлено, что при изменении процентного содержания металлической фазы в сплаве кривая зависимости магнитосопротивления от состава композита проходит через максимум, т. е. наблюдаются его нелинейные изменения в зависимости от состава (рис. 1).

Так как механизмом магниторезистивного эффекта является спин-зависимое туннелирование электронов между соседними гранулами, что было подтверждено в работах [2, 3], максимальный эффект наблюдается там, где условия для такого туннелирования оптимальны, т. е. наблюдаемый максимум совпадает с порогом протекания [4]. Так как расстояние между гранулами наименьшее и, следовательно, вероят-

© Щекочихин А. В., Домашевская Э. П., Карпов С. И., Стогней О. В. , 2008 ность туннелирования наибольшая. При уменьшении доли металла (область составов с диэлектрической проводимостью) относительно порога перколяции, расстояние между гранулами возрастает и следовательно вероятность туннелирования уменьшается — магниторезистивный эффект монотонно уменьшается. При увеличении доли металла (переход в область составов с металлической проводимостью) — гранулы соединяются в протяженную металлическую сеть, и исчезают условия для возникновения туннелирования электронов, магнитосопротивление резко уменьшается и достигает нуля [1].

ИК-спектроскопия — один из наиболее плодотворных современных физических методов исследования межатомного взаимодействия и химической связи с помощью колебательных спектров молекул. В настоящей работе был использован метод инфракрасной спектроскопии для определения мод колебаний, ИК-спектров, возникающих в результате химического взаимодействия между атомами металлической и диэлектрической компоненты нанокомпозита.

Практический интерес к гранулированным нанокомпозитам, содержащим ферромагнитную металлическую фазу, обусловлен наличием в них гиганского магнитосопротивления. Поэтому, как сами материалы, так и механизмы, ответственные за появления магнитосопротивления, активно исследуются в настоящее время. Вместе с тем, исследование композитов с аморфной структурой до сих пор не проводились. Помимо этого, практически не изученными остаются вопросы влияния термической обработки на свойства композита, взаимосвязи из-

Puc. 1. Зависимость величины магнитосопротивления композита $(Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{100-x}$ от доли металлической компоненты [1]

менения индивидуальных свойств фаз, формирующих композит, и свойств композита в целом.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве объектов исследования служили гранулированные композиты со сложным составом металлической компоненты $((Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{100-x})$ (таблица 1), полученные магнетронным распылением составной мишени на ситаловую подложку.

Таблица 1

Состав образцов с различным содержанием сплава Со₄₅Fe₄₅Zr₁₀ (ат.%) по данным микроанализа

Номер образца	Состав, ат.% сплава
1	29,3
5	34,0
7	37,1
10	42,0
14	49,0

Спектры данных объектов снимались на инфракрасном Фурье-спектрофотометре «Specord-82M», который предназначен для регистрации спектров поглощения или пропускания жидких, твердых и газообразных веществ в средней области ИК диапазона 400...4000 см⁻¹.

При использовании специальных приставок спектрометр может быть использован для регистрации спектров диффузного и зеркального отражения, нарушенного полного внутреннего отражения и спектров поверхностного поглощения в инфракрасной области.

Тонкие слои нанокомпозита $((Co_{45}Fe_{45}Zr_{10})_x$ $(SiO_2)_{100-x})$ на подложке ситала (SiAlO) можно исследовать за счет отражения излучения от отражающей поверхности, помещая образец в обычную приставку зеркального отражения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При регистрации спектров самая информативная область спектров отражения наблюдалась в пределах 400...1500 см⁻¹. На рис. 2—6 представлены ИК-спектры отражения образцов: 1, 5, 7, 10, 14, имеющих различное содержание металлической компоненты Со₄₅ Fe₄₅Zr₁₀ (ат.%). Также на рис. 2 вместе с ИК-спектром образца № 1 приведен спектр отражения ситаловой подложки, который наглядно дает понять, что данный спектр отражения от подложки не вносит никакого вклада в спектры отражения образцов. Это позволяет исключить влияние ситаловой подложки на спектры отражения образцов.

В данной области ИК-спектров были выявлены моды колебательных спектров, относящиеся к следующим химическим связям, или межатомным взаимодействиям:

- Si-O — область ~1230 см⁻¹ [5],

- Si-O — область ~840 см⁻¹ [5],

- Fe-Zr — область ~635 см⁻¹,

- Fe-O — область ~670÷680 см⁻¹,

Mежатомное взаимодействие и моды ИК-спектров в аморфных нанокомпозитах ($Co_{45}Fe_{45}Zr_{10}$) $_x$ (SiO_2) $_{1-x}$

Рис. 2. ИК-спектр отражения образца № 1 (X = 29,3), ИК-спектр ситаловой подложки

Рис. 3. ИК-спектр отражения образца № 5 (X = 34)

Рис. 4. ИК-спектр отражения образца № 7 (X = 37)

ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2008, № 1

Рис. 5. ИК-спектр отражения образца № 10 (X = 42)

Рис. 6. ИК-спектр отражения образца № 14 (X = 49)

эти связи были идентифицированы и обозначены на рис. 2—6.

Кроме того были выявлены моды: ~740 см⁻¹ и ~870 см⁻¹, которые проявляются во всех образцах, показывают зависимость интенсивности от состава аморфного нанокомпазита, но не были идентифицированы.

На рис. 2—5 наблюдаем падение интенсивности мод колебания Si-O, с увеличением номера образца (№ 1—14), отражающего увеличения металлической компоненты. В образце № 14 интенсивность моды колебания связи Si-O существенно уменьшается и становится сопоставимой с модой колебания Zr-O-Si.

Среди мод колебаний металлической компоненты, мода колебания соответствующей Fe-Zr является преобладающей. При увеличении номера образца (№ 1→14) происходит увеличении интенсивности этой моды (рис. 2). Во всех образцах, кроме образца № 10, мода Fe-Zr превосходит моду колебания Fe-O в дватри раза и сопоставима с модами колебаний Zr-O-Si и Co-O. И лишь в образце № 10 с 42 % содержанием металлической компоненты на максимуме магнитосопротивления (см. рис. 1) Межатомное взаимодействие и моды ИК-спектров в аморфных нанокомпозитах $(Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{1-x}$

Таблица 2

	Связи								
Номер	идентифицированные						неидентифицированные		
образца	Fe-Zr	Fe-O	Zr-O	Si-O	Co-O	Zr-O-Si	Si-O	1-я	2-я
	$\mathrm{C}\mathrm{M}^{-1}$	CM^{-1}	CM^{-1}	CM^{-1}	CM^{-1}	$\mathbf{C}\mathbf{M}^{-1}$	CM^{-1}	$\mathrm{C}\mathrm{M}^{-1}$	CM^{-1}
1	638	676	782	840	936	1050	1230	739	870
5	634	674	788	840	938	1049	1240	742	869
7	636	674	789	840	940	1049	1238	740	871
10	636	668	780	840	940	1056	1236	740	864
14	639	666	790	840	940	1052	1238	738	871

Характеристические моды связей в исследуемых образцах с различным содержанием металлической компоненты Co₄₅Fe₄₅Zr₁₀ (am.%).

мода Fe–Zr уступает по интенсивности моде колебания Fe–O, которая в этом образце становится господствующей среди мод колебаний металлической компоненты, но сопоставима с модой колебания Zr–O–Si.

Что касается моды колебания связи Fe−O, то во всех образцах за исключением образца № 10, она имеет меньшую интенсивность по сравнению с преобладающей модой колебания Fe−Zr, и почти не изменяется с увеличением номера образца. И лишь в образце № 10 интенсивность моды колебания связи Fe−O резко увеличивается (рис. 5) относительно моды колебания Fe−Zr. Следует отметить, что в образце № 10 аналогично моде Fe−Zr ведет себя и вторая мода колебания Si−O (840 см⁻¹).

В образце № 10 интенсивность этой моды колебания Si-O (область 840 см⁻¹), резко уменьшается до уровня фона (рис. 5), т. е. практически исчезает, а затем с увеличением номера образца (№ 14) интенсивность моды Si-O (область 840 см⁻¹) вновь возрастает вместе с модой колебаний Fe-Zr (рис. 6).

С увеличением номера образца (№ 1—7), наблюдаем стабильную интенсивность моды колебания связи Со-О (рис. 2—4). Однако в образцах № 10 и 14 (рис. 5 и 6) интенсивность моды колебания связи Со-О резко уменьшается и практически исчезает в образце № 14, несмотря на увеличение металлической компоненты. Т. е. в этих образцах Со остается неокисленным.

Связь должна Zr–O–Si играть важную роль в образовании кластерной системы. Она является связующем звеном между диэлектрической и металлическим кластером матрицы (т. е. можно назвать данную связь пограничной). Это подтверждает тот факт что с увеличением номера образца (\mathbb{N} 1 \rightarrow 14), т. е. с увеличением металлической компоненты, интенсивности мод колебаний Si-O и Zr-O-Si изменяются симбатно (рис. 2—5). В образце № 14 интенсивность этих мод колебаний также одновременно существенно уменьшается, несмотря на увеличение металлической компоненты. При этом в образце № 14 связь Zr-O становится сопоставимой со связью Fe-O, при преобладающей роли связи Fe-Zr.

Что касается, неидентифицированной моды колебания связи: (область 740 см⁻¹), то она ведет себя подобно моде колебаний связи Si-O (840 см⁻¹). Изначально она имеет стабильную интенсивность, сопоставимую с преобладающей модой колебаний Fe-Zr (рис. 2—4). В образце № 10 интенсивность моды колебания данной связи 740 см⁻¹ резко уменьшается до уровня фона (рис. 5), т. е. практически исчезает, вместе с модой колебания Si-O (840 см⁻¹), а с увеличением номера образца интенсивность стремительно возрастает вместе с модой колебания Fe-Zr (рис. 6). На этом основании можно предположить, что неидентифицированной модой колебания может быть связь Co-Zr.

Вторая неидентифицированная мода колебания связи (область ~870 см⁻¹) ведет себя симбатно с модой колебаний связи Fe–O. Изначально данная мода колебаний имеет малую интенсивность относительно преобладающей моды колебания Fe–Zr, и постепенно возрастает с увеличением номера образца, т. е. с увеличением металлической компоненты (рис. 2—4). В образце № 10 (рис. 5) интенсивность моды колебания данной связи (~870 см⁻¹) резко увеличивается по отношению к моде колебаний Fe–Zr, а далее по мере увеличения номера образца интенсивность стремительно падает, и мода колебаний Fe–Zr становится преобладающей (рис. 6).

Таким образом следует констатировать, что неидентифицированная мода колебания связи

(~870 см⁻¹) — являются важной в данной системе, т. к. она отражает увеличение содержания металлической компоненты и изменение магнитосопротивления. Что касается неиндентифицированной моды колебания связи (740 см⁻¹), то она также является важной в данной системе, т. к. спад интенсивности приходится на образец № 10, т. е. обладающий максимумом магнитосопротивления. А далее вместе с модой колебания Fe–Zr она становится вновь интенсивной.

ЗАКЛЮЧЕНИЕ

Таким образом, ИК-спектроскопия дает ценную дополнительную информацию по идентификации химических связей, возникающих в результате межатомного взаимодействия между металлической и диэлектрической компоненты в аморфных нанагранулированных композитах со сложным составом металлической фазы $((Co_{45}Fe_{45}Zr_{10})_x(SiO_2)_{100-x}).$ В связи с этим ИК-спектроскопия позволя-

В связи с этим ИК-спектроскопия позволяет устанавливать зависимость между элементным составом; межатомным взаимодействием металлической и диэлектрической компоненты к изменениям магниторезистивных свойств гранулированных нанокомпозитов.

Результаты работы показывают, что в данных нанокомпозитах:

 – связь Fe–Zr является преобладающей, за исключением состава максимума магнитосопротивления;

 в образце с максимумом магнитосопротивления в группе металлических связей становится преобладающей связь Fe–O, а связь Co–O исчезает;

– интенсивность пограничной связи Zr–O– Si изменяется симбатно со связью Si–O, отражая изменения состава нанокомпозита.

СПИСОК ЛИТЕРАТУРЫ

1. Слюсарёв В. А. Магнитные и магниторезистивные свойства гранулированных нанокомпозитов $Co_{41}Fe_{39}B_{20}-Al_2O_3$. $Co_{41}Fe_{39}B_{20}-SiO_2$ и $Co_{86}Ta_{12}Nb_2-SiO_2$:дис.... канд. физ.-мат. наук / В. А. Слюсарёв. — Воронеж, 2002. — С. 102—123.

2. *Fijimori H*. Giant magnetoresistance in insulating granular films and planar tunneling junctions / H. Fijimori, S. Mitani, K. Takanashi// Materials Science and Engineering — 1999. — Vol. 267. — P. 184— 192.

3. *Gerber A.* Magnetoresistance of granular ferromagnets / A. Gerber, A. Milner, B. Groisman, M. Karpovsky, A. Gladkikh, A. Sulpice // Physical revive B — 1997. — Vol. 55, № 10. — P. 6446—6452.

4. Слюсарев В. А. Исследование самоорганизованной гранулированной наноструктуры CoFeB-SiO_n / В. А. Слюсарев, А. В. Ситников, О. В. Стогней // Тезисы докладов международной школы-семинара «Нелинейные процессы в дизайне материалов». — Воронеж, 2002. —С. 150—153.

5. Григорьев А. И. Введение в колебательную спектроскопию неорганических соединений / А. И. Григорьев. — М.: МГУ, 1977.

6. Lopes T. Effect of Zirconia Precursor on the Properties of ZrO_2 -SiO₂ Sol-Gel Oxides / T. Lopes, F. Tzompantzi, J. Hernandez-Ventura, R. Gomes// Journal of Sol-Gel Science and Technology, Netherlands, 2002.

7. Козлов А. А. Магниторефрактивный эффект в гранулированных нанокомпозитах / А. А. Козлов : автореф. дис. ... канд. физ.-мат. наук. — М. : МГУ, 2005.

8. Золотухин И. В. Новые направления физического материаловедения / И. В. Золотухин, Ю. Е. Калинин, О. В. Стогней. — Воронеж : ВГУ, 2000.

9. *Зинюк Р. Ю*. ИК-спектроскопия в неорганической технологии / Р. Ю. Зинюк, А. Г. Балыков, И. Б. Гавриленко, А. М. Шевяков. — Л., 1983.

10. *Накомото К. И.* Инфракрасные спектры неорганических и координационных соединений / К. И. Накомото. — М. : Мир, 1966.

11. Волькенштейн М. В. Колебания молекул / М. В. Волькенштейн, Л. А. Грибов. — М. : Наука, 1972.

12. Беллами А. Инфракрасные спектры сложных молекул / А. Беллами. — М.: ИЛ, 1963.

13. *Кросс А*. Введение в практическую ИК-спектроскопию / А. Кросс. — М. : ИЛ, 1961.

14. *Малевская Л. А.* ИК-спектроскопические исследования тонких термооксидных слоев / Л. А. Малевская, Е. С. Логачева, Д. М. Прибытков, С. И. Карпов // Вестник ВГУ. — Воронеж, 2003.

15. *Grzeta B*. Formation of nanocrystalline magnetite / B. Grzeta, M. Ristic, I. Nowik, S. Music// Journal of Alloys and Compounds. — 2002.

16. *Vorotilov K. A.* ORMOSIL Films: Properties and Microelectronic Applications. / K. A. Vorotilov, V. I. Petrovsky, V. A. Vasiljev, M. V. Sobolevsky // Journal of Sol-Gel Science and Technology 8. — 1997.