ОБ ОЦЕНКАХ НОРМ СТЕПЕНЕЙ МАТРИЦЫ

А. А. Воробьев, М. Ю. Романова

Воронежский государственный университет

Данная статья посвящена оценкам норм степеней матрицы с известным спектром. Полученные результаты могут быть использованы для получения оценок решений дифференциальных уравнений, в вопросах робастности систем управления, а так же при изучении устойчивости марковских процессов. Аналогичный подход в доказательстве был использован И. М. Гельфандом, Г. Е. Шиловым, при оценке нормы матричной экспоненты.

§ 1. ОБЩИЕ ОЦЕНКИ

Пусть $\operatorname{Matr}_{\scriptscriptstyle m}(C)$ — линейное нормированное пространство квадратных матриц с комплексными коэффициентами и норма выбрана так, что выполняется неравенство: $\|AB\| \leq \|A\| \|B\|$ для всех $A,B \in \operatorname{Matr}_{\scriptscriptstyle m}(C)$. Ставится задача об оценки нормы степеней матрицы $\|A^n\|$, $n \geq 1$.

Имеет место следующее утверждение.

Теорема 1. Пусть A — произвольная матрица ℓ -го порядка с комплексными элементами и $\lambda_1, \dots, \lambda_m$ — ее собственные значения. Тогда верна следующая оценка:

$$||A^n|| \le r^n(A) p(n), n \ge 1,$$

где r(A) — спектральный радиус матрицы A,

$$p(n) = 1 + 2n ||A|| + 2^{2} n(n-1) ||A||^{2} + \dots + 2^{m-1} n(n-1) \dots (n-m+2) ||A||^{m-1}$$

— многочлен, зависящий от $n \in N$.

Следует отметить, что для любого ограниченного оператора $A:X\to X$, действующего в банаховом пространстве X, для любого $\varepsilon>0$ существует такое $M\ge 1$, что имеют место оценки вида

$$||A^n|| \le M(r(A) + \varepsilon)^n, n \ge 1.$$

Данная теорема уточняет эти оценки. Для этого используется метод Гельфанда—Шилова [1, лемма 1].

Доказательство. Вначале предположим, что матрица A имеет простые собственные значения, следовательно, $\ell=m$. Рассмотрим многочлен $f(\lambda)=\lambda^n$. Тогда $f(A)=A^n$. Матрицу A^n представим в виде многочлена от матрицы R(A) степени m-1. Для этого (см [2], [3]) возьмем многочлен $R(\lambda)$, который в точках спектра $\lambda_1, \ldots, \lambda_m$ принимает значения $f_1 = f(\lambda_1), \ldots, f_m =$

 $=f(\lambda_m)$. Среди различных форм интерполяционного многочлена будет удобнее всего рассмотреть многочлен Ньютона:

$$R(\lambda) = b_1 + b_2(\lambda - \lambda_1) + b_3(\lambda - \lambda_1)(\lambda - \lambda_2) + \dots + b_m(\lambda - \lambda_1) \dots (\lambda - \lambda_{m-1}).$$

Представив нужную нам матрицу через многочлен от матрицы, мы свели нашу задачу к оценке неизвестных коэффициентов $b_1,...,b_m$. Далее последовательно полагая $\lambda = \lambda_1,...,\lambda_m$, получим систему уравнений:

$$\begin{split} f_1 &= b_1, \\ f_2 &= b_1 + b_2(\lambda_2 - \lambda_1), \\ f_3 &= b_1 + b_2(\lambda_3 - \lambda_1) + b_3(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2), \\ &\dots \\ f_m &= b_1 + b_2(\lambda_m - \lambda_1) + b_3(\lambda_m - \lambda_1)(\lambda_m - \lambda_2) + \dots + \\ &+ b_m(\lambda_m - \lambda_1) \dots (\lambda_m - \lambda_{m-1}). \end{split}$$

Введем обозначения

$$\begin{bmatrix} f_j \end{bmatrix} = f_j, \begin{bmatrix} f_{j_1 j_2} \end{bmatrix} = \frac{\begin{bmatrix} f_{j_2} \end{bmatrix} - \begin{bmatrix} f_{j_1} \end{bmatrix}}{\lambda_{j_2} - \lambda_{j_1}},$$

$$\begin{bmatrix} f_{j_1 j_2 j_3} \end{bmatrix} = \frac{\begin{bmatrix} f_{j_1 j_3} \end{bmatrix} - \begin{bmatrix} f_{j_1 j_2} \end{bmatrix}}{\lambda_{j_3} - \lambda_{j_2}},$$

$$\left[f_{j_1j_2...j_k}\right] = \frac{\left[f_{j_1...j_{k-2}j_k}\right] - \left[f_{j_1...j_{k-2}j_{k-2}}\right]}{\boldsymbol{\lambda}_{j_k} - \boldsymbol{\lambda}_{j_{k-1}}}.$$

Выразив коэффициенты b_k через известные нам величины $f_1, f_2...f_m$, придем к системе:

$$\begin{aligned} b_1 &= f_1 = [f_1], \\ b_2 &= \frac{f_2 - f_1}{\lambda_2 - \lambda_1} = [f_{12}], \\ b_3 &= \frac{f_3 - f_1 - [f_{12}](\lambda_3 - \lambda_1)}{(\lambda_2 - \lambda_2)(\lambda_2 - \lambda_2)} = \frac{[f_{13}] - [f_{12}]}{\lambda_2 - \lambda_2} = [f_{123}], \end{aligned}$$

[©] Воробьев А. А., Романова М. Ю., 2007

Коэффициенты можно оценить с помощью интегрирования в комплексной плоскости. Для этого рассмотрим интегралы вида

$$\begin{split} u_k(\lambda) &= \int\limits_0^1 \int\limits_0^{t_1} \dots \int\limits_0^{t_{k-1}} f^{(k)} [\lambda_1 + (\lambda_2 - \lambda_1) t_1 + \dots + \\ &+ (\lambda_k - \lambda_{k-1}) t_{k-1} + (\lambda - \lambda_k) t_k] dt_1 \dots dt_k. \end{split}$$

Проинтегрировав по координате t_k , получим:

$$\begin{split} u_k(\lambda) &= \frac{1}{\lambda - \lambda_k} \int\limits_0^1 \int\limits_0^{t_1} \dots \int\limits_0^{t_{k-2}} f^{(k-1)} [\lambda_1 + (\lambda_2 - \lambda_1) t_1 + \dots + \\ &+ (\lambda_k - \lambda_{k-1}) t_{k-1} + (\lambda - \lambda_k) t_k] \Big|_0^{t_{k-1}} dt_1 \dots dt_{k-1} = \\ &= \frac{1}{\lambda - \lambda_k} \Big(\int\limits_0^1 \int\limits_0^{t_1} \dots \int\limits_0^{t_{k-2}} f^{(k-1)} [\lambda_1 + (\lambda_2 - \lambda_1) t_1 + \dots + \\ &+ (\lambda - \lambda_{k-1}) t_{k-1}] dt_1 \dots dt_{k-1} - \\ &- \int\limits_0^1 \int\limits_0^1 \dots \int\limits_0^{t_{k-2}} f^{(k-1)} [\lambda_1 + (\lambda_2 - \lambda_1) t_1 + \dots + \\ &+ (\lambda_k - \lambda_{k-1})] dt_1 \dots dt_{k-1} \Big) = \frac{u_{k-1}(\lambda) - u_{k-1}(\lambda_k)}{\lambda - \lambda_k} \,. \end{split}$$

Положим далее $u_0(\lambda) = f(\lambda)$. Тогда верны следующие равенства:

$$\begin{aligned} u_0(\lambda) &= \big[f_1\big], \\ u_1(\lambda_2) &= \frac{\big[f_2\big] - \big[f_1\big]}{\lambda_2 - \lambda_1} = \big[f_{12}\big], \end{aligned}$$

 $u_{m-1}(\boldsymbol{\lambda}_m) = \frac{\left[f_{12\dots m-2,m}\right] - \left[f_{12\dots m-2,m-1}\right]}{\boldsymbol{\lambda}_m - \boldsymbol{\lambda}_m} = \left[f_{12\dots m}\right].$

Таким образом, число $u_{k-1}(\lambda_k)$ (k=1,2,...,m) совпадает с коэффициентом b_{ι} искомого интерполяционного многочлена $R(\lambda)$:

$$egin{align} b_k &= \int\limits_0^1 \int\limits_0^{t_1} ... \int\limits_0^{t_{k-2}} f^{(k-1)} [\pmb{\lambda}_1 + (\pmb{\lambda}_2 - \pmb{\lambda}_1) t_1 + ... + \\ &+ (\pmb{\lambda}_k - \pmb{\lambda}_{k-1}) t_{k-1}] dt_1 ... dt_{k-1}. \end{split}$$

Покажем, что при всех значениях $t_1, t_2, ..., t_{k-1}$, удовлетворяющих неравенствам $0 \le t_{k-1} \le$ $\leq t_{k-2} \leq ... \leq t_1 \leq 1$, аргумент функции $f^{(k-1)}$ находится в пределах наименьшего выпуклого многоугольника В, содержащего точки $\lambda_1, \lambda_2, ..., \lambda_k$. Поскольку

$$\begin{split} & \lambda_1 + (\lambda_2 - \lambda_1)t_1 + \ldots + (\lambda_k - \lambda_{k-1})t_{k-1} = \\ & = \lambda_1(1 - t_1) + \lambda_2(t_1 - t_2) + \ldots + \lambda_k t_{k-1}, \end{split}$$

а коэффициенты при $\lambda_1, \lambda_2, ..., \lambda_k$ неотрицательны и в сумме дают единицу

$$1 - t_1 + t_1 - t_2 + \dots + t_{k-2} - t_{k-1} + t_{k-1} = 1$$

то аргумент функции $f^{(k-1)}$ совпадает с центром тяжести масс $1-t_1,t_1-t_2,...,t_{k-1}$, расположенных в точках $\lambda_1, \lambda_2, ..., \lambda_k$ и, следовательно, лежит в пределах рассмотренного многоугольника В.

Пусть $M_k = \max_{\lambda \in R} \left| f^{(k)}(\lambda) \right|$. Тогда приходим к оценке $|b_k| \le M_{k-1}$.

В частности, для функции $f(\lambda) = \lambda^n$ имеем:

$$\begin{split} M_k &= \max_{\lambda \in B} \left| (\lambda^n)^{(k)} \right| = \\ &= n(n-1)...(n-k+1) \max_{\lambda \in B} \left| \lambda^{n-k} \right|. \end{split}$$

Подводя итог нашим рассуждениям, приходим к окончательной оценке:

$$\begin{split} \left\|A^{n}\right\| &= \left\|R(A)\right\| = \left\|b_{1} + b_{2}(A - \lambda_{1}E) + \right. \\ &+ b_{3}(A - \lambda_{1}E)(A - \lambda_{2}E) + \ldots + \\ &+ b_{m}(A - \lambda_{1}E)...(A - \lambda_{m-1}E)\right\| \leq \\ &\leq \left|b_{1}\right| + \left|b_{2}\right| \left\|A - \lambda_{1}E\right\| + \left|b_{3}\right| \left\|A - \lambda_{1}E\right\| \left\|A - \lambda_{2}E\right\| + \ldots + \\ &+ \left|b_{m}\right| \left\|A - \lambda_{1}E\right\| \left\|A - \lambda_{2}E\right\| \ldots \left\|A - \lambda_{m}E\right\| \leq \\ &\leq \left(M_{0} + M_{1} \left\|A - \lambda_{1}E\right\| + M_{2} \left\|A - \lambda_{1}E\right\| \left\|A - \lambda_{2}E\right\| + \ldots + \\ &+ M_{m-1} \left\|A - \lambda_{1}E\right\| \left\|A - \lambda_{2}E\right\| \ldots \left\|A - \lambda_{m-1}E\right\| \right) \leq \\ &\leq \max_{\lambda \in B} \left|\lambda^{n}\right| + n \max_{\lambda \in B} \left|\lambda^{n-1}\right| \left(\left\|A\right\| + \left|\lambda_{1}\right|\right) + \ldots + \\ &+ n(n-1)...(n-m+2) \max_{\lambda \in B} \left|\lambda^{n}\right| + 2n \max_{\lambda \in B} \left|\lambda^{n-1}\right| \left\|A\right\| + \\ &+ 2^{2} n(n-1) \max_{\lambda \in B} \left|\lambda^{n-2}\right| \left\|A\right\|^{2} + \ldots + \\ &+ n(n-1)...(n-m+2) \max_{\lambda \in B} \left|\lambda^{n-m+1}\right| \left|\left\|A\right\|^{m-1}, \end{split}$$

где E — единичная матрица.

Рассмотрим два случая:

1)
$$r^{n}(A) \geq 1$$
.

Тогда $\max_{\lambda} \left\| \lambda^{n-k} \right\| \leq r^n(A)$. В результате при-

ходим к следующей оценке:

$$\begin{split} \left\|A^{n}\right\| &\leq r^{n}(A) + 2nr^{n-1}(A)\left\|A\right\| + \\ &+ 2^{2} n(n-1)r^{n-2}(A)\left\|A^{2}\right\| + \ldots + \\ &+ n(n-1)\ldots(n-m+2)r^{m-1} \times \\ &\times (A)(\left\|A\right\| + \left|\lambda_{1}\right|)\ldots(\left\|A\right\| + \left|\lambda_{m-1}\right|) \leq \\ &r^{n}(A) \cdot (1 + 2n\left\|A\right\| + 2^{2} n(n-1)\left\|A\right\|^{2} + \ldots + \\ &+ n(n-1)\ldots(n-m+2)\left\|A\right\|^{m-1}) = r^{n}(A) \cdot p(n), \end{split}$$
 где $p(n)$ многочлен степени $m-1$.

Тогда представим матрицу A в следующем виде:

$$A = r(A)\frac{A}{r(A)} = r(A) \cdot B,$$

где
$$B = \frac{A}{r(A)}$$
.

Спектральный радиус матрицы B равен единице. Оценим норму n-ой степени исходной матрицы: $\|A^n\| = \|r(A) \cdot B\|^n = r^n(A) \cdot \|B^n\|$.

Так как r(B) = 1, то $||B^n||$ оценивается как в первом случае:

$$||B^n|| \le r^n(B) \cdot p(n) = 1 \cdot p(n) = p(n).$$

Таким образом, $||A^n|| = r^n(A) ||B^n|| \le r^n(A)p(n)$.

Эта оценка получена в предположении, что собственные значения матрица различны. Рассмотрим случай, когда среди собственных значений есть повторяющиеся. По теореме Шура об унитарной триангуляции матриц [2], [3], существует унитарная матрица U такая, что $\ddot{A} = U\,B\,U^{-1}$, где $B = (b_{ij})$ — верхнетреугольная матрица с диагональными элементами $b_{ii} = \lambda_i$, i = 1, ..., m. Далее рассмотрим произвольную последовательность $\{\xi_n\}, n=1,...,m$, сколь угодно малых чисел, такую, что $\lambda_i + \xi_i, \ i = 1,...,m$ — различны. Обозначим $B_{\xi} = (b_{ij}^{\xi}), \ \text{где} \ b_{ij}^{\xi} = b_{ij},$ для всех $i,j=1,...,m, i \neq j$ и $b_{ii}^{\xi} = b_{ii} + \xi_i, \ i = 1,...,m,$ Таким образом, мы получили матрицу $A_{\xi} = U B_{\xi} U^{-1}$, собственные значения $\lambda_i + \xi_i$, i=1,..,m которой различны. Для данной матрицы мы можем применить доказанную теорему. Тогда $\left\|A_{\xi}^{n}\right\| \leq r_{\xi}^{n}(A)p_{\xi}(n)$. Переходя к пределу по $\xi_k \to 0$ мы получим оценку: $\|A^n\| \le r^n(A)p(n)$, где А – произвольная матрица. Теорема доказана.

§ 2. ОЦЕНКИ ДЛЯ МАТРИЦЫ ПРОСТОЙ СТРУКТУРЫ

Имеет место

Теорема 2. Пусть A — матрица простой структуры m-го порядка с комплексными элементами и $\lambda_1, \dots, \lambda_m$ — собственные значения матрицы A. Тогда верна следующая оценка:

$$||A^n|| \le r^n(A) \cdot m \cdot 2^{m-1} \frac{||A||^{m-1}}{\delta^{m-1}},$$

где $\delta = \min_{\lambda_i, \lambda_j \in \sigma(A), \lambda_i \neq \lambda_j} \left| \lambda_i - \lambda_j \right|, \ \sigma(A)$ — спектр матрицы A.

Доказательство. Так как A — матрица простой структуры, то для нее верно следующее

представление $\mathbf{A}^k = \sum_{i=1}^m \pmb{\lambda}_i^{\ k} \cdot P_i$, где P_i — проек-

тор Рисса на собственное подпространство, отвечающее i-му собственному значению. Используя интерполяционную формулу Сильвестра, получим

$$\begin{split} P_j &= \frac{1}{\displaystyle\prod_{k=1,k\neq j}^m (\lambda_j - \lambda_k)} (A - \lambda_1 E)...(A - \lambda_{j-1} E) \times \\ &\times (A - \lambda_{j+1})...(A - \lambda_m E) = \\ &= \frac{(A - \lambda_1 E)...(A - \lambda_{j-1} E)(A - \lambda_{j+1} E)...(A - \lambda_m E)}{(\lambda_j - \lambda_1)...(\lambda_j - \lambda_{j-1})(\lambda_j - \lambda_{j+1})...(\lambda_j - \lambda_m)}, \end{split}$$

Поскольку $\|A - \lambda_i E\| \le \|A\| + |\lambda_i| \|E\| \le 2 \|A\|$, то приходим к оценкам

$$||P_j|| \le \frac{2^{m-1} ||A||^{m-1}}{\delta^{m-1}},$$

где
$$\delta = \min_{\lambda_i, \lambda_j \in \sigma(A), \lambda_i
eq \lambda_j} \left| \lambda_i - \lambda_j \right|.$$

Подводя итог рассуждениям, приходим к окончательной оценке:

$$\begin{split} \left\|\mathbf{A}^n\right\| &= \left\|\sum_{i=1}^m \lambda_i^{\ n} \cdot P_i\right\| \leq \sum_{i=1}^m \left|\lambda_i^{\ n}\right| \cdot \left\|P_i\right\| \leq \\ &\leq \sum_{i=1}^m r^n(A) \cdot \frac{2^{m-1} \left\|A\right\|^{m-1}}{\delta^{m-1}} \leq r^n(A) \cdot m \cdot 2^{m-1} \, \frac{\left\|A\right\|^{m-1}}{\delta^{m-1}} \,, \end{split}$$
 где $\delta = \min_{\lambda_i, \lambda_i \in \sigma(A), \lambda_i \neq \lambda_i} \left|\lambda_i - \lambda_j\right|.$

Теорема доказана.

В заключение отметим, что оценки норм степей матриц различных классов были получены в монографиях [4], [5].

СПИСОК ЛИТЕРАТУРЫ

- 1. Γ ельфанд И.М., Шилов Γ .Е. Некоторые вопросы теории дифференциальных уравнений. М: Наука, 1958. 356 с.
- $2.\, \mathit{Баскаков}\, A. \varGamma.$ Лекции по алгебре. Воронеж: Воронежский государственный университет, 2004. $306~\mathrm{c}$.
- 3. Гантмахер Φ .Р. Теория матриц. М.: Гос. изд-во техн.-теорет. лит., 1954. 491 с.
- 4. Γ иль M.И. Метод операторных функций в теории дифференциальных уравнений. М.: Наука, $1990.-154~\mathrm{c}$.
- 5. Годунов С.К. Современные аспекты линейной алгебры. Новосибирск: Науч. кн., 1997. 388с.

Поступила в редакцию 17.10.2007