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1. INTRODUCTION

We are concerned with initial boundary value
problems for parabolic equations in nonsmooth
domains. These problems with Dirichlet boundary
condition in domains containing conical points
have been investigated in [6, 7]. The problems
with Neumann boundary condition in domains
with edges have been dealt with for the classical
heat equation in [10] and for general second order
parabolic equations in [2]. In the present paper,
we consider such problems with Neumann
boundary condition (the second initial boundary
problems) for higher order linear parabolic
equations in domains containing conical points.

The main goal of this paper is to obtain the
regularity of the solutions of the problems. There
are some approaches to this issue. For parabolic
equations of second order in a smooth domains it
were established in both Hélder and Sobolev
spaces initelLby the method in which a regularizer
was constructed and exact estimates of solutions
in terms of the data of the problems were dealt
with. Such ideas were also used in [2] with some
modifications for the case of domains with edges.
For theequation dealt with in [10], whose
coefficients are independent of the time variable,
one used Fourier transform to reduce the problem
to an elliptic one with a parameter. In the present
paper, for a general higher order linear parabolic
equation with coefficients depending on both
spatial and time variables in domains containing
conical points we modify the approach suggested
in [3, 6, 7]. First, we study the unique solvability
and the regularity with respect to the time variable
for generalized solutions in the Sobolev space
H™(Q) by Galerkin’s approximate method. By
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modifying the arguments used in [6, 7], we can
weaken the restrictions on the data at the initial
time £ =0 imposed therein. After that, we take
the term containing the derivative in time of the
unknown function to the right-hand side of the
equation such that the problem can be considered
as an elliptic one. With the help of some auxiliary
results we can apply the results for elliptic
boundary value problems and our previous ones
to deal with the regularity with respect to both of
time and spatial variables of the solutions.

Our paper is organized as follow. In Sec. 2, we
introduce some notations and the formulation of
the problem. In Sec. 3 we establish the unique
existence and the regularity with respect to time
variable of the generalized solutions of the problem
with the main result stated in Theorem 1. Theorem
2 is the main result of Sec. 4 in which the global
regularity is dealt with.

2. NOTATION AND FORMULATION
OF THE PROBLEM

Let G beabounded domainin R"(n = 2) with
the boundary 0 G . We suppose that T' = 9 G \_{0}
is a smooth manifold and G in a neighborhood of
the origin 0 coincides with the cone
K ={x:z/ |z |e Q} where Q isasmooth domain
on the unit sphere S"" in R". Set @, = G x(0,t)
for each te€(0,+),Q =@Q. =G x(0,+e), and

S =Tx[0,+4). For each multi-index
o= (a,ts,a,) e N", %9t|0{|-0{+ +a,, and
D* =D =D} ...Di*,D, =—idldz;.

Let l be a nonnegatlve integer. We denote by
H'(G) the usual Sobolev space of functions
defined in G with the norm

|u|| J‘ z |D°‘u| dx%

|lo|lsm
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by Hl_%(l") the space of traces of functions from
H'(G) on T with the norm

”u”H“%(r) = inf{”””H‘(C) -VE Hl(G),v = u}.
Let
L=L(ztD)= Y, D(a,(zt)D")

leel1BI=0
be a differential operator of order 2m defined in
@ with coefficients infinitely differentiable up to
the boundary, and let
B, = B (x,t,D) = 2 b,(x,t)D ,m,
lal<m;

be a system of boundary operators on S with
coefficients infinitely differentiable in a
neighborhood of 9G x[0,+e),m <ord B, =
=m,; <2m -1 for j=1,...,m. We assume that
coefflclents of L and B together with all
derivatives are bounded in Q,0G X [0,+0c0) ,
respectively.

We assume that, for each ¢e]0,+),
{B;(z,t,D)}", is a normal system on T" (for the
de[lHILlOH see |9, Def. 3.14]). Then the following
Green’s formula

m

J‘G Luvdz = B(t,u,v) + 2 L Bju?wds (2.1)
j=1

isvalid forall u,v € C;'(G \ {0}) and a.c. ¢ € [0,+00),
where B’;,j =1,...,m, are boundary operators of
order 2m —1—m; on S, and

m

B(t,u,v) = Z ch O

leelBI=0

We also suppose that the form B(t,.,.) is
H"™(G) -elliptic uniformly with respect to

t € [0,+0), i.e. the inequality
B(t,u,u) 2 nu”u”iﬂ”(a) (2.2)
isvalid forall w € H"(G) and all ¢ € [0, +e0), where
U is a positive constant independent of u and ¢ .
We proceed to introduce some functional

spaces. We introduce the spaces V,, (G), H,(G)
(y € R) of functions in G equipped with the

norms
o= Lo
|u|| 2 J 2 |D“u| dz) :

led<t
For 1 =0 weset L, (G)=V,,(G)= H)(G). If
-1 [,L \
121, then V,*(T'),H,*(I') denote the spaces
con51st1ng of traces of functions from respective
spaces V,, (G), H,(G) on the boundary I' with the
respective norms

(.) DPuDvdz, t € [0, +).

||u 2y Hod-1) |D°‘u| dz) %
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”unvy”%(r) = inf{”””;;y(m ‘ve VQZ, ( ) v |r u}

el ey = {0l )

It is obvious that V] ,(G) is continuously
imbedded in H! ,(G). Moreovel for functions
u € V,,(G) the norms of u in V; (G) and H,(G)
are equwalent It is the same for v (F) and

gamma

H*(T) (see [5, Th. 7.1.1, 7.1.2]). We have

Y

continuous imbeddings (see [5, Ch. 6, 7])
Vy, (G) € Vo3 5(G), Hy(G) € H,'\(G)
for0< k<

v e Hy(G),v = u}.

(2.3)

and
V,H()

2y

VD), Hy (D) <

2,7k Y
for0<k<l.
Let X,Y be Banach spaces. We denotle by

L,(0,T; X)(0 < T < +oo) the space consisting of all
measurable functions u:(0,7) —» X with the

norm
= (], lutt)

and by H'(0,T;X,Y) the space consisting of all
functions u € L,(0,7; X) such that the generalized
derivative u, = u” existsand belongsto L,(0,T;Y).
The norm in H'(0,T; X,Y) is defined by

HA) 4

o dt):,

||u L,(0,T;X)

”u”Hl(O,T;X Y) ||u L,(0,T;X) + ||u Ly (0 TY))%'
For shortness we set
Voy (Qr) = L(0, T3V, (G)),
H,’(Qr) = L,(0,T; H,(G)),
HY(Qr) = L(0,T; H'(G)),
H"(Qy) = H'(0,T; H'(G), L(G)),
H™(Qr) = L,(0,T; H™(G)),
H™(Qr) = H'(0,T: H(G), L(G)),
and
H" Q) = H'(0,T; H"(G), H"(G)).

Finally, we denote H,"'(Q,)(y € R) the
weighted Sobolev space of functions defined in @
equipped with the norm

”u”Hjj"W(QT) =

1

Y D]+ i lu, \Q)dxdty,
k=0

|ot|+2mk<2ml

- [ | (7

where r = |z| = (Z;r’zz)%’uﬁ = 0"u/at".
By H™"(G) wedenote the dual spaceto H"(G).
We write {.,.) to denote the pairing between
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H"(G) and H™"(G), and (.,.) to denote the inner
product in L,(G) . By identifying L,(G) with its
dual, we have the continuous imbeddings
H"(G)>L,(G)>H™(G) with the equation

<f,5> = (f,v) for f € L,(G) c H"(G),v e H"(Q).

In this paper we consider the following
problem

u, +Lu = fin Q, (2.9)
Bu=0,0on8,5=1,...,m (2.6)
u=¢@onG, (2.7)

where f:@Q — C,p: G — C are given functions.
Let fe H™(Q),¢ € L,(G). A function u e H™(Q)

is called a generalized solution of the problem

(2.5)—(2.7) iff u(.,0) = ¢ and the equality

(u,,v) + B(t,u,v) = (f(t).v)
holds for a.e. ¢t € (0,+c0) and all v e H"(G).

3. SOLVABILITY AND REGULARITY
WITH RESPECT TO TIME VARIABLE

In this section we establish the unique
existence and the regularity with respect to
variable ¢ of generalized solutions of the problem
(2.9)—(2.7).

First we introduce the definition of the
compatibility conditions imposing on functions
f,o in (2.5) and (2.7). This conditions consist in
the fact that the derivatives u, |,_,, which can be
determined for ¢ =0 by means of equation (2.5)
and the initial condition (2.7), must satisfy for
xz € I' the boundary conditions (2.6).

Let ¢ € H"(G), f € H'™"(Q), where h is
a positive integer, ¥y < m. We set

(2.8)

® = 0.0, = f(,0) = L(2,0,D)@,,....,p, =
h-1 h _ 1

= [ (,0) - 2( . ]L (2.0.D)g,, (3.1)
=0

where
m oba
o off(z,t)
L, =L,(z,t,D)= Z:L>@—JL—D%

locl.|B1=0 at

We say that the A™-order compatibility
conditions are fulfilled if

S

Z (Zj (BJ)LH (J?, 0, D)% |r: 0,

k=0

(3.2)
s=0,...,h—=1,j=1,...,m

Now let us state the main theorem of the
present section:
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Theorem 1. Let h be a nonnegaltive integer and
Y be a real number, y<m. Assume that
S H @), f e H2hmh(Q) such that @,..., 9, €
H’”(G) and h" _order compatibility conditions
are fulfilled in the case h >1. Then the problem
(2.5)—(2.7) has a unique generalized solution
u e H™'(Q), moreover,

u, € H™(Q) for k= 0,..., h, (3.3)

and

ZH Uy

where C' is the constant independent of u, f,@ .

Remark. It follows from fe H""(Q) that
f:(,0) defined in the trace sense and
£ (,0) e HE0"(@),k =0,...,h — 1. Then it fol-
lows from the assumptlon @ e HM"(G),
fe ™ (Q) that ¢, € H "™ (G),k=0,...,h.
Thus, by (2.3), @, € H?””(G) c H™G) c H’”(G),
k=0,...,h—1. However in general, ¢, ¢ H"(G).
Therefore, in Theorem 1 instead of the assumption
@59, € H"(G) we can assume only that
¢, € H"(G).

To prove Theorem 1, we first establish some
lemmas.

For simplicity in the following we will some
time write v(t) instead of v(.,t) for functions v(z,t)
defined on Q. For integer k> 0,u,v € H™(Q,),
t €[0,40) we set

B, (t,u,v) = z J

g™ ¢ O
'f B, (t,u,v)dt, B"(u,v)= B (u,v).

i 5OVl + Sl ) 34

k=0

o Uy (z,1)

DPu(z, t)D_av(x, t)dz,

BTuv

Lemma 3.1. Let F(t,.,.) be a bilinear form on
H"(G)x H"(G) satisfying

|F(t,v,w)| < C||v||H,,,,(G) (C = const) (3.9)

”w”H”"(G)

for all te€[0,4e) and all v,we H"(G), and
F(.,v,w) is measurable on [0,4e) for each pair
v,we H"(Q). Assume that u e H™(Q) satisfies
u(0) =0 and

(u,(£).v) + Bt u(t), v

fora.e. t €[0,4e) and all ve H"(G). Then u=0
on Q.

Proof. Substituting v := u(t) into (3.6), then
integrating both sides of the obtained equality
with respect to ¢ from 0 to b(b > 0), after all using
the assumptions (2.2), (3.5), we arrive at

thu)erQﬁ)
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1
5”“({’)”2(@) + u”“”i{”"“(@;,) =

bpt
<O J Nl oy Je@ o it <
1 bt
<C ) : j0(||u(t) ey (e ) dTdt <
< bC Julfya g,
Choosing b= we have = ||u || +
20"’ L,(G)
+ ,u||u||H ) < 0. This implies u =0 on [0, %]
Repeatlng thls argument we can show that v =0
on intervals [i,ﬂ], [E,S—‘u],..., and, therefore,
20 CTC 20
u=0on Q.o

Lemma 3.2. If fe H "™ (Q),¢ € L,(G), then
there exists a unique generalized solution
u e H™(Q) of the problem (2.5)—(2.7).

Proof. The uniqueness of the solution follows
directly from Lemma 3.1. We will prove its
existence. Since H"(G) is compact imbedded in
L,(G) , we can take a system of functions {y, };_
which is not only an orthogonal basis of H"(G)
but also an orthonormal basis of L,(G) (For
instance, {y, },_, is a completed set of normalized
eigenfunctions of a formally self-adjoint strong
elliptic operator of order 2m in G ). For each
positive integer N ,we consider the function

Nat)= X OF (0w (@), where {CF (D}, is
the solution of the ordinary differential system:

() w) + Blt.u"p,) = (fy,), 1=1....N, (3.7)
cY)y=C,, k=1...,N. (3.8)
Here C, = (@, w,),k =1,2,.... Aftermultiplying

both sides of (3.7) by C)(t), taking sum with
respect to [ from 1 to N, and integrating with
respect to ¢ from O to T' (T > 0), we arrive at

[ @ it + BT () = j0T< f, u_N> dt. (3.9)

Adding (3.9) with its complex conjugate, we
obtain

[ (@) +2B" (W u) =

L,(G)

, +2Re| <fu > . (3.10)

= Ju* ) .,

N
Noting that ”uN(O)”;G) = HZ((Pa VOV,
k=1

<

2
L(¢)

<l ) and
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2Re]! (1.0 )it < 2] U7l o o o <

2
* e ”f ”H*'"w“(QT)

(0 < & <2u), and using the assumption (2), we
have from (19) that

[0 [, < Ol ) + W0

2
< efu’],..
o

Sending T — 4o, we oblain
[0y < € 6, + 17T o)

Now fix any v € H"(G) with ||| <1,and
write v = v, +v,,where v, € span{y,}. l,éUZ,l//l)L) =

(3.11)

HmU(

=0,l=1,...,N. Since the functions {y,}., are
orthogonal in H"(G) | < o]l o S1. We
obtain from (3.7) that
(') + B(t,u",v,) = <f,v7>.
Therefore,
(u',v) = (W), 0) = (', 0,) = (£,v,) = Bt u",v)).

Hence, we get

(G el Tl W
since ||1;1||Hm ©) <1.Thus,
[ e (7 P W 1

and therefore,

(75 e 1 AR il N E=

< Ol e + 17l-ws0))
Combining (3.11) and (3.12), we get

[0 [, < € (Il +1Twgy) - (3:13)

where C is a constant independent of ¢, f and
N . From this estimate, by the same arguments as
in [1. Ch. 7. Th. 3], we conclude that there exists
a subsequence of {u"} which weakly converges
to a generalized solution u e H™'(Q) of the
problem (2.5)—(2.9). o

Lemma 3.3. Let ¢ € H"(G) and f € L,(Q) or
feH™(Q). Then the generalized solution
u e H™(Q) of the problem (2.5)—(2.9) in fact
belongs to H™'(Q) and the following estimate

lelies ) < € (Il ) + 1) (3.14)

holds with the constant C mdependent of g, f, and
u. Here X is L,(Q) or H ™ (Q) according as

feL,(Q)or fe H™(Q).

(3.12)
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Proof. (i) Let us consider first the case
feL(Q). Let u" be the functions defined as in
the proof of Theorem 3.2 with C, = ((p,l//k)
(k=1,2,. ) replaced by C ”l//k"[[ (o, v, )Hm
where (.,.) , denotes the 1nner product in
dCN

dt
then taking sum with respect to [ from 1 to N,
after that integrating with respect to ¢ from 0 to
T (0 < T < +e0), and adding the attained equality
with its complex conjugate we arrive at

H"

H"(G). Multiplying both sides of (3.7) by

2}, + 3 [ 9 (DPu Do Vddt =
S a0 T at
= 2Rej (f,u )dt.
By the integration by parts, we get
2||us "2 +B(T,u",u") =
Ly (Qr)

= B0,u",u") + B' (u",u") + QRej (f,u)dt. (3.15)
da,,
ot
Cauchy’s inequality, we get

|B(0,u",u")| < Cu* (0)||:m(c)

Since Qups are bounded on @, using

< C”(P"iﬂ"(m ’
|BLT(uN,uN)| < C”“N”iﬂ”’(@ )
2Re] () ] <

< 8||u

—IIfIIL) o) (0<€<2).
Hence, it follows from (3.11) and (3.15) that

[T ) < OOl + W, ) (3:16)
Sending T' — +eo , we obtain

[ R P V1 S

Combining (3.11) and (3.17), we have

[y < Clole o, + 1L )

This implies that the sequence {u"} contains a
subsequence which weakly converges to a function
v e H™(Q). Passing to thelimit of the subsequence,
we can see that v is a generalized solution of the
problem (2.5)—(2.7). Thus, v = v € H™'(Q). The
estimate (3.14) with X = L,(Q) follows from
(3.17).

(ii) Nowlet f € H™'(Q).Then f,asafunction
from [0,4e0) to H™"(G), is continuous on [0, +eo)

Ly (Qr)

(3.17)
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and has the representation f(t) = f(s)+ J‘f fi(r)dr
for all s,t €[0,+00) (see [1, Sec. 5.9, Th."2]). This
implies

1Ol ey < 20l ey + 20, 14()
where J =[a,b] < [0, +<>o) such that a < ¢ < b and

b—a=1. Integrating both sides of (3.18) with
respect to s on J, we obtain

1Oy < 208l g (¢ €0 492)). (3.19)
Now by the same way to get (3.15), we have
+B(T,u" ,u") =

2w
AT

= B(0,v",u")+ B (u",u") + 2Re_[UT||f, u,jN” dt. (3.20)

7, (3.18)

Noting that [ (f.uX)dt=~]" (f.u")dt+

N T . .
+ <f,u >‘0 , and using (3.19), we obtain

R T i B
O o o O
O O S
SCEN, oo T
+HuN(T>Hj{m(G)+HuN HHW (3.21)

Using (3.11), (3.12) and (3.21) forO< e < u,
we get from (3.20) that

2
[, o, < Clele o)+ 17l00)
Sending T' — +e, we can see
2
[ [, o, < CUlnigy + 100 (3:22)
Combining (3.11) and (3.22), we have
2
[ g, S CUPle ) + Ui (35)

From this, by the same argument as in the part
(i) above, we obtain the assertion of the lemma for
the case fe H™(Q). o

Remark. It follows from the proof of Lemma
3.3 that if o e H"(G) and f=f +f,, where
f eL(Q),f € H™(Q) then the generalized
solution u € H™'(Q) of the problem (2.5)—(2.7)
belongs to H™'(Q) and the estimatz)e (3.14) holds
with ”f”X replaced by ”fl”Lz(Q ”f?”H"’”‘l(Q)

Proof of Theorem 1: We will show by induction
on h that not only the assertions (3.3), (3.4) but
also the following equalities hold:

w,(0)= @k =1,....h, (3.24)
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and

(1, 7) +Z( ) s (e, m) = (fu,m)

for all n e H"(G).

The case h =0 follows from Lemmas 3.2, 3.3.
Assuming now that they hold for A -1, we will
prove them for h(h =1). We consider first the
following problem: find a function v € H™(Q)
satisfying v(0) =4, and

<vt,1_]> + B(t,v,n) =

(3.25)

h-1

h
= (fm) - 2( k] B,.(tu,m)  (3.26)

k=0

forall n € H"(G) and a.e. t € (0,+e0).
Let F(t),t € [0,+e0), be functionals defined by

_ =1 (R
<F(t)’ 77> = (f;h > 77) - ; (kj Bth—k (t’ utk ’ 77),
ne H"(G).

Then F' € H™(Q) by theinduction hypothesis.
Hence, according to Lemma 3.2, the problem (38)
has a solution v € H™'(Q). We put now

w(z,t) = @, (x

Then we have w(0) =
follows from (3.26) that

<wtt’ﬁ> + B<t’ w, n) =
= (fom) + Bt w = um) -

=2 (-1
= ( )Bt,,,k(t,u#,n). (3.28)
t 2

(3.27)

)+ [ vz, )t 7 € Gt €[0,+20).

@ w, = v,w,(0) = @, . It

k
It follows from equality (2.1) that

IG Lyndz = B(t,y,n) + Y, _[r B,y B’ nds
=i

for w e H"(G),n e H"(G) and all t € [0,+e0).
Differentiating both sides of this equality with
respect to ¢ h—1—k times and taking y = ¢,
(0<k<h-1),wehave

GLt”‘H (% ﬁd:l? = Bth—l—k (t’ (B Tl) +

m hlk(h 11—k
+ J. 2 ( ] )th—l—/c—ﬁ (pk(B

Multlplymg both sides of this equality with

’j)tﬁ nds.

{”;1], taking sum in & from 0 to A —1 and noting

that [h];l} [h*i*k] — [}psl} [h . sJ we haVe

h’ —
,[GZ( ) th1- ‘(pkndx =
k=0

h— h 1
B (6 0,m) +
k=0

+’Zn‘h24[ }J‘ 214 [ j / — (B,]),,« nds.
o - (3.29)

From this equality taking ¢ = 0 together with
(3.1) and (3.2) we obtain

= (h-1
(<p;,,n)=(12m(0),n)—2[ L ]Bt,,u (0,9,.7m). (3.30)

Now integrating equality (3.28) with respect
to ¢t from 0 to ¢t and using (3.30), we arrive at

<wt7 ﬁ> + B(t’ w, 77) = (.f;h*l ’ n) +

t Mh—-1
+joBf (t,w— Uy s n)dt — 2£ " JBth“" (t, Uy, n).
h=0 (3.31)
Put z=w-wu,, . Then 2(0) =0 since u(0) =
=w(0) = ¢, ,. It follows from the induction
hypothesis (3.25) with h replaced by h—1 and
(3.31) that

< ()n>+B(tz .[B (t,2(1),n)dz. (3.32)

Applying Lemma 3.1, we can see from (3.32)
that z =0 on Q. Therefore, u, = w, =ve H"(Q).

Now we show that in fact u, € H™(Q). We
rewrite (3.26) in the form

(v m)+ B(t,v,m) = (fm) + (F(t),m), (3.33)

where f’(t),t € [0, +e0), are functionals on H"(G)
defined by

(@) >‘—ZU () n € H™(G). (3.34)

Since u, € HmD(Q) for k=0,...,
from (3. 34) that 7, € H™*(G) and

Foa) =3[} |-

k=0

h , we can see

—hB,(t, Uy, n), ne H"(G).
Then, according to the remark below Lem-
ma 3.3, we obtain from (3.33) that u, = v e H™'(Q).

The inequality (3.4) holds since Hft, HL © and

||ﬁf||H 1 AN be estimated by the right-hand side

of it. The proof is completed.
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4. GLOBAL REGULARITY
OF THE SOLUTIONS
Let Ly(v,t,D), By(x,t,D) be the principal
homogeneous parts of L(z,t,D), B,(x,t,D). We
can write L(0,t,D), B).(0,t,D) in the form

L,0,t,D) = r?*"L(w,t,D,,rD,),  (4.1)

B,;(0,t,D)=r "B (w,t,D,,rD,), (4.2)
where r =|z|, ® is an arbitrary local coordinate
systemon "', D = —id/dr . Wedenote by U(A,t) =
= (L(w,t,D,,A), B/(0,t,D,, 7)) (A€ C,te(0,+e))
the operator of the parameter-depending boundary
problem

L(w,t,D,,A) = (4.3)

B/(w,t,D,,A) = m. (4.4)

For every fixed A € C this operator conti-
nuously maps

fin Q,
g, onodQ,j=1,..,

H'(Q) into H"(Q)x [ H™(9Q) (I = 2m).

=1

Foreach t € (0,+e0) we have the operator pencil
U(A,t) which has the spectrum being an enume-
rable set of eigenvalues (see [, Th. 5.2.1]).

Now we first give the main theorem of this
section:

Theorem 2. Suppose that the assumptions of

Theorem 1 hold. Assume further that 0 <y < m,

0<y< m,y+g ¢ {L,....2(h + 1)m} and the strip

y—2hm—2m+gslmls—m+8+g does not

contain any eigenvalue of U(A,t) forall t € (0,+eo),
where € is some nonnegative number such that

£ +g ¢ {L,...,m}. Then u e H"*"™"(Q) and

A (S S AN

where C' is the constant Lndependent of u, f, .
Before we prove Theorem 2 we will need some
lemmas. The following lemma can be proved simi-
larly to Lemma 3 of [4], Theorems 4.2, 4.2 of [9].
Lemma 1. For every fixed t, € [0,+e) let
ue H?"(G\ {0}) N Vo 1am(G) be a solution of

the problem
L(z,t,,D)u = f in G (4.6)
B(z,ty,Dyu=g, onT,j=1,....,m, (4.7)

where f eV, (G),g, €V, """ *(I"),1 is a nonne-
gative integer. Then u € me (G) and the follo-
wing estimate

176

IN

el
Ullygsm e

<C (Ilfllfw +2ls j -
Jj= '

holds with the constant C' independent of u, f, g,
and t,.

Let € is an arbitrary positive number. We
introduce the following integral operator

(Kw)(r) = &(r) jl w(tr\w(t)dt for 0<r<g (4.9)

B 7l ||u||
m-m 0
7y Vay-i-2m

where & is a cut-off function on [0,+e) equal to

£
one in {O,Ej and to zero outside [0,¢), and

weCﬁ((%,lD satisfying the condition

Ll y(t)dt =1. For r > & weset (Kw)(r)=0.

It is known (see [5, Le. 7.3.3]) that K is a
continuous mapping

H'((0,€)) = H}_,((0,+)

)
forarbitrary integer [ 21, where H%(
space of all functions defined on (0,
finite norm

1
2

E pE
”“”fﬁ((o,e» = (”u”iz(wa J. J drdp]

In the following, by p, (u) we mean the Taylor
polynomial at the point z = 0 of degree k of the
function u defined in G if it exists.

(4.10)

(0,€)) is the
€) with the

U

Lemma4.2. Let u € H,(G), where 0 <y +2<.
2

Then for an arbitrary integer k>0, u admils the
representation w=v+w, where veV, (G) and
w e H.(G), moreover,

v+k
ol o) + el ) < Cllully e

with the constant C mdependenl of u.

(4.11)

Hk
Hy'\ (G

Proof. Let s =[y + g] be the greatest integer

not exceeding y+%. Denote by £ a smooth

function equal to one near the origin and to zero
outside aneighborhood in which G coincides with
thecone K .Bythe [5,Th.7.3.1,7.3.2], u € Hi(G)
can be written in the form u=v+w, where
v ZVZI’Y (G) with the norm estimated by ||u||H;(G>

an

w=Cpy . (u)
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if y + — isnotinteger, or

w={p,_ ,(u)+{ 2 (K, )(

lo|=l—s

|z)z“a!

if y + — isinteger, the coefficients of p,_,_,(u) are
estlmgted by |lul, u, are functions from

d((O ,€)). Ttis ObVl(gil}S that {p,_,_,(u) € H\(G)
an
||Cpl 5= 1 |H!+A = C”U” ((*) = COI’ISt).

By (4.10) we have (Ku,)(r) € H”k L ((0,429)) .
Hence, see [5, Le. 7.3.1], {(Ku,)(|z|) € ﬁ1'+k+k( )=

= i (G)(l—8=l—g_7f0r7+§15mte—

I—s+y+k

o

|x|)”3— e H"

y+k

ger). Thus, § z (Ku,)
la|=l-s
norm estimated by [|u ©
o
Lemma 4.3. For every fixed t, € (0,+c) let
feH)(G) and u € H"(G) be ageneralized solution

m

of the problem (4.6), (4.7), i.e u satisfies the identity

(@) with the

. The lemma is proved.

B(ty,u,n) = (f,n) for all n € H"(G).
Then v € H"(G) and
lelizm @, < CUMo o) +lellym ) 412)

where the constant C' is independent of u, f and t,.
Proof. According to results for elliptic boundary
value problem in domains with smooth boundaries, we

have u € H"(G \ {0}). If m < ,then H"(G) = V}3(G)

by [5, Th. 7.1.1]. Thus the assertlon of the lemma
follows from Lemma 4.1.

. n :
Let us consider the case m > 5 According to

Lemma 4.2, uw € H"(G) can be written in the form
u=v+w,where ve V) (G), we H)"(G), and

ol o) S Cllfn, (C = const). (4.13)

Now we rewrite (4.6), (4.7) in the form

L(z,t,, Dyv = F in G, (4.14)
B(z,t,,Dv=y, onT,j=1,..,m, (4.15)
where F=f-L(zt,DweH,(G)=V,,(G),

1
7 2(T). Since m; =m
1

m; %

v, =-B,(z,t,D)w e Hm -

for each j=1,...,m, we have m > 2m —

and therefore, by [5. Th. 7.1.1], Hj,m
=V,

2,m

1
7m]»75( )
2m-m . —— 2m-m ;

1
' 2(T). Thus, y, €V,, ~’ 2(),j=1,....,m.
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Now applying Lemma 4.1, we can see from (4.14),
(4.15) that v € V;7'(G) and

o< | 1EE

* Z"W || 2 m=m; L * ||U||2V2U—m(0) <
()

IN

<C "f"HO + ||w||H2m + ZHW; " 1

+ ||v
2m m -
2(r)

H™(G)

m 9
<C "f";fjl(c) + Z"W] " N Ju 2
i=t Hm ! 2(1-)
Therefore, u = v + w € H>"(G) and the inequality
(4.12) holds.

Lemma 4.4. Let uw € H,”""(Q) be a solution of
the problem

L(z,t,D)u = f in Q (4.16)

B(z,t,Dju=g,on S, j=1,....m (4.17)

where f € HM(Q) g, € H; o A 2O(S) Lk are a
nonnegatlve integer, k=6 >1—vy,y + e {l,...,1},

0 +§ ¢ {1,...,k}. Suppose that the strzp o0—k-

—2m+%£ ImA< y—l—2m+g does not contain

any eigenvalue of U(A,t) for all t € (0,4). Then
= Héﬁ—?m,{)(@) and

1 el [ e

+Z lo, ||

with the constant C' independent of u, f, g, .

Proof. First, we fix ¢ € (0,+eo) and consider (4.16),
(4.17) as an elliptic boundary value problem. Since
coefficients of L(z,t,D),B,(r,t,D) are bounded
smooth functions, we can apply [5, Th. 7.2.4] to conclude
from (4.16), (4.17) that u(t) € H;""(G) and

g ) < € (O, +

o | @.18)
(5)

L+2n1 m

S0l gt e | @19

where the constant C' is independent of u, f, g, and
t . Now integrating both sides of (4.19) with respect
to t from 0 to +eo, we get the assertion of the
lemma.

Proof of Theorem 2: The proof is an induction on
h . Let us consider first the case h = 0. We rewrite
(2.5), (2.6) in the form
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Lu=f=f-u in Q, (4.20)
Bu=0onS,j=1,....m (4.21)

According to Theorem 1, we have u, € L,(Q).
Thus, f € H;)’O(Q) c H since 0<y<m. By

Lemma4.3, it follows from (4.20) that u(.,t) € H-"(G)
and

[l o) < € (14O, + e

fora.e. t € (0,4e0), where C' isa constant independent
of w,f, and t. Integrating both sides of (4.22) with
respect to ¢ from 0 to +eo , we obtain u € H-""(Q).

Wi e ) (4.22)

Since the strip ¥ — 2m +% <ImA<-m +§ is free

of eigenvalues of U(A,t) forall t € (0,+), we have
ue H)"(Q) by Lemma 4.4. This and the fact that
u, € L,(Q) imply u € H;™'(Q). Moreover, we can
get estimate (4.5) for h = 0 from (4.22) and (3.3) with
h = 0. Hence, the theorem is valid for h =0.
Assume that it is true for some nonnegative h —1.
Then we have u € H,"""(Q) . Thus,
u, € H'"(Q),s < h. (4.23)

We prove now the theorem for & . Then we have
to show that u € H"*""*1(Q) . To this end, it is only
needed to make clear that

uy € L(Q),k<h+1 (4.24)
and
u, € HPm(Q) (4.25)

for £ < h+1.(4.24) is valid according to Theorem 1.
We will also prove (4.25) by induction on k. By
Theorem 1, u,,, € L ,(Q) < H,"(Q) . This means that
(4.25) holds for % = h +1. Assume that it holds for
k=h+1h,...,p+1 (0< p<h). Differentiating
both sides of (4.20), (4.21) with respectto ¢t p times,
we have

Lutp = j;p - uthrl - zo[p] Ltp—suts in @, (426)

__§ P
7 ,p 'tps

By (4.23), wehave u, € Hfh'“)m’“ @) c Hfh‘“”)m’“(@),
i c H(Qh—‘lp)m,,()(Q) by the the
induction hypothesis, and f € H eh=20m0(Q) by the

assumption of the theorem. Therefore, the right-
hand side of (4.26) belongs to H;Q}I’Q’”""”U(Q). It

u, on S,j=1,....m.(4.27)

s<p-1. Moreover U

follows from u , € HP" —rr2m0 () that (B)),..u

(S
(=S s

178

(2h—2p+2)m-m ;—

1
eH 72°(89). Hence, by Lemma 4.4,
u, e HP202m0(Q). Thus, (4.25) holds for k < b +1.
By the 1nduct10n hypothesis, the norms of the right-

,0

hand sides of (4.26), (4.27) in HI"*""(Q),
(2h=2p+2)m-m
Y

right-hand side of (4.26), then so is

2" (), respectively, are estimated by the

o

Hence the estimate (4.5) is valid and the proof is
completed.

(2h 2p+2)m.0
Hy (
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