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The mechanical systems given on non-linear configuration spaces - smooth manifolds - in terms 
of Newton’s second law and subjected to random perturbations of either forces or velocities, are 
considered. The machinery of mean derivatives is applied for obtaining well-posed description of 
the systems and for their investigation.  

KEY WORDS: mechanical systems; random perturbation of force; random perturbation of 
velocity; set-valued force;  mean derivatives; differential inclusion; Langevin equation.

1. INTRODUCTION

The main aim of this paper is investigation of 
mechanical systems on non-linear configuration 
spaces, subjected to the influence of random 
factors. The paper contains a survey of results 
obtained in [1] – [7] and some new developments 
by the authors in this topic. The characteristic 
feature of our exposition is the use of machinery 
of mean derivatives according to the ideology of 
equations and inclusions with mean derivatives 
suggested in [8] – [10]. Preliminary results and 
notion can be found in [11] – [14]. 

It is a well-known fact that a second order 
d i f f e r e n t i a l  e q u a t i o n  �� �x t t x t x t( ) ( ( ) ( ))= , ,a  
expressing the Newton’s law in �n , is represented 
as a first order system on the space of doubled 
dimension 
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x t v t

v t t x t v t
( ) ( )

( ) ( ( ) ( ))
=
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Ì
Ó a

 (1.1)

We call the first equation of above system 
horizontal and the second one vertical. 

Analogous split takes place in the general case 
of a mechanical system on non-linear configura-
tion space (smooth manifold) M . For such 
systems the Newton’s law is formulated in terms 
of covariant derivatives in the form 

 
D
dt

m t t m t m t� �( ) ( ( ) ( ))= , , ,a  (1.2)

where D
dt  is the covariant derivative of Levi—Civitá 

connection of Riemannian metric on M  that 
determines the kinetic energy of system. Here 
Newton’s law (1.2) is equivalent to equation 

d
dt

m t m t Z m t m t t m t m tl( ( ) ( )) ( ( ) ( )) ( ( ) ( )), = , + , ,� � �a  (1.3)

with special vector field (second order differential 
equation) in the right-hand side on the phase 
space (tangent bundle) TM  where Z  is the Levi-
Civitá geodesic spray that is horizontal (belongs 
to the connection), and l t m t m ta ( ( ) ( )), , �  is the 
vertical lift of vector force field a( ( ) ( ))t m t m t, , �  that 
is vertical (belongs to the vertical subspace). 

Note that a random perturbation in Newton’s 
law can arise in the horizontal component, in the 
vertical component and in the both ones. The 
vertical perturbation means the perturbation of 
force field while the horizontal one means the 
perturbation of velocity. All the cases are physically 
reasonable but they require essentially different 
methods for their investigation. It should be also 
pointed out that under random perturbations, the 
Newton’s law becomes a random differential 
equation. Here we present such equations in terms 
of mean derivatives (see below). Taking into 
account various possibilities for constructing 
second order mean derivatives (forward, backward, 
mixed, etc.), this yields equations of motion from 
different parts of physics. 

In this paper we deal with the Newton’s law in 
terms of forward mean derivatives. Its physical 
meaning is the description of motion of ordinary 
mechanical systems with random perturbations. 
We consider both the perturbations of forces and 
of velocities. 

The notion of mean derivatives was introduced 
by Edward Nelson (see [15, 16, 17]) for the needs 
of stochastic mechanics (a version of quantum 
mechanics). The equation of motion in this theory 
(called the Newton—Nelson equation) was the first 
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example of equations in mean derivatives. Later it 
turned out that the equations in mean derivatives 
arose also in the description of motion of viscous 
incompressible fluid (see, e.g., [11, 12, 13, 14]), in 
the description of Navier—Stokes vortices [18], 
etc. 

In all above-mentioned cases the solutions of 
the equations were supposed to be Itô diffusion 
type processes (or even Markov diffusion proces-
ses) whose diffusion summand was given a priory 
since the classical Nelson’s mean derivatives yield, 
roughly speaking, only the drift term (forward, 
backward, etc.) of a stochastic process. In [8, 9], 
on the basis a slight modification of some Nelson’s 
idea, a new type of mean derivative is introduced 
that is responsible for diffusion term. Then it 
becomes possible in principle to recover a sto-
chastic process from its mean derivatives. 

In Section 2 we describe the main construction 
of mean derivatives. 

In Sections 3 and 4 we deal with the so-called 
Langevin equations and inclusions on mani-
folds. 

The Langevin’s equation describes mechanical 
systems with both deterministic and random 
forces which have comparable magnitudes (i.e., 
neither the deterministic nor random part can be 
neglected) where the random force is a transformed 
white noise. Examples of such processes are well 
known in physics (say, the physical Brownian 
motion is a process of such sort). One can easily 
realize that in this case the trajectories of the 
process are a.s. C 1 -smooth. This makes the 
analysis of such systems technically much simpler 
than that of general ones. 

In Section 3, we introduce Langevin’s equation 
on a Riemannian manifold and reduce it to the 
velocity hodograph equation, which is an equation 
in a single tangent (i.e., vector) space. This 
enables us to apply some standard results to carry 
out a detailed analysis. We study also an important 
particular case of Langevin’s equation: the 
equation describing the so-called Ornstein-
Uhlenbeck processes arising, for example, in the 
mathematical model of physical Brownian motion 
[16, 19, 20]. Sometimes, only the latter is called 
the Langevin equation, whereas that applicable in 
a more general context is said to be the generalized 
Langevin equation. 

In Section 4 we study the case where the force 
field in Langevin equation is set-valued (i.e., it is 
constructed from essentially discontinuous force 

or the force with feedback control) and so the 
equation turns into differential inclusion that is 
well posed in terms of mean derivatives. 

Throughout Sections 3 and 4, all Riemannian 
manifolds are assumed to be complete, not ne-
cessarily uniformly or stochastically complete. 

In Section 5 we investigate mechanical 
systems with random perturbations of velocities 
motivated by motion of a particle, subjected to a 
deterministic force, that in addition moves with 
an enveloping media with random influence. First 
we consider the systems in Rn  with single-valued 
and set-valued forces. The systems on manifolds 
are investigated under some more restrictive 
assumptions. In particular, we suppose the 
manifold to be stochastically complete. 

The research is supported in part by RFBR 
Grants No. 07-01-00137 and No. 08-01-00155. 

2. MEAN DERIVATIVES

Consider a stochastic process x( )t , t TŒ ,[ ]0 , 
given on a certain probability space ( )W, ,F P , 
taking values in �n  and such that x( )t  is an L1  
random element for all t . 

It is known that such a process determines 3 
families of s -subalgebras of the s -algebra F : 

(i) ”the past” Pt
x  generated by preimages of 

Borel sets from  �n  under all mappings 
x( )s n: ÆW �  for 0 £ £s t ; 

(ii) ”the future” Ft
x  generated by preimages 

of Borel sets from �n  under all mappings 
x( )s n: ÆW �  for t s T£ £ ; 

(iii) ”the present” (“now”) Nt
x  generated by 

preimages of Borel sets from  �n  under the 
mapping x( )t n: ÆW � . 

All the above families we suppose to be complete, 
i.e., containing all sets of probability zero. 

For the sake of convenience we denote by Et
x  

the conditional expectation E t( )◊ | N x  with respect 
to the ”present” Nt

x  for x( )t . 
Note that, generally speaking, a.s. the sample 

trajectories of x( )◊  are not differentiable and so we 
cannot determine the derivative of x( )◊  in the 
ordinary way. According to Nelson (see e. g. [15, 
16, 17]) we give the following: 

Definition 2.1. The forward mean derivative 
D tx( )  of the process x( )t  at the moment t  is an 
L1 -random variable of the form 

 D t E
t t t

tt tx x xx( ) lim
( ) ( )= + D -

D
Ê
ËÁ

ˆ
¯̃D Æ+0

 (2.1)

where the limit is assumed to exist in L1( )W, ,F P  
and D Æ +t 0  means that D Æt 0  and D >t 0 .
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From the properties of the conditional 
expectation it follows that D tx( )  is expressed as 
the composition of x( )t  and the Borel measurable 
vector field, namely the regression 

Y t x E
t t t

t
t x

t

0

0
( ) lim

( ) ( )
( ), = + D -

D
| =Ê

ËÁ
ˆ
¯̃D Æ+

x x x  (2.2)

on �n , i.e., D t Y t tx x( ) ( ( ))= ,0 . 
The mean derivative of Definition 2.1 is a 

particular case of the notion determined as follows. 
Let x t( )  and y t( )  be L1 -stochastic processes in F  
defined on( )W, ,F P . Introduce y -forward deri-
vative of x t( )  by the formula 

 D x t E
x t t x t

t
y

t t
y( ) lim

( ) ( )= + D -
D

Ê
ËÁ

ˆ
¯̃

.
D Æ+0

 (2.3)

Assume x( )t  to be an Ito process of diffusion 
type (see, e.g., [21]) of the form 

 x x b( ) ( ) ( ) ( )t s ds A s dw s
t t

= + +Ú Ú0 0 0
 (2.4)

It should be noticed that x( )t  can be neither a 
diffusion nor a Markov process. 

Lemma 2.2. For x( )t  of type (2.4) D tx( )  exists 
and is equal to E tt

x b( ( )) .

Proof. Evidently D s ds A s dw s
t t

( ( ) ( ) ( ))x b0 0 0
+ + =Ú Ú  

D s ds D A s dw s
t t

( ( ) ) ( ( ) ( )bx x

0 0
= +Ú Ú )) . Since 

0

t
A s dw sÚ ( ) ( )  

i s  a  m a r t i n g a l e  w i t h  r e s p e c t  t o  Pt
x , 

D A s dw s
tx( ( ) ( ))
0

0Ú = .  T h e n  D s ds
tx b( ( ) )
0Ú =  

E tt
x b( ( ))= . ■  
Thus by Lemma 2.2 the forward mean deriva-

tive gives information about the drift of an Itô 
process. Following [8, 9] we introduce a new mean 
derivative D2 , called quadratic, that is responsible 
for diffusion term of a process. It is a slight 
modification of a certain Nelson’s idea from [17]. 

Definition 2.3. For an L1 -stochastic process x
t TŒ ,[ ]0 , its quadratic mean derivative D t2x( )  is 
defined by the formula 

D t

E
t t t t t t

tt t

2

0

x
x x x xx

( )

lim
( ( ) ( )) ( ( ) ( ))

=

= + - ƒ + -Ê
ËÁ

ˆ
¯̃

,
Æ+�

� �
�

 
(2.5)

where ƒ  denotes the tensor product and the limit 
is supposed to exist in L1( )W, ,F P .

Denote by S n+( )  the set of symmetric positive 
definite n n¥  matrices and by +S n( )  the set of 
symmetric positive semi-definite matrices (the 
closure of S n+( )  in the space of all symmetric 
matrices S n( ) ). 

We emphasize that the tensor product as in 
(2.5) is a symmetric positive semi-definite matrix 
so that D t2x( )  is a function with values in +S n( ) .

From the properties of conditional expectation 
it follows that there exist a Borel mapping a( )t x,  
from [ ]0, ¥T n�  to +S n( )  such that D t t t2x a x( ) ( ( )).= ,  
As well as above we call a( )t x,  the regression. 

Theorem 2.4. Let x( )t  be a diffusion type 
process. Then D t E tt2x ax( ) [ ( )]=  where a( )t = 

( ) ( )A t A t= * , A t*( )  is the transposed matrix A t( )  
and A t A t( ) ( )*  is the matrix product. In particular, 
if x( )t  is a diffusion process, D t t t2x a x( ) ( ( ))= ,  
where a  is the diffusion coefficient. 

Proof. From direct calculation it follows that 
t h e  c o m p o n e n t s  o f  ( ( ) ( ))x xt t t+ - ƒ�  

( ( ) ( ))x xt t tƒ + -�  are elements of the matrix 
( ( ) ( ))( ( ) ( ))x x x xt t t t t t+ - + - *� �  where we use the 
matrix multiplication of the column-vector 
( ( ) ( ))x xt t t+ -�  and the row-vector ( ( )x t t+ -�  

( ))x t- *  (i.e., transposed ( ( ) ( ))x xt t t+ -� ). The 
product is a symmetric semi-positive definite 

m a t r i x .  S i n c e  x x( ) ( ) ( )t t t a s ds
t

t t
+ - = +

+

Ú�
�

 

( ) ( )A s dw s
t

t t
+

+

Ú
�

, taking into account the pro-

perties of Lebesgue and Itô integrals one can see 
that ( ( ) ( ))( ( ) ( ))x x x xt t t t t t+ - + - *� �  is approxi-
mated by a t a t t a t t A t w t( ) ( ) ( ) ( ( ) )( ( ) ( ))* *D + D D +2  

A t w t a t t A( ( ) ( ))( ( ) )*+ D D + (( ) ( )t A t t* D . Thus we see 
that only A t A t t( ) ( )* D  is infinitesimal of the same 
order as Dt  while the other summands are 
infinitesimals of order higher than Dt . Applying 
formula (2.5) obtain the assertion of Theorem 
since AA* = a  (see above). ■  

Let Z(t,x) be a C 2 -smooth vector field on �n , 
and x( )t  be a stochastic process in �n . 

Definition 2.5. The forward DZ t t( ( )),x  mean 
derivative of Z  along x( )◊  at t  is the L1 -limits of 
the form 

  

DZ t t

E
Z t t t t Z t t

tt t

( ( ))

lim
( ( )) ( ( ))

, =

= + D , + D - ,
D

Ê
ËÁ

ˆ
¯̃D Æ+

x
x xx

0

 
(2.6)

Of course DZ t t( ( )),x  can be presented as 
compositions of x( )t  with a certain Borel vector 
fields on �n . This vector field (regression) will be 
also denoted by DZ . 

3. LANGEVIN EQUATION AND ORNSTEIN—
UHLENBECK PROCESSES ON MANIFOLDS

Everywhere in this section we deal with 
porcesses given on a certain finite time interval 
[ ]0, Ãl � . 

Mechanical systems with random perturbations on non-linear configuration spaces
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Let M  be a manifold and TM  be its tangent 
bundle. 

Definition 3.1. A map a : ¥ ÆR TM TM  
(either single or set-valued), such that 

 pa p( ) ( )t m X m X m, , = , =
(p  is the natural projection of TM  onto M ) is 
called vector force field. 

Consider a mechanical system on non-linear 
configuration space (see e.g., [13, 14]), i.e., a 
Riemannian manifold M  and a vector force field 
on it. Newton’s law (1.2) is the equation of motion 
fot such system. The Riemannian metric on M  is 
assumed to be complete, i.e., a free particle on M  
does not go to infinity in finite time. In addition 
to Definition 3.1 of vector force field we give the 
following 

Definition 3.2. A map a  from R TM¥  to the 
bundle of ( )1 1, -tensors over M  (either single or 
set-valued), such that p p1a t m X m X m( ) ( ), , = , =  
(p1  is the projection of the bundle of ( )1 1, -tensors 
onto M ) will be called tensor force field. 

Recall that a ( )1 1, -tensor at m MŒ  is a linear 
operator in T Mm . Thus it is evident that for a 
tensor force field a( )t m X, ,  and a vector field 
Y m( )  on M  the composition a t m X Y m( ) ( ), , �  is 
a vector force field. 

Let a( )t m X, ,  be a vector force field and 
A t m X( ), ,  a ( )1 1, -tensor field on M . In other 
words, for every t lŒ ,[ ]0 , m MŒ , and X T MmŒ , 
we have a vector a( )t m X T Mm, , Œ  and a linear 
operator A t m X T M T Mm m( ), , Æ . Specify a Wiener 
process w  on the tangent spaces to M  and denote 
by �w  the white noise of w . Then the Langevin 
equation describes the evolution of a system with 
the force field: 

 a( ) ( )t m X A t m X w, , + , , .�  (3.1)

More formally, the equation of motion must read 

    
D
dt

t t t t A t t t w t� � � �x a x x x x( ) ( ( ) ( )) ( ( ) ( )) ( )= , , + , ,  (3.2)

but this expression makes sense only by means of 
distributions. 

Our first goal is to give a rigorous meaning to 
(3.2) without using distributions. We do it in 
terms of forward mean derivatives the construction 
of which can be slightly simplified in the case 
under consideration. 

We assume that a( )t m X, ,  and A t m X( ), ,  are 
continuous jointly in all variables and that these 
fields have linear growth in X . In other words, 
there exists a constant K > 0  such that 

 a( ) ( ) ( )t m X A t m X K X, , + , , < +1  (3.3)

for all t lŒ ,[ ]0 , m MŒ , and X T MmŒ , where the 
norm is given by the Riemannian metric. 

From physical reasons one can derive that a 
process subjected to force (3.1), a.s. has continuous 
velocities and as a consequence it a.s. has C 1 -
smooth sample paths. Below we shall show that, 
indeed, solutions of Langevin equation exist in the 
class of processes with C 1 -smooth sample paths. 
That is why we start with some features of such 
processes. 

Let x( )t  be a stochastic process on M  with a.s. 
C 1 -smooth sample paths, given on a certain 
probability space ( )W, ,F P , and let a vector field 
Y  be given on M . As well as above, by Gt s.  we 
denote the operator of parallel translation along 
a C 1 -smooth curve x( )◊  from x s( )  to x t( ) . 

Definition 3.3. Covariant forward mean 
derivative of vector field Y  along the process x( )t  
on M  with a.s. C 1 -smooth sample paths at time 
instant t  is the L1  random element of the form 

DY t t

E
Y t t t t Y t t

tt t
t t t

( ( ))

lim
( ( )) ( ( ))

, =

=
+ , + - ,Ê

ËØ

, +

x
x xx

�

� � �

�0

G
ÁÁ

ˆ
¯̃

.
 
(3.4)

where Gt s,  is the ordinary parallel translation along 
C 1 -smooth curves. 

Let I l= ,[ ]0  be an interval in �  and v I T Mm: Æ
0

 
be a continuous curve. 

Theorem 3.4 (see [11]—[14]). There exists a 
unique C 1 -curve g : I MÆ  such that g ( )0 0= m  
and the tangent vector �g ( )t  is parallel to the vector 
v t T Mm( ) Œ

0
 for every t IŒ .

In what follows, we denote by Sv( )◊  the curve 
g  constructed as above beginning with v . 

Consider a probability space ( )W, ,F P  and a 
non-decreasing family of complete s -subalgebras 
Bt  of F . In a certain tangent space T Mm0

 
introduce a Wiener process w t( )  adapted to Bt , 
and an Itô diffusion type process v t( )  of the form 

v t b s ds B s dw s
t t

( ) ( ) ( ) ( )= +Ú Ú0 0
 with b t( )  and B t( )  

a.s. having continuous sample paths. In particular 
this means that v t( )  is non-anticipative with 
respect to Bt  and a.s. has continuous sample paths. 
Thus we can apply operator S  to sample paths of 
v t( ) . Then we obtain the process x( ) ( )t Sv t=  
having C 1 -smooth sample paths. Recall that 
SC l T M C l Mm m

0 10 0
0 0

([ ] ) ([ ] ), , Æ , ,  is continuous. 

Lemma 3.5. The process Sv t( )  is nonanticipa-
tive with respect to Bt .
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Consider a special case of the probability 
space: ( )W, ,F P  where W = , ,C l T Mm

0 0
0

([ ] ) , F  is 
the s -algebra generated by cylinder sets and the 
measure P  will be the one generated by a certain 
stochastic process in T Mm0

. In this case we shall 
deal with the family tB  of s -sub-algebras of F  
where for a specified t  the s -sub-algebra tB  is 
generated by cylinder sets with bases on [ ]0,t .

Lemma 3.6. The process Sv t( )  is nonanticipa-
tive with respect to tB .

Proof. Indeed, if the curves v1( )◊  and v2( )◊  from 
W = , ,C l T Mm

0 0
0

([ ] )  coincide at all t lŒ ,[ ]0 0  where 
0 0< , <l l , then Sv t1( )  coincides with Sv t2( )  for 
t lŒ ,[ ]0 0  by construction of operator S . From this 
we obtain the assertion of Lemma 3.6.■  

Consider the vector field �x( )t  along x( ) ( )t v t= S . 
Theorem 3.7. 

 D �x x( ) ( ( ))t E b tt t= .,G 0

Proof. From the properties of parallel trans-
lation and from construction of x( )t  it follows 
that 

 
E t t t

E b s ds B s

t t t t

t t t

t t

t

t t

x

x

x x( ( ) ( ))

( ) ( )

G

G

, +

,

+ +

+ - =

= +Ú Ú
�

� �

� � �

0 ddw s( )( )Ê
Ë

ˆ
¯ .

Note that Nt
x  is a s -subalgebra in Pt

v . Since 

the Itô integral 
t

t t
B s dw s

+

Ú
�

( ) ( )  is a martingale with 

respect to Pt
v , by the properties of conditional 

expectation we obtain that 

 E B s dw st t

t tx +

Ú( ) = .
�

( ) ( ) 0

The Theorem follows. ■  
Along a process x( ) ( )t Sv t=  as above we can 

define the covariant quadratic mean derivative 
of �x( )t  as follows. Introduce the notation 
� � � � �

�x x x( ) ( ) ( )t t t tt t t= + -, +G  where (as well as 
above in this section) Gt s,  is the ordinary parallel 
translation along C 1 -smooth curves. 

Definition 3.8. Quadratic mean derivative of 
�x( )t  along x( ) ( )t v t= S  on M  at time instant t  is 

a L1  random element of the form 

 D2 0

� � � � �

��
x x xx( ) lim

( ) ( )
t E

t t
tt t= ƒÊ

ËÁ
ˆ

¯̃
,

Ø

where ƒ  is the tensor product and Gt s,  is the 
ordinary parallel translation along C 1 -smooth 
curves. 

Theorem 3.9. Consider a process x( ) ( )t v t= S  

with v t b s ds B s dw s
t t

( ) ( ) ( ) ( )= +Ú Ú0 0
 in T Mm0

 as 

above. Then D2 0
�x x( ) ( ( ( ) ( )))t E B t B tt t= ,

*G  where B*  
is the adjoint operator. 

Proof. As well as in the proof of Theorem 3.7, 
from the properties of parallel translation and from 
construction of x( )t  it follows that 

 E t t E v t v tt t t
x xx x( ( ) ( )) ( ( ( ) ( )))� � � � � �ƒ = ƒ ,,G0

where  �
� �

v t b s ds B s dw s
t

t t

t

t t
( ) ( ) ( ) ( )= +

+ +

Ú Ú .  In 

addition from the properties of Itô integral we 
obtain that in the expression � �v t v t( ) ( )ƒ  only 

the summand ( ( ) ( )) ( ( ) ( ))
t

t t

t

t t
B s dw s B s dw s

+ +

Ú Úƒ
� �

 

is infinitesimal of the same order as �t  while all 
other summand are infinitesimals of higher order 
than �t . Now the Theorem follows from Defini tion 
3.8 and from the properties of Itô integral. ■  

Definition 3.10. Langevin equation with force 
field (3.1) is the system 

 
D

D

� �

� � �
x a x x

x x x x x

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( ( ) (

t t t t

t A t t t A t t

= , ,

= , , , ,*
2 tt)).

Ï
Ì
Ô

ÓÔ
 (3.5)

Let x( )t  be a stochastic process with values in 
M  which is nonanticipative with respect to Bt  
and such that the sample trajectories of x  are a.s. 
C 1 -smooth and x( )0 0= Œm M . For the sake of 
convenience denote G0,t  by G  and so 

 Ga x x( ( ) ( ))t t t, , �  and GA t t t( ( ) ( )), ,x x�

are obtained by the parallel translation of 

 a x x( ( ) ( ))t t t, , �  and A t t t( ( ) ( )), , ,x x�

respectively, along x( )◊  from the point x( )t  to 
x( )0 0= m , where a  and A  are the coefficients of 
force field (3.1). The processes Ga x x( )t, , �  and 
GA t( ), ,x x�  take values in T Mm0

 and L T M T Mm m( )
0 0

, , 
respectively, and their trajectories are a.s. 
continuous, for so are the fields a( )t m X, ,  and 
A t m X( ), , . Since parallel translation preserves the 
Riemannian norm, it follows from (3.3) that 

 
G G

G

a x x x x

x

( ( ) ( )) ( ( ) ( ))

( )

t t t A t t t

K t

, , + , , <

< +( ) .

� �

�1
 

(3.6)

Lemma 3.11. The processes Ga x x( ( ) ( ))t t t, , �  
and GA t t t( ( ) ( )), ,x x�  are nonanticipative with 
respect to Bt .

The lemma is a consequence of the fact that 
the parallel translation operator G  is continuous 
on the space of C 1 -curves equipped with the 
C 1 -topology and of our assumptions that x  is 
nonanticipative and the fields a  and A  are both 
continuous. 
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By Lemma 3.11, we can define the process z t( )  
in T Mm0

 as 

 
z t d

A dw

t

t

( ) ( ( ) ( ))

( ( ) ( )) ( )

= , , +

+ , , ,

Ú
Ú

0

0

G

G

a t x t x t t

t x t x t t

�

�
 

(3.7)

where the second term on the right-hand side is 
the Itô integral. It is clear that z t( )  given by (3.7) 
is nonanticipative with respect to Bt  and almost 
surely has continuous trajectories. 

Setting v t z t( ) ( )= , we obtain Langevin’s 
equation (3.5) in the integral form: 

 
x a t x t x t t

t x t x t t

( ) ( ( ( ) ( ))

( ( ) ( )) ( ) )

t S d

A dw C

t

t

= , , +

+ , , + .

Ú
Ú

0

0

G

G

�

�
 

(3.8)

Indeed, one can easily see that a process satisfying 
(3.8), satisfies also (3.5). 

Definition 3.12. We say that (3.8) has a weak 
solution on [ ]0, Ãl R  with initial conditions 
x( )0 0= m , �x( )0 = C  if there exist a probability 
space ( )W, ,F P , a stochastic process x( )t  with a.s. 
C 1 -smooth sample paths, defined on ( )W, ,F P  and 
valued in M  with initial condition x( )0 0= m  and 
�x( )0 = C , a Wiener process w t( )  in �n , defined on 
( )W, ,F P  and adapted to x( )t , such that for all 
t lŒ ,[ ]0  P -a.s. (3.8) is fulfilled.

Definition 3.13. We say that (3.8) has a strong 
solution on [ ]0, Ãl R  with initial conditions 
x( )0 0= m , �x( )0 = C  if on every probability space 
( )W, ,F P  such that it admits a Wiener process, and 
for any Wiener process w t( )  in �n , defined on 
( )W, ,F P , there exists a stochastic process x( )t , 
non-anticipative with respect to w t( )  and having 
a.s. C 1 -smooth sample paths, that is defined on 
( )W, ,F P  and valued in M  with initial condition 
x( )0 0= m , such that for all t lŒ ,[ ]0  P -a.s. (3.8) 
is fulfilled.

Let m t( ) , t IŒ , be a trajectory of the mecha-
nical system, i.e., a solution of (1.2). 

Definition 3.14. The velocity hodograph of the 
trajectory m t( )  is the curve vI T MmÆ ( )0  such that 
v t( )  is parallel to �m t( )  along m( )◊ .

The equation of the velocity hodograph 
corresponding to (3.8) is 

 

v t t v t
d
dt

v t d

A t v t
d
dt

v t

t

t

( ) ( ) ( )

( ) ( )

= , ,Ê
ËÁ

ˆ
¯̃

+

+ , ,Ê

Ú

Ú

0

0

G

G

a tS S

S S
ËËÁ

ˆ
¯̃

+ .dw C( )t
 

(3.9)

It is clear that the vector Ga t x t x td
dt, ,( )S S( ) ( )  

and the tensor GA t x t x td
dt, ,( )S S( ) ( )  are well-posed 

along any curve x C I T Mm( ) ( )◊ Œ ,0
0

 and continuous 
on the space � ¥ ,C I T Mm

0
0

( ) . By construction 
and by the properties of parallel translation, we 
have 

 
d
dt

x t x tS( ( )) ( )= ,

and, therefore, due to (3.6), 

     

G

G

a t x t
d
dt

x t

A t x t
d
dt

x t K x t

, ,Ê
ËÁ

ˆ
¯̃

+

+ , ,Ê
ËÁ

ˆ
¯̃

£ +

S S

S S

( ) ( )

( ) ( ) ( (1 )) ).
 

(3.10)

L e m m a  3 . 1 5 .  Ga t x t x td
dt, ,( )S S( ) ( )  a n d 

GA t x t x td
dt, ,( )S S( ) ( )  are non-anticipative with 

respect to the family tB  from Lemma 3.6.
The assertion of Lemma 3.15 follows from 

constructions of Ga t x t x td
dt, ,( )S S( ) ( )  and of 

GA t x t x td
dt, ,( )S S( ) ( )  and from the properties of 

parallel translation as well as from Lemma 3.6. 
Equation (3.9) is an Itô stochastic differential 

equation of diffusion type on the linear space 
T Mm0

. Thus we needn’t introduce special notions 
of strong and weak solutions of (3.9). 

It is clear that v t( )  and the Wiener process 
w t( )  in T Mm0

 satisfy (3.9) if and only if Sv t( )  
(taking values in M ) and w t( )  satisfy (3.8). 
Observe also that Sv t( )  is defined on the same 
probability space and has the same measurability 
properties with respect to w t( )  as v t( ) . Thus, we 
have proved 

Theorem 3.16. The process v t( )  is a strong 
(respectively, weak) solution of (3.9) if and only if 
Sv t( )  is a strong (respectively, weak) solution of 
(3.8).

Remark 3.17. Let us specify a realization of 
w t( )  in T Mm0

. Applying to it the parallel translation 
along Sv( )◊ , we obtain realizations of w t( )  in all 
spaces T MvS ( )◊ . These realizations give rise to a force 
field defined along the trajectory. 

Theorem 3.18. Assume that a( )t m X, ,  and 
A t m X( ), ,  are jointly continuous in all variables 
and satisfy (3.3). Then on [ ]0, l , there exists a weak 
solution of equation (3.8) for any initial conditions 
x( )0 0= m  and �x( )0

0
= ŒC T Mm .

Proof. First, we pass to (3.9), which is 
equivalent to (3.8). Note that (3.9) is a diffusion 
type equation on a vector space. Recall that this 
means that the coefficients of (3.9) depend on the 
past, i.e., on the entire trajectory on the interval 
[ ]0,t . As has been shown, Ga t x t x td

dt, ,( )S S( ) ( )  and 
GA t x t x td

dt, ,( )S S( ) ( )  are well defined and conti-
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nuous on � ¥ , ,C l T Mm
0 0

0
([ ] ) . Moreover, they 

satisfy (3.10), the linear growth condition and by 
Lemma 3.15 they are not anticipative with respect 
to the family of s -sub-algebras tB . Thus, the 
standard existence theorem in linear spaces (see, 
e.g., Chapter 3, Section 2 of [21] or Section 19.3.8 
of [22]) guarantees that a weak solution of (3.9) 
exists. To complete the proof it suffices to apply 
Theorem 3.16. ■  

The following results can also be proved by 
passing to (3.9) and applying the results of the 
standard theory of stochastic equations on vector 
spaces [21, 22]. 

Theorem 3.19. Let a( )t m X, ,  and A t m X( ), ,  
be as in Theorem 3.18 Assume that the operator 
A t m X( ), ,  is invertible for all t , m , and X . If a 
solution of the equation 

 x t x t x t t( ) ( ( ) ( )) ( )t A dw
t

= , ,( )ÚS
0
G �  (3.11)

is weakly unique, then so is a solution of (3.8).
Theorem 3.20. Let a( )t m X, ,  be continuous 

jointly in all variables, satisfy (3.3), and such that 
the solution of the Cauchy problem for (1.2) is 
unique. Also, let A t m Xe( ), , , where e dŒ ,( )0  and 
d > 0 , be jointly continuous in e , t , m , and X  
and satisfy (3.3) with K  independent of e . Assu me, 
in addition, that 

(i) A0 0= ; 
(ii) lim

e eÆ
Æ

0
0A  uniformly on every compact in 

[ ]0, ¥l TM ; 
(iii) a solution of the equation 

 
x a t x t x t t

t x t x t te e

( ) ( ( ) ( ))

( ( ) ( )) ( )

t d

A dw C

t

t

= , , +(
+ , , +

Ú

Ú

S
0

0

G

G

�

� ))
 

(3.12)

is weakly unique for some eC  such that lim
e eÆ

=
0
C C . 

Then the measures on C l Mm0

1 0([ ] ), ,  corresponding 
to the solutions of (3.12) weakly converge as e Æ 0  
to the measure concentrated on the unique solution 
of (1.2).

Example 3.21. Let A I= e , where I  is the 
identity operator. Then it is clear that a solution of 
(3.11) is unique. Thus, for a  as before, the 
equation 

 x a t x t x t t e( ) ( ( ) ( )) ( )t d w t C
t

= , , + +( )ÚS
0
G �

has a unique solution. If, for example, a  is locally 
Lipschitz in m  and X , then Theorem 3.20 holds 
true for the latter equation.

It is known that equation (3.8) has a strongly 
unique strong solution, provided that the coef-
ficients of diffusion type equation (3.8) satisfy a 
Lipschitz type condition (see e.g., [21, 22]). 
However, the existence of a strong solution is 
rather hard to prove in the general case where the 
coefficients involve the operators G  and S . The 
reason is that G  and S  are defined by means of 
parallel translation and, as a consequence, we have 
a condition imposed on the entire mechanical 
system, rather than just on the force field. 

On the other hand, the existence can easily be 
verified for certain particular force fields. Here we 
consider three examples of such fields: 

(i) The drag force: 

 
a f( ) ( ) ˆ ( )

( ) ( ) ˆ ( )

t m X t X a X

A t m X t X A X
m

m

, , = , ◊ ,

, , = , ◊ ,Y
where f  and Y  are scalar functions, â  is a 
( )1 1, -tensor field with — =â 0 , and Â  is a field of 
operators m m mA T M L T Mˆ ( )Æ  parallel along every 
curve in M . (Note that the equation — =â 0  
means, in fact, a restriction of the same kind as 
that imposed on Â : the operators m m ma T M T Mˆ Æ  
are parallel along every curve.) For example, one 
may take â I= ±  or, if M  is an oriented two-
dimensional manifold, then mâ  may be the rota-
tion by a fixed angle. The same operators can be 
taken as examples of Â  if we assume in addition 
that mA Xˆ ( )  is independent of X  (i.e., mÂ , 
regarded as a function of X , is constant). 

(ii) A particular case of (i) involving friction 
and constant diffusion: 

 a f( ) ( ) ( ) ( ) ˆt m X b t X A t m X t Am, , = - ◊ , , , = ◊ ,
where the friction coefficient b ≥ 0  is a real-valued 
function of time and Â  is a ( )1 1, -tensor field with 
— =Â 0 . 

(iii) A force given in a “stationary coordinate 
system”. Let m m mt T M T M

0 0 0
a ( ) Æ  and A t T Mm m0 0

( ) Æ 
L T Mm0
( )Æ , t lŒ ,[ ]0  be given. The operators a  

and A  at other points of the trajectory x( )t  are 
obtained by the parallel translation of m0a  and 
Am0

 along x( )◊ . (See, e.g., [13, 14] for a mechanical 
interpretation of parallelism.) 

Theorem 3.22. Let a  and A  be as in (i)-(iii). 
Assume also that m0a  and Am0

 are Lipschitz in 
X T MmŒ

0
 and satisfy (3.3), the linear growth 

condition. Then (3.8) has a strongly unique strong 
solution on I .

Proof. Under the hypotheses of the theorem, 
equation (3.9) on T Mm0

 is equivalent to the 
following one: 

Mechanical systems with random perturbations on non-linear configuration spaces
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v t m v d

A m v dw C

t

t

( ) ( ( ))

( ( )) ( )

= , , +

+ , , + .

Ú
Ú

0 0

0 0

a t t t

t t t
 

(3.13)

This equation has a strongly unique strong 
solution defined on [ ]0, l . The initial velocity C  
can be viewed as a random vector measurable with 
respect to the s -algebra B0  [21,22]. To finish the 
proof it suffices to apply Theorem 3.16. ■  

Note that if a  and A  are as in (ii), then the 
hypotheses of Theorem 3.22 are automatically 
satisfied, provided that b  and f  are bounded. In 
this case, the solution v t( )  of (3.13) and the 
solution Sv t( )  of Langevin’s equation are called 
the velocity Ornstein—Uhlenbeck process and the 
coordinate Ornstein—Uhlenbeck process, respecti-
vely.

Note that the assumption that b  and f  are 
bounded can be omitted in the hodograph equation 
for Ornstein—Uhlenbeck processes so that the 
velocity process exists on a random interval up to 
the so-called explosion time. 

Recall that Ornstein—Uhlenbeck processes 
describe the Brownian motion in a medium with a 
drag force. A detailed discussion of this matter can 
be found in [16]. Ornstein—Uhlenbeck processes 
on manifolds are also discussed in [19]. 

Let v t( )  be a solution of (3.13). Denote by 
Ev t( )  the mathematical expectation of v t( )  in 
T Mm0

. 
Definition 3.23. The curve S( ( ))Ev t  on M  is 

said to be the mathematical expectation of the 
process Sv t( ) . The function E Ev t v t( ( ) ( ))- 2  is 
called the dispersion of Sv t( ) .

It is easy to see that for a system defined in (i) 
and, in particular, for (ii) the mathematical 
expectation of a solution of (3.8) satisfies (1.2). 

Passing to the hodograph equation and 
applying the standard results on equations in a 
vector space, we obtain the following theorem. 

Theorem 3.24. Under the assumptions of 
Theorem 3.22, the solutions of 

 
x a t x t x t t

e t x t x t t e

( ) ( ( ) ( ))

( ( ) ( )) ( )

t d

A dw C

t

t

= , ,( +

+ , , +

Ú

Ú

S
0

0

G

G

�

� ))
 

(3.14)

converge as e Æ 0  to the solution of (1.2) in the 
topology of the space 

 S( ([ ] ( )))C l L T Mm
0

20
0

, , , .W
The mathematical expectation of x  uniformly 
converges to the solution of (1.2).

Here L T Mm
2

0
( )W,  is the space of the square 

integrable maps from W  to T Mm0
. Note that the 

convergence means that the dispersion of x  
converges uniformly to zero. 

4. SET-VALUED FORCES. LANGEVIN 
TYPE INCLUSIONS

In this section we investigate second order 
stochastic differential inclusions on Riemannian 
manifolds that are set-valued analogues of Lan-
gevin equations from Section 3. The set-valued 
force evidently arises in a system with control or 
may be obtained from a discontinuous force (for 
instance, the dry friction is considered or the mo-
tion takes place in a complicated medium, etc.). 
Recall that if the force is discontinuous there are 
well-known methods of transition to a set-valued 
force (for stochastic differential equations the 
pioneering paper was probably [23]). Examples 
of systems having discontinuous forces with ran-
dom components of the above-mentioned sort are 
rather usual in phy sics, e.g., they describe the 
motion of the physical Brownian particle in a 
complicated medium. The use of Riemannian 
manifolds allows one to cover the mechanics on 
non-linear configuration spaces. 

D e f i n i t i o n  4 . 1 .  A  s e t - v a l u e d  m a p 
f TM TM: ¥� �  such that for any point 
( )m X TM, Œ  (this means that X T MmŒ , i.e., X  
is a tangent vector to M  at the point m MŒ ) the 
relation p pf t m X m X m( ) ( ), , = , =  holds, is called 
set-valued vector force field. 

A set-valued map a  from � ¥TM  to the bundle 
o f  ( )1 1, - t e n s o r s  o v e r  M  s u c h  t h a t 
p p1a t m X m X m( ) ( ), , = , =  (p1  is the projection of 
the bundle of ( )1 1, -tensors onto M ) will be called 
set-valued tensor force field. 

Now let α and A  be set-valued vector force 
field and set valued tensor field, respectively. For 
a stochastic process x( )t  with a.s. C 1 -smooth 
sample paths consider the set-valued maps 
Gα( ( ) ( ))t x t x t, , �  and GA( ( ) ( ))t x t x t, , �  sending [ ]0, l  
into T Mm0

 and into the space of linear operators 
on T Mm0

 and denote by PGα( ( ) ( ))t x t x t, , �  and 
PGA( ( ) ( ))t x t x t, , �  the sets of their Borel measu-
rable selectors. 

The Langevin inclusion is a system of the 
form 

 
D

D A A

� �

� � �
x x x

x x x x x

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( ( ) (

t t t t

t t t t t t

Œ , ,

Œ , , , ,*

α

2 tt))

Ï
Ì
Ô

ÓÔ
 (4.1)
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where D  and D2  are defined in Section 3 by means 
of ordinary parallel translation along C 1 -smooth 
curves and AA A* *= | Œ{ }AA A . In integral form 
(4.1) is expressed as 

 

x t x t x t t

t x t x t t

( ) ( ( ) ( ))

( ( ) ( )) ( )

t d

dw

t

t

Œ , ,
Ê

ËÁ
+

+ , ,

Ú

Ú

S P

P

0

0

G

G

α �

�A ++
ˆ

¯̃
.C

 

(4.2)

Definition 4.2. We say that (4.2) has a weak 
solution on [ ]0, Ãl R  with initial conditions 
x( )0 0= m , �x( )0 = C  if there exist a probability 
space ( )W, ,F P , a stochastic process x( )t  with a.s. 
C 1 -smooth sample paths, defined on ( )W, ,F P  and 
valued in M  with initial condition x( )0 0= m  and 
�x( )0 = C , a Wiener process w t( )  in �n , defined on 
( )W, ,F P  and adapted to x( )t , a single-valued 
vector field a( )t m X, ,  on M  and a single-valued 
( )1 1, -tensor field A t m X( ), ,  such that 

(i) for all t  the random vector a x x( ( ) ( ))t t t, , �  
belongs to α( ( ) ( ))t t t, ,x x�  P -almost surely (a.s.); 

(ii) for all t  the random tensor A t t t( ( ) ( )), ,x x�  
belongs to A( ( ) ( ))t t t, ,x x�  P -a.s.; 

(iii) the integrals 
0

t
dÚ , ,Ga t x t x t t( ( ) ( ))�  and 

0

t
A dwÚ , ,G ( ( ) ( )) ( )t x t x t t�  are well-posed for x( )t , 

w t( ) , a  and A  
and for all t lŒ ,[ ]0  P -a.s. 

 

x a t x t x t t

t x t x t t

( ) ( ( ) ( ))

( ( ) ( )) ( )

t d

A dw C

t

t

= , ,
Ê

ËÁ
+

+ , , +

Ú

Ú

S
0

0

G

G

�

� ˆ̂

¯̃
.

 

(4.3)

Definition 4.3. We say that (4.2) has a strong 
solution on [ ]0, Ãl R  with initial conditions 
x( )0 0= m , �x( )0 = C  if on any probability space 
( )W, ,F P , such that it admits a Wiener process, and 
for any Wiener process w t( )  in �n , defined on 
( )W, ,F P , there exist: a stochastic process x( )t  with 
a.s. C 1 -smooth sample paths in M , defined on 
( )W, ,F P  and non-anticipating with respect to w t( )  
with initial condition x( )0 0= m  and �x( )0 = C , a 
single-valued vector field a( )t m X, ,  on M  and a 
single-valued ( )1 1, -tensor field A t m X( ), ,  such 
that 

(i) for all t  the random vector a x x( ( ) ( ))t t t, , �  
belongs to α( ( ) ( ))t t t, ,x x�  P -a.s.; 

(ii) for all t  the random tensor A t t t( ( ) ( )), ,x x�  
belongs to A( ( ) ( ))t t t, ,x x�  P -a.s.; 

(iii) the integrals 
0

t
dÚ , ,Ga t x t x t t( ( ) ( ))�  and 

0

t
A dwÚ , ,G ( ( ) ( )) ( )t x t x t t�  are well-posed for x( )t , 

w t( ) , a  and A  and P -a.s. (4.3) holds for all 
t lŒ ,[ ]0 .

As well as in Section 3 one can easily prove 
that x( )t  as above satisfies (4.3) if and only if its 
velocity hodograph v t( )  (i.e., x( ) ( )t v t= S ) 
satisfies the velocity hodograph equation of the 
form 

 

v t v
d
d

v d

A v
d
d

v

t

t

( ) ( ) ( )

( ) ( )

= , ,Ê
ËÁ

ˆ
¯̃

+

+ , ,Ê

Ú

Ú

0

0

G

G

a t t
t

t t

t t
t

t

S S

S S
ËËÁ

ˆ
¯̃

+dw C( )t
 

(4.4)

that is an equation of diffusion type in the tangent 
(i.e., linear) space at m0  and so it is more 
convenient for investigation. Below, we shall find 
a  and A  as in Definitions 4.2 and 4.3 and 
corresponding v t( ) , being a solution of (4.4) in 
weak or strong sense, and then obtain x( ) ( )t v t= S  
satisfying (4.3). 

If both α  and A  have continuous selectors 
satisfying Itô condition (see (4.5) below), the 
existence of weak solution trivially follows from 
that for Langevin equation obtained in Section 3. 
If it is not the case the existence problem for 
Langevin inclusions requires special constuc-
tions. 

We present the following modification of the 
notion of e -approximation for set-valued map-
pings. 

Definition 4.4. A continuous single-valued force 
field ea ( )t m X, ,  is called e -approximation of the 
set-valued force field α( )t m X, ,  on M  if its graph 
( ( ))t m X t m X, , , , ,ea  lies in the e -neighbourhood 
of  ( ( ))t m X t m X, , , , ,α  ( the graph of  α ) in 
[ ]0, ¥ ≈l TM TM  where ≈  denotes the Whitney 
sum. For ( )1 1, -tensor fields the definition is 
analogous. 

In [3] the following statement is proved. 
Theorem 4.5. Let F : � �n n�  be an upper 

semi-continuous set-valued map with convex closed 
bounded values. For a sequence ei Æ 0  there exists 
a sequence of continuous ei  approximations for F  
that point-wise converges to a Borel measurable selec-
tor of F . If F  takes values in a convex set X  in �n , 
those e -approximations take values in X  as well. 

One can easily see that the natural analogue 
of Theorem 4.5 holds for both vector and ( )1 1, -ten-
sor force fields on a manifold. 
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We say that α  and A  satisfy the Itô condition 
if they have linear growth in velocities, i.e., there 
exists a certain Q > 0  so that the following 
inequality: 

 α( ) ( ) ( )t m X t m X X, , + , , < +A Q 1  (4.5)

holds. 
Theorem 4.6. Let the set-valued vector force 

field F t m X( ), ,  and set-valued ( )1 1, -tensor force 
field A t m X( ), ,  be upper semi-continuous with 
convex bounded closed values and satisfy Itô 
condition (4.5) for a certain Q . 

Then for any m M0 Œ  and C T MmŒ
0

 the Lan-
gevin inclusion (4.2) has a weak solution with 
initial conditions x( )0 0= m , �x( )0 = C , well-posed 
for all t Œ , •[ )0 . 

Proof. Specify l > 0 . Denote by B  the Borel 
s -algebra on [ ]0, l  and by l  the normalised Lebes-
gue measure on it. Consider W = , ,C l T Mm

0 0
0

([ ] ) , the 
Banach space of continuous curves x l T Mm: , Æ[ ]0

0
 

with usual uniform norm, and F , the s -algebra 
generated by cylindrical sets on W . By Pt  we 
denote the s -algebra, generated by cylinder sets 
with bases over [ ]0,t . 

We shall use several measures on ( )W, F  and 
on the product space [ ]0, ¥l W  we shall introduce 
the corresponding product measures. 

Take a sequence ei Æ 0  and construct 
sequences f t m Xi( ), ,  and a t m Xi( ), ,  of continuous 
ei -approximations of F t m X( ), ,  and A t m X( ), , , 
respectively, as in Theorem 4.5. Namely, denote 
by Yi t m X( ), ,  a continuous set-valued force field 
with convex closed values whose graph belongs to 
the ei -neighbourhood of the graph of F t m X( ), ,  
and such that for all ( )t m X, ,  the inclusion 
F t m X t m Xi( ) ( ), , Ã , ,Y  holds (the existence of 
such Yi t m X( ), ,  follows from [24]). Then as well 
the minimal selectors f t m Xi( ), ,  of Yi t m X( ), ,  
point-wise converge to the minimal selector 
f t m X( ), ,  of F t m X( ), ,  as i Æ •  and f t m X( ), ,  
is Borel measurable as a point-wise limit of 
continuous mappings. In complete analogy with 
these arguments we introduce a continuous 
( )1 1, -tensor field i t m Xˆ ( )Y , ,  whose graph belongs 
to the ei -neighbourhood of the graph of A t m X( ), ,  
and such that for all ( )t m X, ,  the inclusion 
A t m X t m Xi( ) ˆ ( ), , Ã , ,Y  holds. The minimal selec-
tors a t m Xi( ), ,  of i t m Xˆ ( )Y , ,  point-wise converge 
to the minimal selector a t m X( ), ,  of A t m X( ), ,  as 
i Æ •  and a t m X( ), ,  is Borel measurable. 

Taking into account Definition 4.4 and 
inequality (4.5) it is evident that 

 f t m X a t m X Q Xi i( ) ( ) ( ), , + , , < +1
for a certain Q > Q  and for all i . 

Pass from the sequences f t m Xi( ), ,  and a t m Xi( ), ,  
to the sequences if l TM� : , ¥ Æ[ ]0 W  and ia l� : , ¥[ ]0  

TM¥ ÆW , where i i
d
dtf t x f t x t x t� ( ( )) ( ( ) ( )), ◊ = , ,S S   

and i i
d
dta t x a t x t x t� ( ( )) ( ( ) ( )), ◊ = , ,S S . Introduce also 

�f t x f t x t x td
dt( ( )) ( ( ) ( )), ◊ = , ,S S  a n d  �a t x( ( )), ◊ =  

a t x t x td
dt( ( ) ( ))= , ,S S . 

Consider the maps G if t x� ( ( )), ◊  from [ ]0, ¥l W  
into T Mm0

 and G ia t x� ( ( )), ◊  from [ ]0, ¥l W  into 
linear endomorphisms on T Mm0

. 
Since d

dt x tS ( )  is by the construction parallel 
to x t( )  along Sx( )◊  and the parallel translation 
preserves the norms, we get 

       G Gi if t x a t x Q x� �( ( )) ( ( )) ( ( ) ), ◊ + , ◊ < + ◊ .1  (4.6)

By the construction, G if t x� ( ( )), ◊  and G ia t x� ( ( )), ◊  
are continuous on [ ]0, ¥l W  (this follows from the 
continuity of G , see [11, 12, 13, 14]) and 
measurable with respect to the s -subalgebra Pt  
in F  generated by cylindrical sets with bases over 
[ ]0,t . Since it also satisfies (4.6), there exists a 
weak solution v ti( )  of the equation 

v t f v d a v dw t Ci

t

i i

t

i i( ) ( ( )) ( ( )) ( )= , ◊ + , ◊ +Ú Ú
0 0

G G� �t t t  (4.7)

(see Theorem III.2.4 of [21]). Denote by mi  the 
measure on ( )W, F  corresponding to vi . Recall 
that v ti( )  is represented as the coordinate pro-
cess v t x x ti( ( )) ( ), ◊ =  on the probability space 
( )W, ,F mi . 

By routine method (see, e.g., [21]), since all 
G if t x� ( ( )), ◊  and G ia t x� ( ( )), ◊  satisfy (4.6) with the 
same Q , one can show that the set of measures { }mi  
is weakly compact and so there exists a subsequen-
ce converging weakly to a certain pro bability 
measure m  on ( )W, F . For the sake of con venience 
we do not change the notations and say that mi  
itself is that converging subsequence. Denote by 
v t( )  the coordinate process on ( )W, ,F m . 

Introduce measures ni  on ( )W, F  by the 
relations d x di in m= + ◊( ( ) )1 . They weakly conver-
ge to n  defined by the relation d x dn m= + ◊( ( ) )1  
(see, e.g., [3,21]). 

As G kf t x� ( ( )), ◊  converge to G�f t x( ( )), ◊  point-
wise, they converge a.s. with respect to all l m¥ i , 

and so the functions 
G kf t x

x

� ( ( ))

( )

, ◊
+ ◊1  converge to G�f t x

x
( ( ))

( )
, ◊

+ ◊1  a.s. 

with respect to all l n¥ i . Specify d > 0 . By Ego-
rov’s theorem (see, e.g., [25]) for any i  there exists 
a subset d

iK l� Ã , ¥[ ]0 W  such that ( )( )l n d¥ >i
kK�  

d> -1 , and the sequence f t x
x

k
* , ◊
+ ◊
( ( ))

( )1  converges to 
�f t x

x
( ( ))

( )
, ◊

+ ◊1  
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uniformly on d
iK� . Introduce ( )d d� �∪K K

i

i=
=

•

0

. The 

sequence 
G kf t x

x

� ( ( ))

( )

, ◊
+ ◊1  converges to G�f t x

x
( ( ))

( )
, ◊

+ ◊1  uniformly on 

d�K  and ( )( ) ( )([ ] )l n l n dd¥ > ¥ , ¥ -i iK l� 0 W  for 
all i …= , , •0 . 

Notice that G�f t x( ( )), ◊  is continuous on a set of 
full measure l n¥  on [ ]0, ¥l W . Indeed, consider 
a sequence di Æ 0  and the corresponding sequen-
ce diK�  from Egorov’s theorem. By the above 
construction G�f t x( ( )), ◊  is a uniform limit of conti-
nuous functions on each diK�  . Thus it is continuous 

on each diK�  and so, on every finite union 
i

n

iK
=1
∪ � d . 

Evidently lim( )( ) ( )([ ] )
n

i

n

iK l
Æ•

=

¥ = ¥ , ¥l n l nd
1

0∪ � W . 

Hence G�f t x
x

( ( ))
( )

, ◊
+ ◊1  is continuous on a set of full 

measure l n¥  on [ ]0, ¥l W . 
Let g xt( ( ))◊  be a bounded (say, g xt( ( ))◊ < X  for 

all x( )◊ Œ W ) and continuous Pt -measurable 
function on W . 

Because of the above uniform convergence on 

d�K  for all k  and boundedness of gt  we get that 
for k  large enough 

 
d

d

t t t m
�

�

� �
K t

t t

k t k

K

f x f x d g x dÚ Ú

Ú

+D
, ◊ - , ◊ ◊ =

=

( ( ( ( )) ( ( ))) ) ( ( ))

(

G G

tt

t t
k

t k
f x f x

x
d g x d

+D

Ú
, ◊ - , ◊

+ ◊
◊ < .

G G� �( ( )) ( ( ))
( )

) ( ( ))
t t

t n d
1

Since ( )( )l m dd¥ > -k K� 1  for all k , 
G kf t x

x Q
� ( ( ))

( )

, ◊
+ ◊ <1  

for all k …= , , , •0 1  (i.e., G�f  is included) and 
| ◊ |<g xt( ( )) X  (see above), we get 

 

W

W

G G
\K t

t t

k t k

\

f x f x d g x d
d

d

t t t m
�

� �Ú Ú
+D

, ◊ - , ◊ ◊ =

=

( ( ( ( )) ( ( ))) ) ( ( ))

��

� �

K t

t t
k

t k
f x f x

x
d g x dÚ Ú

+D , ◊ - , ◊
+ ◊

◊ <

<

(
( ( )) ( ( ))

( )
) ( ( ))

G Gt t
t n

1

2QQXd .

From the fact that d  is an arbitrary positive 
number it follows that 

 
lim ( ( ( ))

( ( )) ) ( ( )

k t

t t

k

t

t t

t

f x d

f x d g x

Æ•

+D

+D

Ú Ú
Ú

, ◊ -

- , ◊ ◊

W
G

G

�

�

t t

t t ))d km = .0

The function G�f t x
x

( ( ))
( )

, ◊
+ ◊1  is l n¥ -a.s. continuous 

(see above) and bounded on [ ]0, ¥l W . Hence by 
Lemma in section VI.4 of [26] from the weak 
convergence of nk  to n  it follows that 

 

lim ( ( ( )) ) ( ( ))

lim (

k t

t t

t k

k t

t t

f x d g x d
Æ•

+D

Æ•

+D

Ú Ú

Ú Ú

, ◊ ◊ =

=

W

W

G

G

� t t m

��

�

f x
x

d g x d

f x
x

t k

t

t t

( ( ))
( )

) ( ( ))

(
( ( ))

(

t t n

t

, ◊
+ ◊

◊ =

= , ◊
+ ◊Ú Ú

+D

1

1W

G
))

) ( ( ))

( ( ( )) ) ( ( ))

d g x d

f x d g x d

t

t

t t

t

t n

t t m

◊ =

= , ◊ ◊ .Ú Ú
+D

W
G�

 

(4.8)

Obviously 

lim ( ( ) ( ))

lim
( ) ( )

( )

i i

i i

x t t x t d

x t t x t
x

d

Æ•

Æ•

Ú

Ú

+ D - =

= + D -
+ ◊

=

=

W

W

m

n
1

WW W
Ú Ú

+ D -
+ ◊

= + D - .x t t x t
x

d x t t x t d
( ) ( )

( )
( ( ) ( ))

1
n m

 

(4.9)

Notice that 

 
W

G

Ú
Ú

+ D - -

- , ◊ ◊ =
+D

( ( ) ( )

( ( )) ) ( ( ))

x t t x t

f x d g x d
t

t t

k t k
� t t m 0

 
(4.10)

since 

 WÚ + D - ◊ =

= + D - ,

( ( ) ( )) ( ( ))

[( ( ) ( )) ( ( ))]

x t t x t g x d

E v t t v t g v t
t k

k k t k

m

 W
G

G

Ú Ú
Ú

+D

+D

, ◊ ◊ =

= ,

( ( ( )) ) ( ( ))

[( ( ( )

t

t t

k t k

t

t t

k k

f x d g x d

E f v

�

�

t t m

t t )) ) ( ( ))]d g v tt kt

and v tk( )  is a solution of (4.7). 
From (4.8), (4.9) and (4.10) it follows that 

 
W

G

Ú

Ú

+ D - -

- , ◊ ◊ = .
+D

[( ( ) ( ))

( ( )) ] ( ( ))

x t t x t

f s x ds g x d
t

t t

t
� m 0

 
(4.11)

From (4.11) it evidently follows that the process 

v t f s v s ds
t

( ) ( ( ))- ,Ú
0

G�  is a martingale on ( )W, ,F m  

with respect to Pt . 
Specify a certain orthonormal basis in T Mm0

. 
Then the vectors in T Mm0

 are considered as 
coordinate columns. If X  is such a vector, the 
transposed row vector is denoted by X * . Notice 
that for a column X  and a row Y *  the product 
XY *  with respect to matrix multiplication, is a 
matrix. Linear operators from T Mm0

 to T Mm0
 are 

represented in coordinates as n n¥  matrices, the 

Mechanical systems with random perturbations on non-linear configuration spaces
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symbol *  means transposition of a matrix (pass 
to the matrix of conjugate operator). 

Consider the sequence a t m Xi( ), ,  of ei -ap-
proximations of A t m X( ), , , that point-wise con ver-
ges to the Borel-measurable selector a t m X( ), ,  (see 
the beginning of this proof). One can easily see 
that a t m X a t m Xi i( )( ( )), , , , *  point-wise conver ges 
to a t m X a t m X( )( ( )), , , , * . Then in comp lete analogy 
with the above argument one can show that 

 
W

G G

Ú

Ú

+ D - + D - -

- , ◊ ,

*

+D

[( ( ) ( ))( ( ) ( ))

( ( ))( (

x t t x t x t t x t

a s x a s
t

t t

� � xx ds g x dt( ))) ] ( ( ))◊ ◊ =* m 0
 
(4.12)

with the same gt  as above. 
Using standard Girsanov technique one can 

derive from (4.11) and (4.12) that on ( )W, ,F m  
there exists a Wiener process w t( ) , adapted to Pt , 
such that v t( )  on ( )W, ,F m  satisfies the equality 

  v t C f s v ds a s v dw s
t t

( ) ( ( )) ( ( )) ( )= + , ◊ + , ◊Ú Ú
0 0

G G� �  (4.13)

(see [21]). Then, taking into account the const-
ruction of �f  and operators S  and G , one can 
easily see that the process x( ) ( )t v t= S  satisfies 
the equation 

 

x x x

x x

( ) ( ( ( ) ( ))

( ( ) ( )) ( )

t f s s
d
ds

s ds

a s s
d
ds

s dw s

t

t

= , , +

+ , ,

Ú

Ú

S
0

0

G

G ++ .C )

 

(4.14)

Since  f t m X F t m X( ) ( ), , Œ , ,  and a t m X( ), , Œ 
A t m X( )Œ , ,  and l > 0  is an arbitrary number, this 

completes the proof. ■  
In some cases we can prove existence of strong 

solution of Langevin inclusion (4.2). Let us 
present an example of such existence theorem. 

In what follows we use [ ]0, l , B , W , F  and Pt  
introduced in the proof of Theorem 4.6. By Bt  we 
denote the Borel s -algebra on [ ]0,t  for t lŒ ,[ ]0 . 

Introduce the notation compZ  for the space of 
compact subsets in the metric space Z . Thus, we 
say that the set-valued vector field B t m X( ), ,  
sends [ ]0, ¥l TM  into compTM  if  for any 
( ) [ ]t m X l TM, , Œ , ¥0  the image B t m X T Mm( ), , Ã  
is compact. 

Recall several definitions. 
Definition 4.7.  A single-valued map 

b : , ¥ Æ[ ]0 l nW �  is called { }Pt -progressively 
measurable if for every t  it is measurable with 
respect to B Pt t¥ .

D e f i n i t i o n  4 . 8 .  A  s e t - v a l u e d  m a p 
B l comp n: , ¥ Æ[ ]0 W �  is called { }Pt -progressively 
measurable if {( ) [ ] ( ) }t l B t C, Œ , ¥ | , « π Δ Œw w0 W  

t tŒ ¥B P  for every closed set C nÃ � . 
Definition 4.9.  We say that a set-valued vector 

field B l TM compTM: , ¥ Æ[ ]0  
(i) is dissipative if for all t lŒ ,[ ]0 , m MŒ , 

X Y T Mm, Œ  and U B t m XŒ , ,( ) , V B t m YŒ , ,( )  
the inequality X Y U V- , - £ 0  holds. 

(ii) is maximal if for t , m , X , Y  and V  as 
in (i) the inequality X Y U V- , - £ 0  is equivalent 
to the assumption that U B t m XŒ , ,( ) . 

Denote by w t( )  a certain one-dimensional 
Wiener process. Let F t m X( ), ,  and G t m X( ), ,  be 
set-valued vector force fields on M  as above. Then 
we can consider the stochastic differential 
inclusion of Langevin type 

 

x t x t x t t

t x t x t t

( ) ( ( ( ) ( ))

( ( ) ( )) ( ) )

t F d

G dw C

t

t

Œ , , +

+ , , + .

Ú

Ú

S
0

0

G

G

�

�
 

(4.15)

Inclusion (4.15) is a particular case of (4.2) since 
GG dw( ( ) ( )) ( )t x t x t t, , �  can be represented as 
GG PdW( ( ) ( ))( ( ))t x t x t t, , �  where P  is the ortho-
gonal projection onto the linear span of vector 
GG( ( ) ( ))t x t x t, , � . 

Theorem 4.10. Let the set-valued vector fields 
F t m X( ), ,  and G t m X( ), , , F G l TM, : , ¥ Æ[ ]0  

compTMÆ , be Borel measurable, uniformly 
bounded, dissipative and maximal. Then there 
exists a strong solution of (4.15), well posed for 
t lŒ ,[ ]0 , with initial conditions x( )0 0= m  and 
�x( )0 = C  for any m M0 Œ  and C T MmŒ

0
.

Proof. Let ( )� �W, ,F P  be a probability space 
admitting a one-dimensional Wiener process 
w t( ) . Denote by Pt

w  the s -subalgebra of �F  
generated by all w s( )  for 0 £ £s t  and completed 
by all sets of zero probability. Let Y : Æ�W W  be 
a measurable map. From the properties of parallel 
translation and the assumed hypothesis one can 
easily derive that the coefficients 

 G GF t Y F t Y t
d
dt

Y t( ) ( ( )( ) ( )( )), , = , ,w w wS S

and 

 G GG t Y G t Y t
d
dt

Y t( ) ( ( )( ) ( )( )), , = , ,w w wS S

for w Œ �W  satisfy all conditions of Theorem 1 [27] 
and so on ( )� �W, ,F P  there exists a continuous 
Pt

w -progressively measurable process v t( )  
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(v( )0 0= ) in T Mm0
 and L2 -selectors f t( ),w  of 

GF t v( ), ,w  and g t( ),w  of GG t v( ), ,w  such that 
a.s. 

      v t f d g dw C
t t

( ) ( ) ( )) ( )= , + , + .Ú Ú
0 0

t w t t w t  (4.16)

Consider the M -valued process x( ) ( )t v t= S  with 
v t( )  satisfying (4.16). In the same manner as in 
the proof of Theorem 4.6 we can construct Borel 
measurable selectors f t m X( ), ,  of F t m X( ), ,  and 
g t m X( ), ,  of G t m X( ), ,  such that a.s. 

 

x t x t x t t

t x t x t t

( ) ( ( ( ) ( ))

( ( ) ( )) ( ) )

t f d

g dw C

t

t

= , , +

+ , , + .

Ú

Ú

S
0

0

G

G

�

�

■  

5. SYSTEMS WITH RANDOM 
PERTURBATION OF VELOCITY

In previous two sections we dealt with equations 
obtained from the ordinary Newton’s law by a 
stochastic perturbation of vertical component of 
right-hand side, i.e., of the force field (see the 
Introduction). Here we investigate the systems, in 
which the horizontal part is subjected to stochastic 
influence. This means that a random perturbation 
of velocity arises. Such a situation can appear, e.g., 
if a particle, subjected to a deterministic force, 
moves in addition with a random media. Note that 
in this model example the perturbation would be 
independent of the particle velocity. 

Taking into account the above model example, 
we investigate system (1.1) with a  independent 
of velocity, i.e., it turns into 

 
�

�
x t v t
v t t x t
( ) ( )
( ) ( ( ))

=
= , .

Ï
Ì
Ó a

 (5.1)

A particular example of such a force is -grad U  
in a conservative mechanical system where U  is 
the potential energy. 

Now suppose that in system (5.1) the right-
hand side of horizontal (i.e. the first) equation is 
subjected to random perturbation of the form 
A t x t w t( ( )) ( ), �  where �w t( )  is white noise. Note that 
this perturbation is independent of velocity of the 
particle. In appropriate terms this means that the 
process x( )t  describing the motion of particle, 

satisfies the equality x x x( ) ( ( ))t v s s ds
t

= + , +Ú0 0
 

x( ( )) ( )A s s dw s
t

+ ,Ú0
 where the vector field v t x( ),  

satisfies the relation Dv t t t t( ( )) ( ( )), = ,x a x . The 
formal equation of motion in terms of forward 
mean derivatives then takes the form 

 

D t v t t
D t A t t A t t
Dv t t t

x x
x x x

x a x

( ) ( ( ))
( ) ( ( )) ( ( ))
( ( )) ( (

= ,
= , ,

, = ,

*
2

tt))

Ï
Ì
Ô

ÓÔ
 (5.2)

where Dv t t( ( )),x  is given by formula (2.6). 
We also suppose that A t x( ),  and a( ))t x,  

satisfy the Itô condition 

 A t x t x K x( ) ( ) ( ), + , < +a 1  (5.3)

for some K > 0 . 
Theorem 5.1.  Let A t x( ),  and a( )t x,  be jointly 

con tinuous in t x,  and satisfy (5.3). Then for every 
couple x0 , v n

0 Œ �  there exists a weak solution of 
(5.2) with initial conditions x x( )0 0=  and v v( )0 0= . 

Proof. In C l n0 0([ ] ), , �  introduce the s -algebra 
�F  generated by cylindrical sets. By t

�P  denote 
the s -algebra generated by cylindrical sets over 
[ ] [ ]0 0, Ã ,t l . 

Consider the map v l C l n n: , ¥ , , Æ[ ] ([ ] )0 00 � �  
defined by the formula 

 v t x v x d
t

( ( )) ( ( ))), ◊ = + , ◊ .Ú0 0
a t t  (5.4)

By the construction this map is continuous jointly 
in t lŒ ,[ ]0  and x C l n( ) ([ ] )◊ Œ , ,0 0 � . In addition it 
is obvious that if x1( )◊  and x2( )◊  coincide on [ ]0,t  
then v t x v t x( ( )) ( ( )), ◊ = , ◊1 2 .  This means that 
v t x( ( )), ◊  is measurable with respect to t

�P . (see, 
e.g., [21]). 

Taking into account (5.3) one can easily derive 
the inequality 

 

v t x x d

x d K x d

t

t t

( ( )) ( ( )))

( ( ))) ( ( ) )

, ◊ = , ◊ £

£ , ◊ £ + £

Ú

Ú Ú
0

0 0
1

a t t

a t t t t

££ + ◊ £ + ◊ÚK x ds lK x
t

C C0
1 10 0( ( ) ) ( ( ) )

where ◊ C 0  is the norm in C l n0 0([ ] ), , � . 
Introduce A t x( ( )), ◊  as A t x A t x t( ( )) ( ( )), ◊ = , . 

Notice that A t x( ( )), ◊  is measurable with respect 
to t

�P  and that from (5.3) it follows that 
A t x K x

C
( ( )) ( ( ) ), ◊ £ + ◊1 0 . So, both v t x( ( )), ◊  and 

A t x( ( )), ◊  satisfy the Itô condition in the form 

 v t x A t x K x
C

( ( ) ( ( ) ( ( ) ), ◊ + , ◊ £ + ◊1 0

with K max K lK= ,( ) . 
Now the couple v t x( ( )), ◊  and A t x( ( )), ◊  satisfies 

all conditions of theorem III.2.4 from [21], hence, 
the stochastic differential equation 

Mechanical systems with random perturbations on non-linear configuration spaces



218 ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2008, № 1

     x t x v s x ds A s x dw s
t t

( ) ( ( )) ( ( )) ( )= + , ◊ + , ◊Ú Ú0 0 0
 (5.5)

has a weak solution on [ ]0, l . This means that there 
exist a probabilistic measure m  on ( ([ ] )C l n0 0, , ,�  
F )  and a Wiener process in �n , given on 
( ([ ] ) )C l n0 0, , , ,� F m  and adapted to Pt , such that 
the coordinate process x t( )  on ( ([ ] ) )C l n0 0, , , ,� F m  
and w t( )  satisfy (5.5). Intro du ce v t x A( ),  as the 
regression v t x E v t x x t x( ) ( ( ( )) ( ) ), = , ◊ | = . This 
together with const ruction of process v t x( ( )), ◊  
completes the proof of Theorem. ■  

The simple construction used in proof of 
Theorem 5.1, can be generalized to be applicable in 
more complicated situation. First we consider the 
case where the force field is set-valued, lower semi-
continuous but not necessarily has convex values. 

Let F t x( ),  be a lower semi-continuous set-
valued map F n n: ¥� � ��  with closed images 
and A t x n n( ), : Æ� �  be a field of single-valued 
linear operators jointly continuous in parameters 
t Œ �  and x nŒ � . We suppose that F t x( ),  and 
A t x( ),  satisfy Itô condition, i.e., that there exists 
a constant Q > 0  such that 

 F t x A t x x( ) ( ) ( ), + , < +Q 1  (5.6)

for all t RŒ  and x nŒ �  where A t x( ),  is the 
operator norm and F t x yy F t x( ) sup ( ), = Œ , . 

Equation (system) (5.3) now is replaced by 
the following inclusion 

 

D t v t t
D t A t t A t t
Dv t t F t

x x
x x x

x x

( ) ( ( ))
( ) ( ( )) ( ( ))
( ( )) ( (

= ,
= , ,

, Œ ,

*
2

tt)).

Ï
Ì
Ô

ÓÔ
 (5.7)

In what follows we consider �n  and �  with 
their Borel s -algebras Bn  and B , respectively. 
Let x( )◊  be a continuous curve. Consider the set-
valued vector field F t x t( ( )),  along x( )◊  and denote 
by PF x( ( ))◊, ◊  the set of all measurable selectors 
of F t x t( ( )), , i.e., the set of measurable maps 
{ ( ( )) ( ( ))}f f x t F t x tn: Æ : Œ ,� � . It is obvious 
that since condition (5.6) is satisfied, all those 
selectors are integrable on any finite interval in 
�  with respect to Lebesgue measure. Denote by 
Ú ◊, ◊PF x( ( ))  the set of integrals with varying upper 
limits of those selectors. 

Recall some facts and notions involved in 
further considerations. Specify l > 0 . In what 
follows we denote by l  the normalized Lebesgue 
measure on [ ]0, l , i.e., such that l([ ])0 1, =l . 

Lemma 5.2.  Let ( )X,d  be a separable metric 
space, X  be a Banach space. Consider the space 
Y L l X= , , , ,1 0(([ ] ) ))B l  of integrable maps from [ ]0, l  

into X . If a set-valued map G Y: ÆX  is lower 
semicontinuous and has closed decomposable 
images, it has a continuous selector.

This is a particular case of Bressan—Colombo 
Theorem (see, e.g., [28, 29]). 

Denote by C l n0 0([ ] ), , �  the Banach space of 
continuous maps from [ ]0, l  to �n  (i.e., continuous 
curves in �n , given on [ ]0, l ). 

Theorem 5.3.  Let, as mentioned above, F t x( ),  
be a lower semi-continuous set-valued map 
F n n: ¥� � ��  w i t h  c l o s e d  v a l u e s  a n d 
A t x n n( ), : ¥ Æ� � �  be a field of single-valued 
linear operators jointly continuous in parameters 
t Œ �  and x nŒ � . Let also (5.6) be fulfilled. Then 
for any specified l > 0 , x v n

0 0, Œ �  inclusion (5.7) 
has a solution on [ ]0, l  with initial position x0  and 
initial velocity v0 .

Proof. In C l n0 0([ ] ), , �  introduce the s -algebra 
�F  generated by cylindrical sets. By t

�P  denote 
the s -algebra generated by cylindrical sets over 
[ ] [ ]0 0, Ã ,t l . 

Consider the set-valued maping B  sending 
x C l n( ) ([ ] )◊ Œ , ,0 0 �  into PF x( ( ))◊, ◊ . Since under 
condition (5.6) all selectors from PF x( ( ))◊, ◊  are 
integrable (see above), B  takes values in the space 
L l n1 0(([ ] ) ), , , ,B l � . It is known (see, e.g., Sec-
tion 5.5 from [29]) that under the above-mentioned 
conditions B C l L ln n: , , Æ , , , ,0 10 0([ ] ) (([ ] ) )� �B l  
is lower semicontinuous and for any x( )◊ Œ 

C l n([ ] )Œ , ,0 0 �  the set PF x( ( ))◊, ◊ , i.e., the image 
B x( ( ))◊  is decomposable and closed. Thus, by Lem-
ma 5.2 B  has a continuous selector b C l n: , , Æ0 0([ ] )�  
b C l L ln n: , , Æ , , , ,0 10 0([ ] ) (([ ] ) )� �B l . 

F o r  a n y  t lŒ ,[ ]0  i n t r o d u c e  t h e  m a p 
f C l C lt

n n: , , Æ , ,0 00 0([ ] ) ([ ] )� �  that sends a curve 
x C l n( ) ([ ] )◊ Œ , ,0 0 �  into the curve 

 f x
x t
x t t lt( ( ))
( ) [ ]
( ) [ ]

t
t t

t
, ◊ =

Œ ,
Œ ,

Ï
Ì
Ó

.
for
for

0

Obviously the map ft  is continuous. Since f xt( ( ))t , ◊  
belongs to C l n0 0([ ] ), , � , the curve b f xt( ( ( )))t , ◊ Œ 

L l n(([ ] ) )lŒ , , , ,1 0 B �  is well-posed. By construction 
b f x F xt( ( ( ))) ( ( ))t t t, ◊ Œ ,  for almost all t Œ ,[ ]0 t  and 
this selector continuously depends on t  in 
L l n1 0(([ ] ) ), , , ,B l � . 

Consider the map v l C l n n: , ¥ , , Æ[ ] ([ ] )0 00 � �  
defined by the formula 

 v t x v b f x d
t

t( ( )) ( ( ( ))), ◊ = + , ◊ .Ú0 0
t t  (5.8)

By construction this map is continuous jointly in 
t lŒ ,[ ]0  and x C l n( ) ([ ] )◊ Œ , ,0 0 � . In addition it is 
obvious that if x1( )◊  and x2( )◊  coincide on [ ]0,t  then 
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v t x v t x( ( )) ( ( )), ◊ = , ◊1 2 . This means that v t x( ( )), ◊  is 
measurable with respect to t

�P . (see, e.g., [21]). 
Taking into account (5.6) one can easily derive 

the inequality 

 

v t x b f x d

b f x d F x

t

t

t

t

t

( ( )) ( ( ( )))

( ( ( ))) ( (

, ◊ = , ◊ £

£ , ◊ £ ,

Ú

Ú Ú
0

0 0

t t

t t t tt t

t t

))

( ( ) ) ( ( ) )

( ( ) )

d

x d x ds

l x

t t

C

C

£

£ + £ + ◊ £

£ + ◊
Ú ÚQ Q

Q
0 0
1 1

1

0

0

where ◊
C 0  is the norm in C l n0 0([ ] ), , � . 

Introduce A t x( ( )), ◊  as A t x A t x t( ( )) ( ( )), ◊ = , . 
Notice that A t x( ( )), ◊  is measurable with respect 
to t

�P  and that from (5.6) it follows that A t x( ( )), ◊ £  
x

C
( ( ) )£ + ◊Q 1 0 . So, both v t x( ( )), ◊  and A t x( ( )), ◊  

satisfy the Itô condition in the form 

 v t x A t x x
C

( ( ) ( ( ) ( ( ) ), ◊ + , ◊ £ + ◊Q 1 0

with Q Q Q= ,max l( ) . 
Now the couple v t x( ( )), ◊  and A t x( ( )), ◊  satisfies 

all conditions of theorem III.2.4 from [21], hence, 
the stochastic differential equation 

      x t x v s x ds A s x dw s
t t

( ) ( ( )) ( ( )) ( )= + , ◊ + , ◊Ú Ú0 0 0
 (5.9)

has a weak solution on [ ]0, l . This means that there 
exist a probabilistic measure m  on ( ([ ] )C l n0 0, , ,�  
F )  and a Wiener process in �n , given on 
( ([ ] ) )C l n0 0, , , ,� F m  and adapted to Pt , such that 
the coordinate process x t( )  on ( ([ ] ) )C l n0 0, , , ,� F m  
and w t( )  satisfy (5.9). Taking into account (5.8) 
and (5.9), one can easily check that this solution 
satisfies (5.7). ■  

For investigating such a problem on manifold 
the assumptions are more restrictive than in the 
case of Euclidean space. 

Let M  be a stochastically complete Rieman-
nian manifold (see, e.g., [13, 14]), on which a 
certain vector force filed a( )t m,  independent of 
velocities, is given. Thus the Newton’s law of the 
mechanical system takes the form 

 
D
dt

m t t m t� ( ) ( ( ))= , .a

We suppose that the random perturbation of velo-
city takes the form A m w t( ) ( )�  where A m k( ) : Æ�  

T MmÆ  is a smooth field of linear operators 
sending a certain Euclidean space �k  to the 
tangent spaces to M . We suppose in addition that 
A m A m I( ) ( )* =  where I  is the unit operator in 
T Mm . This assumption can be interpreted as the 

fact that the Riemannian metric on M  is deter-
mined by diffusion coefficient generated by A m( ) . 
In particular it means that we can apply the 
machinery of equations with unit diffusion 
coefficient on manifolds from [13, 14]. 

The equation of motion for the system with 
random perturbation of velocities is given here 
in terms of covariant mean derivative D  on 
manifold introduced in the same manner as in 
formula (3.4) but with the use of parallel 
translation along stochastic processes (see,e.g., 
[13, 14]). We keep the notation Gt s,  for operator 
of such stochastic parallel translation and so 
(3.4) can be considered as definition of D . As 
well as above we denote G0,s  by G . Taking into 
account this modification of mean derivatives we 
introduce the equation of motion for the above 
system in the form 

 

D t v t t
D t I

v t t t t

x x
x

x a x

( ) ( ( ))
( )
( ( )) ( ( ))

= ,
=

, = , .

Ï
Ì
Ô

ÓÔ
2

D
 (5.10)

Theorem 5.4. Let the force field a( )t m,  be 
jointly continuous in t m,  and uniformly bounded, 
i.e., a( )t m K, <  for all m MŒ  and t lŒ , Ã[ ]0 �  
and some K > 0 . Then for every couple m M0 Œ , 
v T Mm0 0

Œ  there exists a solution of (5.10) with 
initial conditions x( )0 0= m , v v( )0 0=  that is well 
defined on the entire interval t lŒ ,[ ]0 . 

Proof. The idea of proof is analogous to that 
for Langevin equations. We reduce (5.10) to 
equation of velocity hodograph type in a single 
linear space. Then we show that the latter has a 
weak solution and that its Itô development (see 
[13, 14]) satisfies (5.10). The difference is that 
here we use the velocity hodograph equation in 
terms of stochastic parallel translation (unlike the 
case of Langevin equation where the ordinary 
parallel translation was applied). 

Consider the space �W = , ,C l T Mm
0 0

0
([ ] )  with 

the s -algebra �F  generated by cylinder sets and 
Wiener measure n  on it. On the probability space 
( )� �W, ,F n  the coordinate process �w t x x t( ( )) ( ), ◊ =  is 
a Wiener process adapted to the family of s -
subalgebras Pt  that for each specified t  is 
generated by cylinder sets with bases on [ ]0,t  and 
completed by all sets with n -measure zero. 

Since M  is stochastically complete, the Itô 
development R w tI �( ) , i.e., the Wiener process on 
M , is well defined on the entire [ ]0, l  for n -a.s. all 
curves in �W  and the parallel translation along  
n -almost all sample paths of R w tI �( )  is also well-

Mechanical systems with random perturbations on non-linear configuration spaces



220 ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, 2008, № 1

posed (see [13, 14]). Thus we can apply the 
operator G  of parallel translation along R wI �( )◊  
from R w tI �( )  to R w mI �( )0 0= . 

I n t r o d u c e  t h e  p r o c e s s  b( ( ))t x, ◊ =  

a( ( ))s R x s ds
t

I= ,Ú0
G  in T Mm0

. From the properties 

of parallel translation and of RI  it follows that 
b( )t  is uniformly bounded by the constant lK  and 
that it is non-anticipative with respect to Pt . In 
addition the density 

r

b b

( ( ))

exp ( ( )) ( ) ( ( ))

x

t x dw t t x dt
l l

◊ =

= , ◊ , - , ◊Ê
ËÁ

ˆ
¯̃

.Ú Ú0 0

21
2

� (5.11)

satisfies the equality 

 
�WÚ = ,r nd 1  (5.12)

and so the measure m  on ( )� �W, F , introduced by 
the relation dm rn=  is a probability measure. 

Then the coordinate process v t( )  on the 
probability space ( )� �W, ,F m  satisfies the equation 

 v t v s v s ds w s
t

( ) ( ( )) ( )= + , +Ú0 0
b  (5.13)

where w t( )  is a Wiener process in T Mm0
, given on 

( )� �W, ,F m  that is non-anticipative with respect to 
Pt . The Itô development x( ) ( )t R v tI=  has the 
same sample paths as R w tI �( )  and so it is well-
defined on the entire interval [ ]0, l . 

Introduce the vector field v t m( ),  as the 
regression v t x E t R v t xt I( ) ( ( ) ( ) ), = | =,G0 b  Where 
Gt ,0  is the operator of parallel translation along 
R vI ( )◊  from R v mI ( )0 0=  to R v tI ( ) . Taking into 
account the properties of Itô development and of 
parallel translation as well as the construction of 
covariant mean derivatives, one can easily show 
that x( )t  and v t m( ),  satisfy (5.10). ■  
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