ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ НА ЭЛЕМЕНТНЫЙ СОСТАВ И СОГЛАСОВАНИЕ ПАРАМЕТРОВ В ЭПИТАКСИАЛЬНЫХ ТРОЙНЫХ ТВЕРДЫХ РАСТВОРАХ ГЕТЕРОСТРУКТУР Ga_xIn_{1-x}P/GaAs (100)

В. Е. Руднева, Вал. Е. Руднева, П. В. Середин, Э. П. Домашевская

Воронежский государственный университет

Исследовано влияние температуры подложки и скорости потока фосфина при эпитаксиальном выращивании твердых растворов (TP) вблизи половинного состава $x \sim 0.5$ в гетероструктурах Ga $_x In_{1-x} P/GaAs$ (100) на элементный состав TP и величину параметров. Определены параметры решеток эпитаксиальных TP в зависимости от технологических условий их получения (температура роста слоя и количество фосфина PH₃ в потоке газа). Определен интервал изменений значений $x = 0.49 \div 0.56$, а также обнаружен распад твердых растворов в некоторых образцах. В результате проведенных исследований гетероструктур Ga $_x In_{1-x} P/GaAs$ (100) с различными стехиометрическими соотношениями х были найдены оптимальные условия получения TP с наиболее согласованными параметрами решетки. Наиболее согласованными параметрами ЭTP с подложкой обладает образец EM 794 со значением x = 0.52, полученный при температуре подложки T = 700 °C и скорости потока фосфина в реакторе PH $_3 = 20$ мл/сек.

КЛЮЧЕВЫЕ СЛОВА: эпитаксиальные гетероструктуры, спинодальный распад, полупроводники.

введение

Спонтанное возникновение периодически упорядоченных структур на поверхности и в эпитаксиальных пленках полупроводников охватывает широкий круг явлений в физике твердого тела и полупроводниковых технологиях [1].

Полупроводниковые соединения III-V обладают превосходными свойствами переноса электронов и оптическими свойствами. Они содержат широкий диапазон сопряженных кристаллографических и по напряжениям соединений, которые пригодны для разработки новых перспективных структур благодаря «конструированию зонной структуры». Приборы на основе полупроводников III-V находят широкое применение [2]. Например, диоды красного свечения широко используются в дисплеях, а полупроводниковые лазеры — в линиях волоконно-оптической связи [3]. Многие из этих соединений приведены на рис. 1, где представлена зависимость ширины запрещенной зоны от постоянных их кристаллических решеток. Сплошными линиями показаны соединения с прямыми зонами, а пунктирными — соединения с непрямыми межзонными переходами. На рисунке также видно согласо-

© Руднева В. Е., Руднева Вал. Е., Середин П. В., Домашевская Э. П., 2008

вание параметров решетки GaAs и GaInP вблизи величины 5,65 Å.

Приборы из сложных полупроводников до настоящего времени, в основном, была предназначена для применений в системах с очень высокими скоростями электронов (используя преимущества уникальных свойств электронного переноса в III—V полупроводниках по сравнению с Si) и в оптических или оптоэлектронных системах (используя преимущество прямозонной структуры этих полупроводников в интервале 0.6—3.5 мкм).

Развитие современного производства полупроводниковых приборов требует интегрирования большого числа различных элементов.

Рис. 1. Зависимость ширины запрещенной зоны полупроводниковых соединений от параметра их кристаллической решетки

Создание таких приборов требует управляемого осаждения и производства материалов различного типа: металлов, полупроводников и диэлектриков [3].

Работы по исследованию искусственно созданных полупроводниковых гетероструктур были инициированы идеями о создании периодической структуры из чередующихся тонких слоев [4], в том числе при изучении возможных проявлений резонансного тунелирования через двойные и более сложные потенциальные барьеры [5]. Если характерные размеры полупроводниковых наноструктур сделать меньшими, чем длина свободного пробега электронов, то при наличии почти идеальных гетерограниц вся электронная система перейдет в квантовый режим с пониженной размерностью.

Изготовление подобной кристаллической структуры из сверхтонких слоев является необычайно сложной задачей. Тем не менее, непрерывный прогресс таких методов тонкопленочной технологии, как молекулярно-лучевая эпитаксия (МЛЭ), разложение металлорганических соединений и гидридов в реакторе (МОС-гидридная эпитаксия) сделали возможным создание в системе типа GaAs-Ga_{*}In₄ _{*}P и GaAs-Al_rGa_{1-r}As с хорошо согласующимися постоянными решетки высококачественных гетероструктур, имеющих требуемый профиль потенциала и распределение примесей, контролируемые с точностью до постоянной решетки толщины слоев и фактически бездефектные границы раздела [4].

Осаждаемые атомы в процессе эпитаксиального роста выстраиваются на выращиваемой поверхности, связываясь с исходными атомами на подложке. Атомное строение на подложке определяет последующее строение атомов в выращиваемой пленке, и получившаяся пленка является прямым продолжением атомной структуры монокристаллической подложки.

Целью данной работы является определение оптимальных технологических условий получения эпитаксиальных твердых растворов в гетероструктурах $\text{Ga}_x \text{In}_{1-x} P/\text{GaAs}(100)$ вблизи $x \sim 0.5$ с наиболее согласованными значениями параметров решеток.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы эпитаксиальных твердых растворов Ga_xIn_{1-x}P представляют собой эпитаксиальные пленки, полученные методом МОС-гидрид-

ной эпитаксии (разложением металлоорганических соединений и гидридов) на монокристаллической подложке GaAs (100). Интервал температур подложки GaAs (100) при эпитаксиальном наращивании слоев $\text{Ga}_x \text{In}_{1-x} P$ составлял 600÷750 °C, скорость потока фосфина варьировалась от 20 до 450 мл/сек. Пленки выращивались в ФТИ им. Иоффе РАН.

На дифрактометре ДРОН-4-07 получали зависимость интенсивности от углового положения дифракционных линий (600) излучения Си $K_{\alpha 1,2}$ в исследуемых гетероструктурах. Были исследованы 6 образцов гетероструктур $Ga_x In_{1-x} P/GaAs(100)$, полученных при различных технологических условиях наращивания эпитаксиальных слоев, приведенных в табл. 1.

Основным уравнением, описывающим дифракцию рентгеновских лучей от кристаллов, является формула Вульфа—Брэггов:

$$2d_{hkl}\sin q = n\lambda. \tag{1}$$

В соответствии с этой формулой по измеряемым углам дифракционных линий θ и длинам волн $K_{\alpha 1,2}$ излучения медного анода ($\lambda K_{\alpha 1} = 1,541$ Å и $\lambda K_{\alpha 2} = 1,544$ Å), определяли межплоскостное расстояние d и вычисляли параметры решетки в соответствии с соотношением:

$$a = d(h2 + k2 + l2)1/2 = 6d.$$
 (2)

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рисунке 2 представлены экспериментальные данные о форме дифракционных линий (600) от твердых растворов Ga_xIn_{1-x}P вблизи половинного состава ($x \sim 0.5$), выращенных на подложке GaAs(100) при различных технологических условиях.

Рассмотрим каждый из образцов наиболее подробно.

Образец АГН представляет собой монокристаллическую пластину нелегированного GaAs, вырезанную в направлению [100].

На дифрактограмме виден один $K_{\alpha 1,2}$ -дублет линии (600), интенсивность линии $K_{\alpha 1}$ которого больше интенсивности линии $K_{\alpha 2}$ в два раза в точном соответствии с теорией.

Образец ЕМ794 представляет собой эпитаксиальный ТР Ga_xIn_{1-x}P, выращенный на подложке GaAs(100). Дифрактограмма этого образца, представленная также на рис. 1 показывает, что К_{α1,2}-дублет подложки и К_{а1,2}-дублет тонкой пленки совпадают, свидетельствуя о хорошем согласовании параметров их решеток. Влияние технологических режимов на элементный состав и согласование параметров...

Puc. 2. Структура Си К_{α1,2}-дублетов дифракционной линии (600) от эпитаксиальных гетероструктур Ga_xIn_{1-x}P/GaAs(100) вблизи половинного состава

Этот факт подтверждает и незначительное увеличение полуширины ($\Delta \theta$) линии $K_{\alpha 1}$ в этом образце по сравнению с монокристаллической пластиной GaAs(100) образца АГН, также приведенной в табл. 2.

Образец ЕМ796 — наблюдаем совпадение $K_{\alpha 1,2}$ -дублетов подложки и пленки, как и в предыдущем образце ЕМ794. Однако следует отметить значительное уширение дифракционных линий вследствие небольшого рассогласования параметров решеток пленки и подложки.

В образце ЕМ804 происходит существенное изменение распределения интенсивностей линии (600) в результате разделения положения $K_{\alpha 1,2}$ -дублетов от эпитаксиальной пленки ТР и подложки, поэтому на рис. 2 наблюдаются уже не два, а четыре максимума интенсивности. Причем $K_{\alpha 1,2}$ -дублет пленки сдвинут в сторону меньших углов отражения по отношению к $K_{\alpha 1,2}$ -дублету подложки вследствие увеличения параметра пленки, что свидетельствует о значительном рассогласовании параметров пленки и подложки в этом образце (см. табл. 1, 2).

В образце ЕМ806 наблюдается уменьшение числа пиков в распределении интенсивности $K_{\alpha 1,2}$ -линий. В этом образце $K_{\alpha 1,2}$ -дублет пленки ТР сдвинут в противоположную сторону по сравнению с предыдущим образцом, т. е. в сторону больших углов по отношению к $K_{\alpha 1,2}$ -дублету подложки. В результате этого $K_{\alpha 2}$ линия подложки и $K_{\alpha 1}$ пленки совпадают, и на дифрактограмме этого образца наблюдается лишь три максимума дифракции от гетероструктуры. Таким образом, в образце ЕМ806 параметр ТР уменьшается по сравнению с параметром подложки(см. табл. 1, 2).

В образце EM809 снова наблюдается четвертый максимум интенсивности, но при больших дифракционных углах. Дублеты К_{а1,2} от ТР и подложки уже не сливаются в один спектр, а заметно разделяются на два дублета. В результате наибольшего рассогласования параметров решетки подложки и пленки, на дифрактограмме этого образца присутствуют все четыре линии двух разделенных К_{а1 2}-дублетов.

Составы эпитаксиальных TP, определяемые параметром x в исследуемых гетероструктурах Ga_xIn_{1-x}P/GaAs(100) определяли по закону Вегарда. В соответствии с этим законом, в системе при образовании непрерывного ряда твердых растворов параметр кристаллической решетки изменяется линейно с изменением состава TP. На рис. З приведена иллюстрация экспериментального подтверждения линейности закона Вегарда в квазибинарной системе InP– GaP. Исходя из этого закона, х определяли по формуле:

$$c = a(\operatorname{InP}) - k \cdot a(\operatorname{Ga}_{x} \operatorname{In}_{1-x} P), \qquad (3),$$

где *k* = 0,4182 (тангенс угла наклона прямой на рис. 3)

л

Элементный состав x был вычислен для всех исследуемых образцов при значении параметра решетки InP, приведенного на сайте ФТИ им. Иоффе а = 5,8687 Å. Значения x, приведенные в таблице 1, определены в соответствии с положениями максимумов $K_{\alpha 1,2}$ -дублетов ТР экспериментальных дифрактограмм рис. 1, которые имеют различное расположение относительно $K_{\alpha 1,2}$ -дублета подложки GaAs (100) и могут совпадать с последним при x = 0,52 или располагаться слева или справа от него в зависимости от значения x, т. е. от относительного содержания атомов Ga и In различного размера в катионной подрешетке TP.

В таблице 1 представлены экспериментальные данные о параметрах решеток эпитаксиальных ТР, полученные в соответствии с положением линии $K_{\alpha 1}$, а также значения х, определяющие точное содержание атомов Ga и In в катионной подрешетке ТР $Ga_x In_{1-x}P$, вместе с технологическими условиями их получения.

Puc. 3. Закон Вегарда в квазибинарной системе InP–GaP

Для более точного определения составов эпитаксиальных ТР $Ga_x In_{1-x}$ Р нами было проведено разложение экспериментальных дифракционных линий (600), представленных на рис. 2, на компоненты $K_{\alpha 1,2}$ -дублетов с помощью программы Microcal Origin.

Результаты разложения представлены на рис. 4—8. На этих рисунках представлены формы дифракционных линий (600), полученные в результате разложения на компоненты экспериментальных данных от гетероструктур образцов ЕМ794, ЕМ796, ЕМ804, ЕМ806 и ЕМ809, полученнных при различных температурах нагревания подложки GaAs(100) и различных скоростях потока фосфина в реакторе (см. табл. 1).

Процесс разложения экспериментальных линий (600) на компоненты начинался с выделения на дифрактограмме $K_{\alpha l,2}$ -дублета подложки GaAs(100). Очевидно, что результаты разложения для образцов ЕМ794 и ЕМ796 с наиболее согласованными параметрами решетки пленки и подложки не влияют на величины параметров и значения x. Однако для образцов ЕМ804 и ЕМ806 результаты разложения выявляют ин-

Таблица 1

		x 1-x ,	·	
	Параметр	Параметр		Толщина
Образец	подложки	пленки	Значения х	of nontro MM
	GaAs(100), Å	$Ga_{x}In_{1-x}P$, Å		ооразца, мм
Ga As (100) AΓH	5,653			1
$EM794 T = 700 \circ C, PH_3 = 20 \text{ мл/сек}$	5,653	5,653	0,52	1
ЕМ796 Т = 750 °С, $PH_3 = 75 \text{ мл/сек}$	5,654	5,654	0,51	1
ЕМ804 Т = 600 °С, $PH_3 = 75 \text{ мл/сек}$	5,653	5,662	0,50	1
$EM806 T = 600 \circ C, PH_3 = 450 \text{ мл/сек}$	5,653	5,639	0,55	1
$EM809 T = 700 \circ C, PH_3 = 450 \text{ мл/сек}$	5,653	5,633	0,56	1

Экспериментальные значения параметров решетки и составы эпитаксиальных твердых растворов гетероструктур Ga_In, _P/GaAs(100)

Влияние технологических режимов на элементный состав и согласование параметров...

Рис. 4. Разложение дифракционных линий (600) образца ЕМ 794 на компоненты: 1 — подложка GaAs(100); 2 — Ga_xIn_{1-x}P/GaAs (100); 3 — твердый раствор Ga_xIn_{1-x}P (x = 0.52)

Рис. 6. Разложение дифракционных линий (600) образца ЕМ 804 на компоненты: 1 — подложка GaAs(100); 2 — гетероструктура; 3 — тонкая пленка Ga $_x In_{1-x} P x = 0.49$; 4 — тонкая пленка Ga $_x In_{1-x} P x = 0.51$

Рис. 5. Разложение дифракционных линий (600) образца ЕМ 796 на компоненты: 1 — подложка GaAs(100); 2 — гетероструктура; 3 — тонкая пленка Ga_xIn_{1-x}P (x = 0.51)

Рис. 7. Разложение дифракционных линий (600) образца ЕМ 806 на компоненты: 1 — подложка GaAs(100); 2 — гетероструктура; 3 — тонкая пленка Ga $_x In_{1-x}P x = 0.55$; 4 — тонкая пленка Ga $_x In_{1-x}P x = 0.53$; 5 — тонкая пленка Ga $_x In_{1-x}P x = 0.53$

Рис. 8. Разложение дифракционных линий (600) образца ЕМ 809 на компоненты: 1 — подложка GaAs(100); 2 — гетероструктура; 3 — тонкая пленка Ga $_x$ In $_{1-x}$ P x = 0.56

тересные детали. Оказывается, что в образце ЕМ804 эпитаксиальный ТР распался на два состава с x = 0.49 и x = 0.51, а в образце ЕМ806 на три близких состава: x = 0.53, x = 0.54 и x = 0.55.

Результаты разложения на компоненты для образца ЕМ809 практически не изменяют экспериментальных параметров решетки, приведенных в таблице 1, поскольку ввиду их наибольшего рассогласования с параметрами подложки К_{α1.2}-дублеты пленки и подложки в этом образце оказываются наиболее разделенными. Состав ТР в этом образце x=0.56 в наибольшей степени отличается от половинного состава. При этом, из-за наибольшего рассогласования параметров эпитаксиальная пленка оказывается подвергнутой сильным механическим напряжениям, и $\mathrm{K}_{\alpha\mathrm{1,2}}\text{-}\mathrm{линии}$ становятся почти в два раза шире по сравнению с Ка12-линиями монокристаллической подложки GaAs(100) (см. табл. 2).

По аналогии с работой [6] запишем выражения для параметров решетки эпитаксиальных $\operatorname{TP}\operatorname{Ga}_{x}\operatorname{In}_{1-x}\operatorname{Pc}$ учетом упругих напряжений в гетероэпитаксиальном слое.

$$a_{\text{Ga}_{x} \text{In}_{1-x}} = \frac{a_{\text{Ga}_{x} \text{In}_{1-x}}^{\perp} \mathbb{P} \left[1 - (x \mathbf{v}_{\text{GaP}} + (1 - x) \mathbf{v}_{\text{InP}}) \right]}{1 + (x \mathbf{v}_{\text{GaP}} + (1 - x) \mathbf{v}_{\text{InP}})} + \frac{a_{\text{v}_{\text{GAS}}} \left[2(x \mathbf{v}_{\text{GaP}}) + (1 - x) \mathbf{v}_{\text{InP}} \right]}{1 + (x \mathbf{v}_{\text{GaP}} + (1 - x) \mathbf{v}_{\text{InP}})}.$$
(4)

Для того, чтобы вычислить постоянные решеток твердых растворов *a^v*, коэффициенты Пуассона(*v*) были взяты из работы [7]:

$$v_{\text{GaP}} = 0.31, v_{\text{InP}} = 0.36, v_{\text{GaAs}} = 0.31$$

В качестве *a*[⊥] использовались значения постоянных решеток гетероэпитаксиальных структур, полученные разложением экспериментальных профилей дифракционных линий (600), приведенные в таблице 2.

Как следует из сравнения данных для a^{v} и a^{\perp} таблицы 2, учет упругих напряжений в гетероэпитаксиальных слоях приводит к изменению постоянных решеток в третьем знаке, заключенном в круглые скобки, и практически не изменяет значений x, определенных с точностью до второго знака.

Таблица 2

	<i>51</i>)		()				
Образец	Режимы получения ТР	$d_{_{ m эксп}}$, Å	$\Delta \theta(k_{\alpha 1})_{\text{эксп}},$	$\Delta \theta(k_{\alpha 1})_{\text{разл}},$	$a^{\scriptscriptstyle \perp}$, Å	$a^{\scriptscriptstyle v}$, Å	x
			трад.	трад.			
AIH						_	
GaAs(100)		0,9422	0,078		5,6532		
EM794							
$T = 700 \ ^{\circ}C$	$Ga_{0.52}In_{0.48}P(TP)$	0,9422		0,107	5,6532	5,6528	0,51(4)
РН ₃ =20 мл/сек	GaAs(100)	0,9422	0,096	0,078	5,6532	5,6532	
EM796							
$T = 750 \ ^{\circ}C$	$Ga_{0.54}In_{0.49}P(TP)$	0,9425		0,118	5,6545	5,6539	0,51(0)
PH ₃ =75 мл/сек	GaAs(100)	0,9422	0,141	0,078	5,6532	5,6532	
EM804							
$T = 600 \ ^{\circ}C$	$Ga_{0.49}In_{0.54}P(TP)$	0,9435		0,178	5,6612	5,6571	
PH ₃ =75 мл/сек	$Ga_{0.54}In_{0.49}P(TP)$	0,9425		0,137	5,6550	5,6542	0,49
0	GaAs(100)	0,9421	0,144	0,081	5,6532	5,6532	0,51
EM806							
$T = 600 \ ^{\circ}C$	$Ga_{0.53}In_{0.47}P(TP)$	0,9411		0,074	5,6470	5,6500	0,53
РН ₃ =450 мл/сек	$Ga_{0.54}In_{0.46}P(TP)$	0,9406		0,178	5,6440	5,6486	0,54
0	$Ga_{0.55}In_{0.45}P(TP)$	0,9395		0,178	5,6372	5,6452	0,55
	GaAs(100)	0,9421	0,085	0,078	5,6532	5,6532	
EM809							
$T = 700 \ ^{\circ}C$	$Ga_{0.56}In_{0.44}P(TP)$	0,9388		0,178	5,6335	5,6431	0,56
РН ₃ =450 мл/сек	GaAs(100)	0,9421	0,085	0,078	5,6532	5,6532	

Значения параметров решетки и составы эпитаксиальных твердых растворов гетероструктур Ga_xIn_{1-x}P/GaAs (100) по данным разложения экспериментальных дифракционных линий (600) на компоненты

Таким образом, результаты разложения экспериментальных дифракционных линий (600) гетероструктур с эпитаксиальными TP $Ga_x In_{1-x}$ P при различных значениях х вблизи половинного состава показывают, что эти TP могут испытывать спинодальный распад с образованием двух, и даже трех TP близких составов под действием механических напряжений, возникающих в результате рассогласования параметров кристаллических решеток TP и подложки.

ЗАКЛЮЧЕНИЕ

В результате проведенных дифрактометрических исследований гетероструктур Ga_xIn_{1-x}P/GaAs (100) с различными значениями х вблизи половинного состава были найдены оптимальные условия получения эпитаксиальных TP с наиболее согласованными параметрами решетки. Такими параметрами обладает образец EM794 со значением x = 0.51(4), полученный при температуре подложки T = 700 °C и скорости потока фосфина в реакторе 20 мл/сек.

ЛИТЕРАТУРА

1. Егоров А. Ю. Синтез и исследование гетероструктур полупроводниковых соединений АШ—ВV и создание оптоэлектронных приборов на их основе / А. Ю. Егоров // ФТП. — 2001. — № 1. — С. 130—136.

2 Stanchina W. E. Compound Semiconductor Device Structures. Handbook of Semiconductor Technology / W. E. Stanchina, J. F. Lam // Wolfgang Schroter (Eds.) Wiley-VCH. - 2000. - Vol. 2. - P. 16-24.

3. *Кейси Х.* Лазеры на гетероструктурах / Х. Кейси, М. Паниш. М. : Мир, 1981. — Т. 1. — 299 с.

4. *Келдыш Л. В.* Свойства полупроводниковых сверхрешеток / Л. В. Келдыш // ФТТ. — 1962. — № 4. —С. 2265.

5. *Бом Д*. Квантовая теория / Д. Бом. — М. : Наука. 1965. — С. 732.

6. Домашевская Э. П. Закон Вегарда и сверхструктурная фаза в эпитаксиальных гетероструктурах AlGaAs/GaAs(100) / П. В. Середин [и др.] // ФТП. — 2005. — Т. 39, Вып. 3. — С. 354.

7. Lamberti C. The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films / C. Lamberti // Surface Science Reports. -2004. - Vol. 53. - P. 14-360.