АНИЗОТРОПНОЕ РАСПРОСТРАНЕНИЕ УЛЬТРАЗВУКА И ВЯЗКОСТЬ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ ПРИ ВАРИАЦИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ СОСТОЯНИЯ

А. Н. Ларионов, В. В. Чернышёв, Н. Н. Ларионова

Воронежский государственный университет

Представлено теоретическое обоснование акустического метода определения коэффициентов вязкости нематических жидких кристаллов. Анализируется влияние термодинамических параметров состояния на диссипативные коэффициенты и комбинации диссипативных коэффициентов нематических жидких кристаллов и их смесей.

ВВЕДЕНИЕ

Перспективным способом исследования кинетики релаксационных процессов в нематической фазе является акустическая спектроскопия [1, 2]. Одно из преимуществ акустического метода заключается в возможности широкого варьирования параметра $\omega \cdot au_m$, где ω частота ультразвука, $au_{\scriptscriptstyle m}$ — время релаксации то процесса. Наряду с этим акустический метод позволяет исследовать зависимость неравновесных свойств нематических жидких кристаллов (НЖК) от степени ориентационной упорядоченности в условиях значительной величины отношения линейных размеров образца к магнитной длине когерентности, что позволяет пренебречь влиянием поверхностей на ориентационную структуру. Обеспечивая возможность проведения исследований в автоклавных условиях, акустический метод позволяет получать информацию о величинах скорости и коэффициента поглощения ультразвука в НЖК, которые могут быть использованы для расчета анизотропных диссипативных коэффициентов и упругих постоянных при изменяющихся *P*,*V*,*T* — термодинамических параметрах состояния [3].

Известно [4], что в общем случае вязкостные свойства НЖК описываются сложным набором диссипативных параметров, включающим коэффициенты Лесли несжимаемого НЖК ($\alpha_1,...\alpha_6$) наряду с анизотропными коэффициентами объемной вязкости ($\mu_1,...\mu_3$), описывающими диссипацию энергии при деформациях всестороннего сжатия жидкокристаллической фазы. Определение полного набора диссипативных параметров (всего семь независимых коэффициентов) представляет собой весьма сложную задачу, которая решена лишь для отдельных соединений. Вместе с тем, анализ зависимостей диссипативных коэффициентов от термодинамических параметров состояния позволяет провести детальную проверку следствий микроскопических теорий жидких кристаллов, непосредственно связывающих диссипативные параметры нематика с особенностями молекулярного строения мезогенных соединений и спецификой их упорядочения в макроскопических объемах.

Ранее было показано [2], что акустический метод открывает широкие возможности для определения не только коэффициентов объемной вязкости, но и коэффициентов Лесли несжимаемого НЖК. В настоящее время акустический метод является наиболее перспективным для вискозиметрических исследований жидких кристаллов в условиях вариации внешнего давления. В литературе опубликованы лишь результаты отдельных измерений эффективной сдвиговой вязкости жидких кристаллов при избыточных давлениях [5].

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АКУСТИЧЕСКОЙ ВИСКОЗИМЕТРИИ ЖИДКИХ КРИСТАЛЛОВ

В основе использования акустического метода в целях вискозиметрии лежат исследования анизотропии коэффициента поглощения ультразвука при изменении взаимной ориентации (угла ψ) между волновым вектором \vec{q} и вектором индукции магнитного поля \vec{B} . В квазистатическом режиме при медленном повороте вектора \vec{B} относительно \vec{q} магнитное поле однозначно определяет ориентацию (угол θ)

[©] Ларионов А. Н., Чернышёв В. В., Ларионова Н.Н., 2008

локальной оптической оси (директора \vec{n}) жидкого кристалла относительно \vec{q} ($\theta \equiv \psi$). При этом наблюдается изменение анизотропии коэффициента поглощения ультразвука ($\Delta \alpha(\theta)$), описываемое выражением:

$$\frac{\alpha(\theta)}{f^2} = \frac{2\pi^2}{\rho c_0^3} \cdot \left(d + a\cos^2\theta + b\cos^4\theta\right) = = d_{\alpha} + a_{\alpha}\cos^2\theta + b_{\alpha}\cos^4\theta,$$
(1)

где f — частота ультразвука, c_0 — низкочастотная скорость ультразвука, ρ — плотность НЖК, а коэффициенты d, a, b угловой зависимости связаны с диссипативными параметрами нематика соотношениями [6]:

$$l = \mu_1 + \alpha_4, \tag{2}$$

$$a = \boldsymbol{\mu}_2 + \boldsymbol{\mu}_3 + \boldsymbol{\alpha}_5 + \boldsymbol{\alpha}_3 - \boldsymbol{\gamma}_1 \cdot \boldsymbol{\lambda}^2, \qquad (3)$$

$$b = \alpha_1 + \gamma_1 \cdot \lambda^2 \,. \tag{4}$$

Здесь

$$\boldsymbol{\gamma}_1 = \boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_2 \tag{5}$$

 — коэффициент вращательной вязкости нематического жидкого кристалла,

$$\lambda = \frac{\gamma_2}{\gamma_1} = \frac{\alpha_3 + \alpha_2}{\alpha_3 - \alpha_2}.$$
 (6)

Отметим, что некоторые из приведенных выражений были получены ранее в рамках гидродинамики Форстера [7]. Из представленных соотношений следует, что, полученная из выражения (4) величина коэффициента b_{α} угловой зависимости $\frac{\alpha(heta)}{f^2}$ не зависит от частоты ультразвука и может быть использована для определения комбинации диссипативных коэффициентов несжимаемого нематика. Отсутствие частотной зависимости параметра b_{α} в нематической фазе было подтверждено прямыми исследованиями анизотропного распространения ультразвука в диапазоне частот 0,2— 15 МГц (в БББА [6]) и 0,2—46 МГц (в жидком кристалле 4.09 [8]). Следует отметить, что критические процессы, такие, например, как релаксация нематического параметра порядка, могут приводить к частотно-зависимым поправкам в коэффициент b_{α} в окрестности температуры просветления (Т_с). Однако теоретические оценки и непосредственные измерения свидетельствуют о малой величине данных поправок, которые не будут учитываться при дальнейшем анализе экспериментальных результатов.

Известно, что при повышении частоты ультразвука коэффициенты объемной вязкости μ_i уменьшаются и стремятся к нулю в пределе $\boldsymbol{\omega} \cdot \boldsymbol{\tau}_i >> 1$, где $\boldsymbol{\tau}_i$ — характеристическое время динамических процессов, присущих мезофазе (замедление *i*-го процесса тождественно использованию условия несжимаемости среды в теории Форстера [7]). Таким образом, измерения коэффициента поглощения ультразвука и его анизотропии $\Delta \alpha = \alpha(\theta = 0) - \alpha(\theta = 90^{\circ})$ в области сверхвысоких частот (СВЧ) могут быть использованы для определения с помощью выражений (1)—(4) значений коэффициента α_4 Лесли и комбинации коэффициентов:

$$\eta_A = \alpha_1 + \alpha_5 + \alpha_6 = \lim_{\omega : \tau \to \infty} (a+b).$$
(7)

При этом предполагается частотная независимость параметров α_i в СВЧ-диапазоне. Отметим, что коэффициент Лесли α₄ непосредственно связан с одним из коэффициентов сдвиговой вязкости ($\alpha_{_4} \equiv 2 \cdot \eta_{_3}$) и может быть оценен с помощью стандартных вискозиметрических измерений. Как было показано ранее [9], при помещении нематика в магнитное поле, вращающееся относительно образца с конечной угловой скоростью ω_{μ} , наблюдается либо фазовое смещение (на угол ϕ) временной зависимости коэффициента поглощения ультразвука $\Delta \alpha \left(\omega_{\scriptscriptstyle H} \cdot t
ight)$ относительно квазистатической зависимости $\Delta \alpha(\boldsymbol{\omega}_{H}\cdot t)$, либо существенное изме- $\omega_H \rightarrow 0$ нение вида этой зависимости (при $\omega_{\!_H} \! > \! \omega_{\!_C}$, где ω_{c} — критическая частота).

Указанные изменения динамической угловой зависимости коэффициента поглощения ультразвука обусловлены запаздыванием директора \vec{n} относительно вектора магнитной индукции \vec{B} на фазовый угол φ в синхронном режиме ($\omega_H < \omega_C$) и частичным нарушением монодоменности образца в асинхронном режиме ($\omega_H > \omega_C$) [9]. В свою очередь фазовый угол φ определяется отношением частоты вращения магнитного поля ω_H к собственной частоте релаксации директора $\omega_{\vec{n}}$:

$$\sin 2\varphi = \frac{\omega_H}{\omega_{\vec{n}}},\tag{8}$$

где $\omega_{\vec{n}} = \frac{\Delta \chi \cdot H^2}{\gamma_1}$, а смена режимов определяется из условия:

$$\sin 2\varphi = \frac{\omega_C}{\omega_{\vec{n}}} = 1. \tag{9}$$

Здесь H — напряженность магнитного поля, $\Delta \chi$ — анизотропия диамагнитной восприимчивости НЖК. Следовательно, экспериментальные значения фазового сдвига φ или критической частоты вращения магнитного поля ω_C могут быть использованы для расчета с помощью уравнений (8) или (9) отношения коэффициента вращательной вязкости к анизотропии диамагнитной восприимчивости нематика.

Таким образом, исследования анизотропного распространения ультразвука в квазистатическом и во вращающемся магнитном поле позволяют определять две независимые комбинации диссипативных коэффициентов ($b = \alpha_1 + \gamma_1 \cdot \lambda^2$ и $\frac{\gamma_1}{\Delta \chi} = \frac{\alpha_3 - \alpha_2}{\Delta \chi}$) несжимаемого НЖК. Две другие комбинации коэффициентов Лесли могут быть получены в результате акус-

лесли могут оыть получены в результате акус тических измерений в области СВЧ-частот.

Очевидно, что наиболее достоверные результаты при исследовании зависимости вязкостных свойств нематиков от термодинамических параметров состояния получаются, если в качестве объектов исследования использовать соединения с широким температурным интервалом существования нематической фазы. При этом, несмотря на самостоятельный интерес, наличие в исследуемом жидкокристаллическом образце дополнительных полиморфных превращений может существенно усложнить задачу корректного определения основных закономерностей в поведении вязкостных коэффициентов, присущих именно нематической фазе. Так, например, исследование фазового перехода нематик — смектик «А» сопровождается появлением критических частотно-зависимых вкладов в параметры a_{α} и b_{α} угловой зависимости коэффициента поглощения ультразвука и в коэффициент вращательной вязкости нематика [9, 10]. Это существенно затрудняет определение и анализ диссипативных характеристик нематической фазы. В связи с этим в качестве объекта исследования в данной работе выбраны соединения п-н-метоксибензилиден-п-бутиланалин (МББА) и обладающий смектической фазой п-н-бутоксибензилиден-п-бутиланалин (БББА), а также эвтектическая смесь (Н-8), содержащая 2 части МББА и 1 часть п-н-этоксибензилиден-п-бутиланалина и смесь (Н-96), состоящая из следующих компонентов: п-н-бутил-гексилоксиазокси-бензола, п-н-бутил-метоксиазоксибензола (ЖК-434), н-бутилп-(н-гексилоксифенилкарбонил)-фенилкарбоната (H-22), н-бутил-п-(н-этоксифеноксикарбонил)-фенилкарбоната (H-23). Несмотря на определенные различия молекулярного строения исследованных соединений общим для них является наличие в центральной части молекул двух бензольных колец, задающих, в частности, диамагнитные свойства жидкокристаллического образца. Температура просветления МББА равна 315,4 К, БББА равна 344,9 К, смеси H-8 равна 325,2 К и смеси H-96 при атмосферном давлении составляет 348,0 К, что обеспечивает возможность проведения измерений акустических параметров в широком диапазоне температур.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Из графиков зависимости от температуры коэффициентов a_{α} и b_{α} угловой зависимости анизотропии коэффициента поглощения ультразвука, полученных в результате аппроксимации экспериментальных значений анизотропии коэффициента поглощения ультразвука $\Delta \alpha(\theta)$

 $\frac{\Delta \alpha(\theta)}{f^2}$ выражением (1) следует, что повышение

давления приводит к увеличению температуры просветления, что является типичным для исследованных ранее нематиков [1, 3] и соответствующему смещению зависимостей по температурной оси (рис. 1, 2). При фиксированном давлении температурные зависимости коэффициентов a_{α} и b_{α} существенно различаются: при приближении к $T_{\scriptscriptstyle C}$ в интервале температур $\Delta T_{c} = T_{c} - T \leq 30$ наблюдается быстрое возрастание коэффициента a_{α} , которое характерно и для других нематиков [10] и связано с влиянием критических релаксационных процессов на коэффициенты объемной вязкости и, следовательно, на параметр a_{α} . При достаточном удалении от нематико-изотропного фазового перехода ($\Delta T_C \ge 30$ K) имеет место инверсия знака температурного коэффициента $\frac{\partial a_{\alpha}}{\partial T}$ параметра *а*_{*a*} — данный параметр начинает увеличиваться при уменьшении температуры. Для парамет-

ся при уменьшении температуры. Для параметра b_{α} характерно монотонное уменьшение при повышении температуры, что свидетельствует об отсутствии критического вклада, связанного с нематико-изотропным фазовым переходом, в комбинацию диссипативных коэффициентов $\alpha_1 + \gamma_1 \lambda^2$. Несмотря на то, что качественно подобные зависимости были получены для МББА

Рис. 1. Температурная зависимость коэффициентов *а* (1...6) и *b* (7...12) в МББА при *f* = 2,9 МГц при давлении (МПа): 1, 7 – 10; 2, 8 – 10; 3, 9 – 20; 4, 10 – 30; 5, 11 – 40; 7, 12 – 50

Рис. 2. Температурная зависимость коэффициентов *a* (1...4) и *b* (5...8) в БББА при *f* = 2,9 МГц при давлении (МПа): 1, 5 — 0,1; 2, 6 — 10; 3, 7 — 30; 4, 8 — 50

и БББА, следует обратить внимание на некоторые отличия. Так, в МББА вследствие меньшего температурного интервала нематической мезофазы затруднен анализ зависимостей a_{α} и b_{α} от термодинамических параметров состояния вдали от температуры просветления ($\Delta T_C \ge 30$ K), где, как видно из приведенных результатов, для H-96 наблюдается возрастание обоих параметров. В то же время в БББА, интервал мезофазы в котором ΔT_c превышает 30 К, низкотемпературные изменения коэффициентов a_{α} и b_{α} могут быть частично связаны с критическими поправками, обусловленными фазовым переходом нематик — смектик «А», корректное определение которых представляет самостоятельную проблему. Таким образом, наиболее интересная и новая информация о зависимости диссипативных коэффициентов от Р, Т — термодинамических параметров состояния может быть получена из результатов низкотемпературных (относительно T_c) измерений параметров a_{α} и b_{α} . Следует также отметить, что в диапазоне температур $\Delta T_c \ge 10$ К результаты измерений параметра b_{α} являются наиболее надежными, так как по мере удаления от температуры просветления этот параметр возрастает, достигая значений, сопоставимых с величинами параметра a_{α} (табл. 1).

В непосредственной близости от температуры $T_{\scriptscriptstyle C}$ (при $\Delta T_{\scriptscriptstyle C} \leq 10\,$ K) на частоте ультразвука 2,9 МГц параметр b_{α} близок к нулю (составляет не более 7 % от a_{α}) и едва ли может быть использован для достоверного определения диссипативных коэффициентов несжимаемого НЖК. В то же время близость числовых значений a_{α} и b_{α} в низкотемпературной области нематической фазы может быть косвенным свидетельством существенного вклада коэффициентов α_i Лесли в оба параметра (при условии, что комбинации этих коэффициентов, входящих в a_{α} и b_{α} , имеют один порядок величины). В то же время известно, что вдали от температуры просветления на акустические параметры нематика может оказывать сильное влияние внутримолекулярный релаксационный процесс, связанный с конформационными переходами в концевых цепях жидкокристаллических соединений. Так как близкие по молекулярному строению к МББА и МБАБ компоненты входят и в состав исследованной смеси, нельзя исключать наличия внутримолекулярного релаксационного процесса и в данном случае.

Интересной и впервые установленной в данной работе особенностью зависимостей коэффициентов a_{α} и b_{α} от Р, Т — термодинамических параметров состояния является их универсальность в пределах погрешности эксперимента относительно разности температур ΔT_{c} для различных значений давления. Этот результат можно объяснить, если предположить, что, во-первых, все входящие в a_{α} и b_{α} диссипативные параметры являются (так же как скорость звука и плотность жидкого кристалла) функциями ΔT_C и, во-вторых, влияние давления на вязкостные характеристики нематика сводится исключительно к сдвигу температуры просветления при повышении давления.

Поведение коэффициента a_{α} при $\Delta T_C \leq 30$ К очевидно согласуется со сделанными предположениями, так как в этой области a_{α} определяется преимущественно критическим релаксационным процессом, параметры которого являются функциями параметра нематического порядка и, следовательно, ΔT_C . Измерения параметра порядка при избыточных давлениях в параазоксианизоле показали, что изменение S(P) согласуется с зависимостью $\Delta T_C(P)$. Полученный универсальный характер зависимости параметра a_{α} от ΔT_C не является тривиальным и требует дальнейшего анализа.

В отличие от исследованных веществ, не обладающих смектической фазой, где коэффициент *а* положителен во всем температурном интервале существования нематической фазы, в БББА данный параметр меняет знак и достигает минимального значения при температуре $T_{m''A''}$ (рис. 2), при которой наблюдается максимум величины $\Delta \alpha / f^2$ в окрестности фазового перехода НЖК—СЖК «А». При температуре T_{a0} , которая возрастает с повышением давления, коэффициент *а* обращается в ноль и параметр $\Delta \alpha(\theta) / f^2$ изменяется пропорционально четвертой степени косинуса угла между директором и волновым вектором:

$$\frac{\Delta \alpha(\theta)}{f^2} = b \cdot \cos^4 \theta. \tag{10}$$

Повышение давления вызывает смещение изобар a(T) и b(T) в область более высоких температур (рис. 1, 2). В нематической фазе, вдали от фазовых переходов, в исследованных веществах зависимость коэффициентов a и bот давления приближенно описывается линейным законом (рис. 3):

$$\begin{cases} a(P) = a_0 + k_a \cdot P, \\ b(P) = b_0 + k_b \cdot P, \end{cases}$$
(11)

Таблица 1

202530 510 15354555 ΔT_{C} , K b_{α} 0,043 0.074 0.103 0,171 0,258 0,371 0,476 0,690 0,793 a_{α}

H-96. f=2,9 Мгц

Рис. 3. Зависимость коэффициентов *а* и *b* от давления в БББА при частоте ультразвука *f* = 2,9 МГц и температуре: 1 — 320,0 К; 2 — 323,0 К; 3 — 327,0 К; 4 — 329,0 К; 5 — 333,0 К; 6 — 341,0 К; 7 — 345,0 К

где a_0 и b_0 — значения коэффициентов a и bпри атмосферном давлении, коэффициенты пропорциональности k_a и k_b являются функциями температуры и частоты ультразвука (табл. 2).

В области фазовых переходов влияние давления на коэффициент поглощения ультразвука и на параметры *a* и *b* возрастает и зависимость этих параметров от давления не описывается линейным законом.

При интерпретации полученных зависимостей комбинации диссипативных коэффициентов от давления и температуры необходимо учитывать следующие обстоятельства. Во-первых, величина коэффициентов объемной вязкости может определяться двумя релаксационными процессами: «нормальным», связанным с конформационными переходами в концевых молекулярных цепях, и «критическим», обусловленным релаксацией параметра порядка S. Время релаксации нормального процесса τ_i , описываемое соотношением вида закона Аррениуса [11]

$$\tau_i = \frac{A}{T} \cdot e^{\frac{E}{k \cdot T}} \tag{12}$$

(где А — постоянная величина, Е — энергия активации, соответствующая конформационному переходу), является функцией абсолютной температуры и не имеет аномалий в окрестности температуры просветления. В отличие от au_i , время релаксации параметра порядка au_C зависит от значения $\Delta T_C = T_C - T$ и существенно возрастает с приближением к T_c [12]. В случае одного релаксационного процесса зависимость коэффициентов объемной вязкости от частоты может быть описана уравнением $\mu_{i} = \mu_{i}^{0} \left(1 + \omega^{2} \tau^{2}\right)^{-1}, \omega = 2\pi f,$ где τ — время релаксации, μ_{i}^{0} — значения коэффициентов объемной вязкости в низкочастотном пределе $(\boldsymbol{\omega} \to 0)$. Здесь величина $\boldsymbol{\mu}_i^0$ для нормального процесса пропорциональна произведению $S \cdot \tau_i$, а для критического процесса пропорциональна τ_{c} [13]. Во-вторых, коэффициенты α_{i} , как показано в работе [14], являются функциями параметра порядка и, следовательно, зависят от величины ΔT_c . Таким образом, рассмотренные комбинации диссипативных коэффициентов НЖК существенно зависят от ΔT_c .

Для выяснения влияния давления на данные параметры на рис. 4 приведены их зависи-

Таблица 2

	<i>f</i> , МГц	1, К			
		293,0	300,6	305,0	310,5
k_a •10 ²⁰ , м ⁻¹ •с ² •Па ⁻¹	2,8	6,98	8,75	6,04	0,38
k_b •10 ²⁰ , м ⁻¹ •с ² •Па ⁻¹	2,8	-5,86	-5,18	-4,29	0,39
k_a •10 ²⁰ , м ⁻¹ •с ² •Па ⁻¹	8,28	-1,84	-1,18	-8,33	-7,83
k_b •10 ²⁰ , м ⁻¹ •с ² •Па ⁻¹	8,28	25,3	20,2	11,1	9,3

Коэффициенты уравнений (11) в Н-8

Анизотропное распространение ультразвука и вязкость нематических жидких кристаллов...

Рис. 4. Зависимость а) η (1—3) и $\alpha_1 + \gamma_1 \cdot \lambda^2$ (4) от ΔT_C в МББА при давлениях: 1(\circ) — 0,1 МПа; 2(×) — 30 МПа; 3 (Δ) — 60 МПа; б) η (1) и $\alpha_1 + \gamma_1 \cdot \lambda^2$ (2) от ΔT_C в БББА при давлениях: 1(\circ) — 0,1 МПа; 2(×) — 30 МПа; 3 (Δ) — 60 МПа

мости от ΔT_C . Для исследованных веществ характерно отсутствие зависимости параметра $(\alpha_1 + \gamma_1 \cdot \lambda^2)$ от давления при одинаковых значениях ΔT_C . Данный факт свидетельствует о том, что зависимость параметра порядка от давления сводится к зависимости $S(\Delta T_C)$. Этот вывод подтверждается результатами экспериментальных исследований параазоксианизола [16, 17].

Комбинация коэффициентов

$$\eta = \mu_2 + \mu_3 + \alpha_5 + \alpha_6 - \gamma_1 \cdot \lambda^2 \tag{13}$$

в МББА при фиксированных значениях ΔT_C уменьшается с ростом давления. В БББА зависимость $\eta(P)$ (при $\Delta T_C = \text{const}$) в пределах погрешности эксперимента не обнаружена. Имеющиеся в литературе данные вискозиметрических измерений в МББА [14, 5] позволяют оценить сумму $\alpha_5 + \alpha_6$ в соответствии с выражением:

$$\boldsymbol{\alpha}_{5} + \boldsymbol{\alpha}_{6} = 2 \cdot (\boldsymbol{\eta}_{1} + \boldsymbol{\eta}_{2}) - 4 \cdot \boldsymbol{\eta}_{3} - \boldsymbol{\gamma}_{1}.$$
(14)

Здесь η_1, η_2, η_3 — коэффициенты сдвиговой вязкости в обозначениях работы [15]. Расчет, выполненный согласно уравнению (14), показывает, что величина $\alpha_5 + \alpha_6$ монотонно уменьшается по мере приближения к температуре просветления от значения 0,03 Па·с при $\Delta T_C = 20$ К до 0,004 Па·с при $\Delta T_C = 1,5$ К. Зависимость суммы $\alpha_5 + \alpha_6$ от давления при фиксированном значении ΔT_C учитывалась путем аппроксимации правой части выражения (14) законом Аррениуса с энергией активации, равной 5 кДж/моль [18]. В исследованном интервале давлений изменения величины $\alpha_5 + \alpha_6$ при ΔT_C = const не превышают 10 %.

Вклад внутримолекулярного релаксационного процесса в величину объемных вязкостей μ_2 и μ_3 можно определить с помощью соотношения (12), используя значения $A = 6,79 \cdot 10^{-9}$ с·К и E = 3,5 ккал/моль, полученные в работе [11] при исследовании нематиков с теми же, что и у МББА, концевыми молекулярными группами, но с большим температурным интервалом существования нематической фазы.

Как следует из соотношения (12) при $\Delta T_C = \text{const}$, время релаксации нормального процесса и, следовательно, величина нормального вклада являются функциями давления, определяемыми зависимостью $T_C(P)$. Температурные зависимости нормального вклада в величину $\mu_v = \mu_2 + \mu_3$, рассчитанные для МББА с учетом линейного характера зависимости температуры просветления от давления, приведены на рис. 5 для трех давлений. Константа $\mu_v^0 = \mu_2^0 + \mu_3^0$ определялась из значений η и $\alpha_5 + \alpha_6$ при $\Delta T_C = 30$ К, P=30 МПа, а зависи-

Рис. 5. Зависимость нормального (1-3) и критического (4) вклада в коэффициент объемной вязкости МББА при давлениях: $1(\circ) - 0,1$ МПа; $2(\times) - 30$ МПа; $3(\Delta) - 60$ МПа

мость $S(\Delta T_{c})$ рассчитывалась по данным работы [19]. Согласно результатам исследований, выполненных в других нематиках [11], при значении $\Delta T_{c} = 30$ К величиной критического вклада в объемные вязкости можно пренебречь. При фиксированном значении $\Delta T_{\scriptscriptstyle C}$ величина нормального вклада уменьшается с ростом давления и практически полностью определяет представленную на рис. 4,а зависимость $\eta(P)$. Показанное на этом же рисунке отсутствие зависимости $(\alpha_1 + \gamma_1 \cdot \lambda^2)$ от давления при $\Delta T_{c} = \mathrm{const}$ указывает на то, что в величину bсоотношения (1) не входят коэффициенты объемной вязкости. Этот результат согласуется с представленными выше выводами гидродинамической теории.

Величина критического вклада $(\mu_{\nu})_{c}$ (рис. 5) в коэффициенты объемной вязкости определялась согласно выражению:

$$\left(\mu_{\nu}\right)_{C} = \eta - \left(\mu_{\nu}\right)_{n} - \left(\alpha_{5} + \alpha_{6}\right). \tag{15}$$

С приближением к температуре T_C величина $(\mu_v)_C$ возрастает и при $\Delta T_C = \text{const}$ не зависит от давления. В интервале значений ΔT_C от 7 до 20 К показатель степенной расходимости критического вклада близок к единице. Зависимость $(\mu_v)_C$ от ΔT_C в этой области согласуется с показанной на рисунке линией 4 теоретической зависимостью критического вклада [12] для случая $\omega \cdot \tau_C \ll 1$ и $\Delta T_C \gg T_C - T^*$, где T^* — температура, соответствующая пределу переохлаждения изотропной фазы. Согласно данным работы [20] для МББА $T_C - T^* = 1 \ K$. При $\Delta T_C < 7 \ K$ наблюдается уменьшение показателя степенной расходимости величины $(\mu_v)_C$, что связано с нарушением условия $\omega \cdot \tau_C \ll 1$.

Действительно, согласно данным работы [21], на частоте ультразвука З МГц параметр $\omega \cdot \tau_c \approx 1$ при $\Delta T_c = 4$ К. Другой причиной отмеченного изменения показателя расходимости может быть нарушение условия $\Delta T_c \gg T_c - T^*$. Выполненный анализ показывает, что время релаксации параметра порядка является функцией ΔT_c и при $\Delta T_c = \text{const не}$ зависит от давления.

Отсутствие данных вискозиметрических измерений других соединений, исследованных в настоящей работе, не позволяет выполнить для них подобный анализ. Обнаруженное отсутствие зависимости $\eta(P)$ в БББА, возможно, связано с меньшим по сравнению с МББА относительным вкладом нормального процесса в величину коэффициентов объемной вязкости. С приближением к температуре T_C величина η возрастает вследствие замедления времени релаксации параметра порядка и не зависит от давления при фиксированном значении ΔT_C , что подтверждает сделанный выше вывод о характере зависимости критического вклада от температуры и давления.

Таким образом, рассмотренные выше теоретические представления удовлетворительно описывают результаты экспериментальных исследований распространения ультразвука в нематических жидких кристаллах при изменяющихся давлении и температуре. При этом изменение с давлением диссипативных параметров, описывающих зависимость коэффициента поглощения ультразвука от угла между директором и волновым вектором, определяется релаксационным процессом, связанным с конформационными переходами в концевых молекулярных цепях [2].

СПИСОК ЛИТЕРАТУРЫ

1. Лагунов А. С. Влияние давления на релаксационные свойства п-н-алкоксибензилиден-п-бутиланилинов во вращающемся магнитном поле / А. С. Лагунов, А. Н. Ларионов // Журнал физической химии. — 1982. — Т. LVI, № 6. — С. 1494— 1499.

2. Баландин В. А. Акустическая вискозиметрия нематических жидких кристаллов при изменяющихся температуре и давлении / В. А. Баландин, А. Н. Ларионов, С. В. Пасечник // Журнал экспериментальной и теоретической физики. — 1982. — Т. 83, № 12. — С. 2121—2127.

3. Larionov A. N. Viscous properties of nematic mixture at variation of P, V, T-state parameters / A. N. Larionov, N. N. Larionova, S. V. Pasechnik // Анизотропное распространение ультразвука и вязкость нематических жидких кристаллов...

Molecular Crystals and Liquid Crystals. -2004. -Vol. 409. - P. 459-466.

4. Stephen M. J. Physics of liquid crystals /
M. J. Stephen, J. P. Straley // Review Modern Physical.
- 1974. - Vol. 46, № 4. - P. 617-704.

5. Measurement of rotational viscosity, γ_1 , of nematic liquid crystals under high pressure / H. Dörrer [et. al.] // Liquid Crysttals. — 1986. — Vol. 1, No 6. — P. 573—582.

6. Температурные зависимости коэффициентов Лесли бутоксибензилиденбутиланилина / О. Я. Шмелев [и др.] // Журнал физической химии. — 1985. — Т. LIX, № 8. — С. 2036—2039.

7. Hydrodynamics of liquid crystals./D. Forster, [et. al.] // Physical Review Letters. -1971. - Vol. 26, N_{2} 17. - P. 1016-1019.

8. *Miyano K*. Sound propagation in liquid crystals / K. Miyano, J. B. Ketterson // Physical acoustics. – 1979. – Vol. XIV. – P. 93–178.

9. Etude acoustique de cristaux liquides sous champ magnetique pour differentes temperatures et pressions / S. Vol. Pasechnik [et. al.] // Journal de Physique. — 1984. — Vol. 45, № 3. — P. 441—449.

10. Баландин В.А. Анизотропное распространение ультразвука в нематической фазе / В. А. Баландин, А. Н. Ларионов, С. В. Пасечник. // Акустический журнал. — 1983. — Т. XXIX, № 1. — С. 1—4.

11. The intermolecular ultrasonic relaxation of nematic liquid crystals far below the transition temperature / S. Nagai [et. al.] // Bulletine Natural Results Laboratory Metrology. — 1977. — Vol. 34. — P. 13—17.

12. Anomalous ultrasonic absorption and dispersion of nematic liquid crystals near the clearing point / Y. Kawamura [et. al.] // Japan Journal of Applied Physic. — 1973. — Vol. 12. — P. 1510—1521.

13. *Natale G. G.* The of nematic liquid crystals near the clearing point / Y. Kawamura [et. al.] // Japan Journal of Acoustic Society America. — 1978. — Vol. 63. — P. 1265—1278.

14. *Kneppe H*. Determination of the viscosity coefficients of the liquid crystal MBBA / H. Kneppe, F. Schneider // Molecular Crystals and Liquid Crystals. - 1981. - Vol. 65. - P. 753-756.

15. *Gähwiller H*. Direct determination of the five independent viscosity coefficients of nematic liquid crystals / H. Gähwiller // Molecular Crystals and Liquid Crystals. — 1973. — Vol. 20. — P. 301—318.

16. *McColl J. R.* Temperature dependence of orientation order in a nematic liquid crystals at constant molar volume / J. R. McColl, C. S. Shih // Physical Review Letters. — 1972. — Vol. 29, № 2. — P. 85—87.

17. Fishel D. E. Thermotropic liquid crystals. 2. Transition temperatures and mesophase indifications for some anils. / D. E. Fishel, P. R. Patel // Molecular Crystals and Liquid Crystals. -1972. - Vol. 17, N_{2} 2. - P. 139-162.

18. *White E. A.* Study of liquid crystals in flow / E. A. White, P. E. Cladis, S. Torsa // Molecular Crystals and Liquid Crystals. — 1977. — Vol. 43. — P. 13—31.

19. Papon P. A statistical model for transitions in nematic liquid crystals / P. Papon, J. P. Le Pisant. // Physical Review Letters. -1977. - Vol. 12, No 2. - P. 331-334.

20. Stinson T. W. Pretransitional phenomena in the isotropic phase of a liquid crystals / T. W. Stinson, J. D. Litster // Physical Review Letters. — 1976. — Vol. 25. — P. 503—508.

21. *Castro C. A.* Ultrasonic attenuation anisotropy in a nematic liquid crystals / C. A. Castro, A. Hicata, C. Elbaum // Physical Review. — 1978. — Vol. 17 A. — P. 353—362.