УДК 517.9

О ПРЕОБРАЗОВАНИЯХ ПОДОБИЯ ЛИНЕЙНЫХ ОПЕРАТОРОВ*

Т. В. Азарнова, Н. Б. Ускова

Воронежский государственный университет Воронежский государственный технический университет

Описаны один способ преобразования подобия возмущенных линейных операторов и его применение к исследованию спектральных дифференциальных операторов, определяемых квазипериодическими краевыми условиями.

§ 1. ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Пусть \mathcal{X} — комплексное банахово пространство, $\operatorname{End} \mathcal{X}$ — банахова алгебра линейных ограниченных операторов, действующих в \mathcal{X} Всюду через A обозначается замкнутый линейный оператор, действующий в \mathcal{X} с областью определения D(A). Он в дальнейшем играет роль невозмущенного оператора и обычно хорошо изучен. Символом $\mathcal{L}_A(\mathcal{X})$ обозначим банахово пространство операторов, действующих в \mathcal{X} и подчиненных оператору A. Это означает, что если $B \in \mathcal{L}_A(\mathcal{X})$, то $D(B) \supset D(A)$ и полагается

$$\left\|B\right\|_A=\inf\{C>0:\left\|Bx\right\|\leq C(\left\|x\right\|+\left\|Ax\right\|)\;\forall\;x\in D(A)\}$$

Основные результаты статьи связаны с преобразованиями подобия возмущенного оператора A-B, где $B \in \mathcal{L}_A(\mathcal{X})$, в оператор $A-B_0$, где оператор B_0 имеет более простую структуру по отношению к A. В основе проводимых исследований лежит метод подобных операторов, основные положения которого изложены в работах [1]—[3]. При этом используется

Определение 1. Два линейных оператора $A_i: D(A_i) \subset \mathcal{X} \to \mathcal{X}, \ i=1,2,$ называются подобными, если существует непрерывно обратимый оператор $U \in \operatorname{End} \mathcal{X}$ такой, что $UD(A_2) = D(A_1)$ и

$$A_1Ux = UA_2x, \quad x \in D(A_2).$$

Оператор U называется **оператором преобразования** оператора A_1 в A_2 .

Основной составляющей метода подобных операторов является понятие допустимой тройки, которая должна для применимости метода удовлетворять ряду условий.

Определение 2. Пусть \mathfrak{A} — линейное подпространство операторов из $\mathcal{L}_{A}(\mathcal{X})$ и $J:\mathfrak{A}\to\mathfrak{A},$

 $\Gamma: \mathfrak{A} \to \operatorname{End} \mathcal{X}$ — трансформаторы (т. е. линейные операторы в пространствах операторов). Тройку $(\mathfrak{A}, J, \Gamma)$ назовем допустимой тройкой для оператора A, а \mathfrak{A} — допустимым пространством возмущений, если выполнены следующие условия:

- 1) \mathfrak{A} банахово пространство (со своей нормой), непрерывно вложенное в $\mathcal{L}_A(\mathcal{X})$ (т. е. существует постоянная C>0 такая, что $\|X\|_A \leq C \|X\| \ \forall X \in L_A(X)$);
 2) Ј и Γ непрерывные трансформато-
- 2) J и Г непрерывные трансформаторы;
- 3) $(\Gamma X)D(A) \subset D(A)$ и $A\Gamma X (\Gamma X)A = X JX$ $\forall X \in \mathfrak{A}$, причем $\Gamma X \in \operatorname{End} \mathcal{X}$ единственное решение уравнения AY YA = X JX, удовлетворяющее условию JY = 0;
- 4) $X\Gamma Y,\ (\Gamma X)Y\in \mathfrak{A},\ \forall X,Y\in \mathfrak{A}$ и существует такая постоянная $\gamma>0,$ что

$$\max\{\|X\Gamma Y\|, \|(\Gamma X)Y\| \le \gamma \|X\| \|Y\|\}, X, Y \in \mathfrak{A}$$

5) для любых $X \in \mathfrak{A}, \ \varepsilon > 0$, можно указать число $\lambda_{\varepsilon} \in \rho(A)$, такое, что $\|X(A - \lambda_{\varepsilon}I)^{-1}\| < \varepsilon$.

Пусть $(\mathfrak{A}, J, \Gamma)$ — допустимая для оператора $A: D(A) \subset \mathcal{X} \to \mathcal{X}$ тройка и B — некоторый оператор из пространства допустимых возмущений \mathfrak{A} . Тогда для любого оператора $X \in \mathfrak{A}$ равенство

$$(A-B)(I+\Gamma X)=(I+\Gamma X)(A-JX),$$
 (1) означающее подобие оператора $A-B$ оператору $A-JX$, можно переписать в виде нелинейного уравнения

$$X = B\Gamma X - (\Gamma X)(JX) + B. \tag{2}$$

Теорема 1. Оператор A - B подобен оператору $A - JX_0$, если выполнено неравенство

$$||J|| ||B|| ||\Gamma|| < \frac{1}{6}.$$

Оператор $X_0 \in \mathfrak{A}$ является решением нелинейного уравнения (2) и его можно найти методом простых итераций.

[©] Азарнова Т. В., Ускова Н. Б., 2007

^{*} Работа выполнена при финансовой поддержке РФФИ, проект 07—01—00131

Построение допустимой тройки (\mathfrak{A},J,Γ) для невозмущенного оператора $A:D(A)\subset\mathcal{X}\to\mathcal{X}$ обычно осуществляется таким образом, что пространство \mathfrak{A} содержало возмущение B. Однако, часто такое построение трудно осуществимо. Здесь мы изложим способ построения преобразования подобия оператора A-B в более простой оператор, когда допустимая тройка возникает после предварительного преобразования возмущенного оператора и только затем появляется допустимая тройка, а также применяется теорема 1.

Во-первых, возмущение B должно быть подчинено оператору A и, более того, быть выполнено условие 5) из определения 2. Трансформатор J вначале определим на всем банаховом пространстве $\mathcal{L}_A(\mathcal{X})$ таким образом, чтобы он являлся проектором и операторы вида $A-JX,\ X\in\mathcal{L}_A(\mathcal{X})$, имели несложную структуру. Например, это может означать, что оператор A-JX имеет легко вычислимый спектр или легко вычислимые спектральные компоненты. Далее, рассмотрим линейное уравнение

$$AY - YA = B - JB \tag{3}$$

в банаховом пространстве $\mathcal{L}_{\!\scriptscriptstyle A}(\mathcal{X})$ и допустим, что оно имеет решение $Y_0 \in \operatorname{End} \mathcal{X}$, которое обладает свойствами: $Y_0D(A) \subset D(A)$, существует допустимая для A тройка $(\mathfrak{A}_0, \mathsf{J}_0, \mathsf{\Gamma}_0)$ такая, что выполнены свойства

- $1)\ Y_{\scriptscriptstyle 0},\ BY_{\scriptscriptstyle 0},\ Y_{\scriptscriptstyle 0}\mathrm{J}B\in\mathfrak{A}_{\scriptscriptstyle 0};$
- 2) $\mathfrak{A}_{_0}$ инвариантно относительно Ј и $J_{_0}$ совпадает с Ј на $\mathfrak{A}_{_0}.$

В дальнейшем оператор Y_0 будет обозначаться через ΓB . При сделанных предположениях относительно возмущения B имеет место

Теорема 2. Оператор A-B подобен оператору $A-B_0$, где $B_0=\mathrm{J}B-(I+\Gamma B)^{-1}(B\Gamma B-(\Gamma B)\mathrm{J}B),$ причем имеет место равенство

$$(A-B)(I+\Gamma B) = (I+\Gamma B)(A-B_0). \tag{4}$$

Доказательство теоремы основано на простой проверке равенства (4) с использованием отмеченных ранее свойств оператора $Y_0 = \Gamma B$.

Теорема 2 позволяет свести изучение оператора A-B к изучению подобного ему оператора $A-B_0$. Поскольку оператор A-JB имеет более простую структуру по сравнению с A-B и поскольку оператор $(I+\Gamma B)^{-1}(B\Gamma B-(\Gamma B)JB)$ принадлежит допустимому пространству \mathfrak{A}_0 , то дальнейшее изучение оператора $A-B_0$ может осуществляться, например, заменой невозмущенного оператора A оператором $A_1=A-JB$,

для которого \mathfrak{A}_0 может остаться также допустимым пространством возмущений с тем же выбором оператора J_0 . Далее следует применять теорему 1. Важно отметить, что в данном случае мы не строим допустимое пространство возмущений, которое содержит оператор B.

§ 2. ПРЕОБРАЗОВАНИЯ ПОДОБИЯ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ

Пусть $\mathcal{L}_{\alpha}:W_2^2([0,1],\mathbb{C}^m)=W_2^2\subset L_2([0,1],\mathbb{C}^m)=W_2^2\subset L_2([0,1],\mathbb{C}^m)=L_2\to L_2$ — дифференциальный оператор, порожденный в гильбертовом пространстве L_2 векторных функций (W_2^2 — пространство Соболева) дифференциальным выражением

$$l(y) = -y''(t) + Q(t)y(t)$$

и квазипериодическими краевыми условиями

$$y(1) = e^{i\alpha}y(0), \quad y'(1) = e^{i\alpha}y'(0),$$

где $\alpha \in [0,2\pi)$. Здесь $Q \in L_2([0,1], \operatorname{End} \mathbb{C}^m)$ — операторнозначная функция.

Такие краевые условия играют фундаментальную роль в спектральной теории дифференциального оператора $L:D(L) \subset L_2(\mathbb{R},\mathbb{C}^m) \to L_2(\mathbb{R},\mathbb{C}^m)$, порожденного дифференциальным выражением l(y) с периодическим потенциалом $Q:\mathbb{R} \to \operatorname{End} \mathbb{C}^m$. Это объясняется тем, что спектр оператора \mathcal{L} является объединением спектров операторов $\mathcal{L}_i,\ t\in[0,2\pi)$ (см. [4]). Из классических результатов [5] нетрудно получить, что собственные значения оператора \mathcal{L}_i состоят из m последовательностей

 $\{\lambda_{k1}, k \in \mathbb{Z}\}, \quad \{\lambda_{k2}, k \in \mathbb{Z}\}, \dots, \{\lambda_{k,m}, k \in \mathbb{Z}\},$ которые лежат внутри окружностей радиусов $O(|k|^{1-m})$, центры которых совпадают с собственными значениями $(2k\pi + \alpha)^2, \ k \in \mathbb{Z},$ оператора Ay = -y'', который далее считается невозмущенным оператором. Оператор By = Qy считается возмущением и тогда $\mathcal{L}_{\alpha} = A - B$. При этом отметим, что если $Q \in L_2 \setminus L_{\infty}$, то B — неограниченный оператор в L_2 .

Нетрудно показать, что оператор B удовлетворяет условию 5) из определения 2. Отметим, что оператор A является самосопряженным с компактной резольвентой и собственные функции вида

 $\varphi_{n,k} = e_k \exp i(2\pi n + \alpha)t, \quad n \in \mathbb{Z}, \quad 1 \le k \le m,$ где e_1, \dots, e_m — стандартный ортонормированный базис в \mathbb{C}^m , образуют ортонормированный базис в L_2 , причем $A\varphi_{n,k} = (2\pi n + \alpha)^2 \varphi_{n,k}, \ n \in \mathbb{Z}$,

 $1 \leq k \leq m$. Пусть P_n , $n \in \mathbb{Z}$, — проектор Рисса, отвечающий собственному значению $\lambda_n = (2\pi n + \alpha)^2$. Поскольку они являются ортопроекторами, то (см. [1]) корректно определен оператор $J: \mathcal{L}_A(\mathcal{L}_2) \to \mathcal{L}_A(\mathcal{L}_2)$ с помощью формулы

$$JX = \sum_{n=-\infty}^{\infty} P_n X (A - \lambda_0 I)^{-1} P_n (A - \lambda_0 I),$$
$$X \in \mathcal{L}_4(\mathcal{L}_2),$$

где λ_0 — некоторая точка из резольвентного множества $\rho(A)$ оператора A. Из вида оператора B следует, что оператор $B_0=JB$ при условии, что $\alpha\neq 0,\ \alpha\neq\pi$, допускает представление

$$(B_0 y)(t) = Q_0 y(t), \qquad y \in L_2.$$

где оператор $Q_0 \in \operatorname{End} \mathbb{C}^m$ определяется равенством

$$Q_0 = \int_0^1 Q(t)dt.$$

Далее, следуя схеме построений из § 1, рассмотрим уравнение вида (3) для рассматриваемых операторов A и B. Его решением будет интегральный оператор $Y_0 = \Gamma B$, который имеет ядро $G: [0,1] \times [0,1] \to \operatorname{End} \mathbb{C}^m$ вида

$$G(t,s) = \begin{cases} -Q_1\left(\frac{t+s}{2}\right) + 2(t-s)Q_2\left(\frac{t+s}{2}\right), & s \leq t, \\ Q_1\left(\frac{t+s}{2}\right) + 2(t-s)Q_2\left(\frac{t+s}{2}\right), & t < s, \end{cases}$$

где Q_1 — периодическая функция, являющаяся интегралом от функции $Q-Q_0$ и функция Q_2 имеет вид $Q_2(t)=\sum_{n\neq 0}(4\pi n)^{-1}Q_{2m}\exp{i2\pi mt},$ если

Q имеет ряд Фурье вида $Q(t) \sim \sum_{n=-\infty}^{\infty} Q_n \exp i2\pi nt.$

Такие формулы для J и G были получены в диссертации [6] для периодических краевых условий и они остаются верными и при $\lambda \neq 0$.

Далее, в качестве пространства допустимых возмущений \mathfrak{A}_0 рассмотрим двусторонний идеал операторов Гильберта—Шмидта с тем же выбором Ј. Ясно, что этому идеалу принадлежит оператор Y_0 , а также операторы BY_0 , BJB. Следовательно, в силу теоремы 2 оператор

 $\mathcal{L}_{\alpha}=A-B$ подобен оператору вида $A-\mathrm{J}B-B_1$, где B_1 — оператор Гильберта—Шмидта. Пусть $\lambda_k^0,\ 1\leq k\leq m,$ — собственные значения оператора $Q_0\in\mathrm{End}\,\mathbb{C}^m.$ Тогда спектр дифференциального оператора $A-\mathrm{J}B=-\frac{d^2}{dt^2}-Q_0$ состоит из собственных значений вида

$$(2\pi n + \alpha)^2 + \lambda_k^0, \quad 1 \le k \le m, \quad n \in \mathbb{Z}.$$

Считая оператор $A-\mathrm{J}B$ невозмущенным и применяя теорему 1, получаем, что он подобен оператору $A-\mathrm{J}B-\mathrm{J}X_0$, где X_0 — оператор Гильберта—Шмидта. При этом в качестве пространства допустимых возмущений выступает пространство операторов Гильберта—Шмидта (более подробно см. [1] и [3]). Итак, из полученных результатов следует

Теорема 3. Пусть оператор $Q_0 \in \operatorname{End} \mathbb{C}^m$ имеет простые собственные значения $\lambda_1^0, \ldots, \lambda_m^0$ и $\alpha \neq 0, \pi$. Тогда спектр $\sigma(\mathcal{L}_{\alpha}) = \{\lambda_{n,k}, n \in \mathbb{Z}, 1 \leq k \leq m\}$ оператора \mathcal{L}_{α} допускает представление вида

 $\lambda_{n,k} = (2\pi n + \alpha)^2 + \lambda_k^0 + \mu_{nk}, \, n \geq N, \, 1 \leq k \leq m$ для некоторого $N \in \mathbb{N}$, где последовательности $(\mu_{n,k}), \, 1 \leq k \leq m, \,$ обладают свойством

$$\sum_{|n| \ge N} \left| \mu_{n,k} \right|^2 < \infty, \quad 1 \le k \le m.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. *Баскаков А.Г.* Гармонический анализ линейных операторов. Воронеж: Изд-во Воронеж. университета, 1987. 164 с.
- $2.\ Bаскаков\ A.\Gamma$. Теорема о расщеплении оператора и некоторые смежные вопросы аналитической теории возмущений. Изв. Акад. Наук, Сер. матем., 1994. Т $3.\ C.\ 435-457$.
- $3.\ Баскаков\ A.\Gamma.$ Спектральный анализ возмущенных квазианалитических и спектральных операторов. Изв. Акад. Наук. Сер. матем., 1994. Т. 58, С. 3-32.
- $4.\ Haймapк\ M.A.\ Линейные дифференциальные операторы.\ M.\ Hayкa.\ 1969.$
- $5.\ Carlson\ R.$ Large eigenvalues and trace formulas for matrix Sturm—Liouville problems. SIAM J. Math. Anal. 1999. V. 30, N. 5. P. 949—962.
- 6. Баскаков A.Г. Гармонический анализ линейных операторов: дисс... докт. физ.-мат. наук. Киев, 1987.