УДК 539.164.3

ЭНЕРГИИ СВЯЗИ И ВРЕМЕНА ЖИЗНИ СВЕРХТЯЖЕЛЫХ ЯДЕР*

О. П. Бадаев¹, С. Д. Кургалин², Ю. М. Чувильский^{3,4}, В. Шайд⁴

¹Физический факультет Московского государственного университета им. М. В. Ломоносова ²Воронежский государственный университет ³Научно-исследовательский институт ядерной физики Московского государственного университета им. М. В. Ломоносова ⁴Университет г. Гиссен, Германия

На основе математической модели поверхности энергий связи ядер и полуэмпирического метода вычисления их времен жизни по отношению к испусканию α -частиц проведен анализ современных данных об энергиях и вероятностях α -распадов сверхтяжелых ядер. Результаты теоретического анализа хорошо и подтверждают, что все имеющиеся экспериментальные данные хорошо согласованы. Представлены многочисленные предсказания обсуждаемых величин.

введение

Получение и экспериментальное изучение сверхтяжелых элементов, анализ их распадных и химических свойств — популярное и быстро развивающееся направление исследований в ядерной физике. Уже синтезировано значительное число изотопов сверхтяжелых элементов с Z = 112 - 118 и относительно большим числом нейтронов [1-8]. При этом существенно улучшена статистика данных у сверхтяжелых ядер, полученных до 2000 года, что позволило повысить уровень их теоретической интерпретации и уточнить количественные характеристики распада: энергии и времена жизни. Результаты работ [6-8] демонстрируют, что в данной области исследований накоплен достаточно большой объем экспериментальных данных, требующий детального теоретического анализа.

В экспериментах изучается от одного до примерно двадцати событий распада конкретного сверхтяжелого изотопа. Регистрация остаточного ядра производится, главным образом, ядерно-спектроскопическими методами, причем ведущее место среди них занимает α -спектроскопия. Цепочки α -распадов таких изотопов не приводят к известным ядрам, что вызывает необходимость использования теоретических методов их идентификации на основе анализа характеристик α -распада элементов в цепочках и конкурирующих с ним процессов.

Типичные задачи такого анализа можно разделить на три группы: 1) расчет или феноменологическая оценка энергий α -распада в изучаемых и близких к ним цепочках распадов сверхтяжелых ядер; 2) исследование соотношения энергия — период полураспада для экспериментально зарегистрированных α -распадов; 3) предсказание периодов полураспада по отношению к α -распаду других ядер-кандидатов на роль регистрируемой цепочки распада сверхтяжелых ядер.

Для решения задач первой группы авторами экспериментов привлекались результаты расчетов масс ядер в рамках макро-микроскопического подхода [9], метода Хартри-Фока-Боголюбова [10] и релятивистской модели среднего поля [11]. Вторая группа задач сводилась к расчетам на основе формулы Вайолы-Сиборга [12]. Вопрос о возможной имитации цепочки α -распадов изотопа, поиски которого ведутся, похожей цепочкой распадов какого-то другого ядра не обсуждался. Это связано с тем, что параметры реакции, в которой синтезируется нужный изотоп, подбираются так, чтобы сечение его выхода было максимальным и, таким образом, выход данного изотопа существенно превосходил выход других нуклидов.

В наших работах [13—17] был предложен ряд иных подходов к решению вышеуказанных задач, возникающих при идентификации сверхтяжелых элементов. Исходными предпосылка-

[©] Бадаев О. П., Кургалин С. Д., Чувильский Ю. М., Шайд В., 2007

^{*} Работа поддержана РФФИ, гранты № 04-02-17409 и № 07-02-00759.

ми для разработки этих подходов явились следующие.

Метод, используемый для решения задач первой группы, должен давать необходимую точность, быть простым и легко модифицируемым и позволять без труда объяснять и устранять противоречия в экспериментальных данных, которые могут обнаруживаться при анализе рассчитанных ширин α -распадов. В то же время, среднеквадратичное отклонение результатов расчетов масс ядер, полученных указанными выше методами, оказывается лишь ненамного меньшим 1 МэВ. Появление новых данных о массах ядер практически не влияет на исходные параметры таких расчетов. В этом смысле перечисленные выше подходы, обладающие в силу их хорошей теоретической обоснованности возможностью предсказания масс в областях, далеких от тех, где проводились измерения, оказываются не вполне точными для изотопов, находящихся в областях, где часть масс ядер известна, или в близких к ним областях. К тому же эти методы не обладают достаточной гибкостью.

Требуемыми свойствами, по нашему мнению, в наибольшей степени обладает интерполяционно-экстраполяционный метод оценки масс ядер и энергий их α-распада [18-27], получивший в процессе своего развития название «математическая модель поверхности энергий связи ядер» (ММПЭСЯ). Так в работе [27] этим методом для всех известных масс тяжелых ядер от (Z, N) = (82,126) до (104,154) получено среднеквадратичное отклонение 66 кэВ. Энергии α -переходов, будучи разностными величинами, определяются еще существенно точнее. Метод достаточно прост, он легко видоизменяется при расширении списка экспериментальных данных и/или их ревизии, его нетрудно развить и на область сверхтяжелых элементов. В первом разделе настоящей работы формализм этого метода впервые представлен в виде удобной для применения системы уравнений.

Что касается подходов на основе формулы Вайолы—Сиборга и других чисто феноменологических методов оценки вероятности α -распада, восходящих к соотношению Гейгера-Нэттола, то в них не находят непосредственного отражения характеристики потенциала взаимодействия α -частица—дочернее ядро: радиус, глубина и диффузность. Эти свойства косвенно учитываются параметрами методов, но такой опосредованный учет приводит к потере точности результатов. Современные знания об обсуждаемом потенциале [28], полученные на основе анализа процессов упругого и неупругого рассеяния α -частиц на тяжелых и средних ядрах, α -распада основных и низколежащих состояний ядер, а также нейтронных резонансов [29], позволяют проводить значительно более точные и обоснованные расчеты. Информация о взаимодействии ядра с α -частицей в полной мере используется в расчетах в рамках полуэмпирического подхода, который применялся ранее в работе [13] (его последовательное изложение можно найти в работе [30]). Во втором разделе настоящей работы будет продемонстрирована более удобная упрощенная версия этого метода.

Новые, полученные за время, прошедшее с момента опубликования работы [13], экспериментальные результаты [4—8, 31] существенно изменили информацию о свойствах сверхтяжелых ядер. Вышли в свет новые таблицы экспериментальных ядерных масс [32], что также оказало влияние на значения параметров, получаемых и используемых в расчетах неизвестных масс в ММПӘСЯ.

На основе всех этих данных в настоящей работе получены массы сверхтяжелых ядер и проведено исследование их α -распадных свойств. При этом были частично модифицированы методы работы [13] и разработаны более удобные для восприятия формы их представления, в связи с чем данная работа содержит и развернутую методическую часть.

1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭНЕРГИЙ СВЯЗИ АТОМНЫХ ЯДЕР

Области исследований, где информация о массах атомных ядер и энергиях присоединения нуклонов играет определяющую роль, весьма многочисленны. Наиболее интересными среди них являются ядерные процессы в различных областях экзотических ядер. К ним относятся: исследование r -процессов на ядрах с большим избытком нейтронов; протонного и двухпротонного распадов ядер, лежащих за границей протонной стабильности; распадов и деления сверхтяжелых ядер и некоторые другие.

В настоящей работе изучается *α*-распад сверхтяжелых ядер с целью его использования для идентификации изотопов сверхтяжелых элементов. Знание масс или энергий α -распада для достаточно большого числа ядер из этой области является необходимым условием надежного решения данной задачи.

Массы сверхтяжелых ядер и энергии присоединения нуклонов находились на основе ММПЭСЯ. Эта модель относится к классу моделей, базирующихся на разбиении плоскости $\{Z, N\}$, координатами которой являются число протонов Z и число нейтронов N, на несколько подобластей с последующей аппроксимацией энергий связи ядер $E_B(Z, N)$ в этих подобластях относительно простыми функциями [18, 33]. В ММПЭСЯ процедура аппроксимации сводится к линейной интерполяции энергий присоединения нуклонов, причем используется разбиение на значительно более узкие подобласти, чем междумагические — так называемые «субмагические подобласти» [18—24]. Оценка масс в «пустых» субмагических областях (экстраполяция) осуществляется на основе такой же формальной схемы и того же списка подгоночных параметров, что и в заполненных, однако алгоритмы присвоения параметрам модели численных значений для задачи экстраполяции принципиально другие. Их описание можно найти в работах [25-27].

Представим схему интерполяции масс ядер. Ее основой служит метод, развитый в работах [21, 22]. В этих работах зависимость энергии присоединения протонов и нейтронов от чисел Z и N , которые в данном подходе выполняют функцию дискретных координат, аппроксимируется набором линейных поверхностей на прямоугольных ром инпериал $N^{l}_{min} (N^{l}_{min}) \leq Z(N) \leq Z^{k}_{max} (N^{l}_{max})$. Граничные значения $Z^{k}_{min} = Z^{k-1}_{max}, N^{l}_{min} = N^{l-1}_{max}$, называемые субмагическими числами, не являются произвольными, а резко выделяются среди других значений появлением неустойчивости параметров результирующей поверхности, определяющей массы ядер. В список субмагических чисел входят и общепринятые магические числа, для которых указанная неустойчивость проявляется наиболее сильно. В обсуждаемой в настоящей работе области выделены следующие (суб-)магические числа: $Z^k_{min(max)}$ =100, 104, 108,112, 116; $N_{min(max)}^{l} = 140, 144, 148, 152, 156,$ 162, 168, 172, 178. В соответствии с типом присоединяемого нуклона и четностью протонной и нейтронной подсистемы ядра в каждом прямоугольном секторе задается 8 поверхностей.

Линейные поверхности p(ZN) и n(ZN) в секторе (kl) характеризуются 8 значениями энергий присоединения нуклонов к наилегчайшим для данного сектора ядрам всех типов четно-СТИ $p(Z_{min}^k, N_{min}^l), p(Z_{min}^k + 1, N_{min}^l), p(Z_{min}^k, N_{min}^l + 1),$ $p(Z_{min}^k + 1, N_{min}^l + 1), n(Z_{min}^k, N_{min}^l), n(Z_{min}^k + 1, N_{min}^l),$ $n(Z_{min}^k, N_{min}^l + 1), n(Z_{min}^k + 1, N_{min}^l + 1)$ и 8 значени ями первых разностных производных энергий присоединения нуклонов к ядру с числами нуклонов Z и N (эти параметры взаимно однозначно связаны со вторыми разностными производными поверхностей энергии связи ядер с одинаковой четностью Z и N) $\alpha_{\downarrow}(l), \alpha_{\downarrow}(l), \beta_{\downarrow}(k),$ $\beta_{-}(k), \gamma_{+}^{Z}(kl), \gamma_{-}^{Z}(kl), \gamma_{+}^{N}(kl), \gamma_{-}^{N}(kl)$, где нижние индексы обозначают четность $\pi(Z) = (-1)^Z$ (для параметров $\alpha(l)$ и $\gamma^{Z}(kl)$) и $\pi(N) = (-1)^{N}$ (для параметров $\beta(k)$ и $\gamma^{N}(kl)$):

$$p(ZN)_{\pi(\Delta Z),\pi(\Delta N)} =$$

$$= p(Z_{min}^{k}, N_{min}^{l}) + (\gamma_{+}^{Z}(kl)\Delta N - \alpha_{+}(l)\Delta Z)/2,$$

$$p(ZN)_{\pi(\Delta Z+1),\pi(\Delta N)} = p(Z_{min}^{k} + 1, N_{min}^{l}) +$$

$$+ (\gamma_{-}^{Z}(kl)\Delta N - \alpha_{-}(l)(\Delta Z - 1))/2,$$

$$p(ZN)_{\pi(\Delta Z),\pi(\Delta N+1)} = p(Z_{min}^{k}, N_{min}^{l} + 1) +$$

$$+ (\gamma_{+}^{Z}(kl)(\Delta N - 1) - \alpha_{+}(l)\Delta Z)/2,$$

$$p(ZN)_{\pi(\Delta Z+1),\pi(\Delta N+1)} = p(Z_{min}^{k} + 1, N_{min}^{l} + 1) +$$

$$+ (\gamma_{-}^{Z}(kl)(\Delta N - 1) - \alpha_{-}(l)(\Delta Z - 1))/2,$$

$$n(ZN)_{\pi(\Delta Z),\pi(\Delta N)} =$$

$$= n(Z_{min}^{k}, N_{min}^{l}) + (\gamma_{+}^{N}(kl)Z - \beta_{+}(k)\Delta N)/2,$$

$$n(ZN)_{\pi(\Delta Z),\pi(\Delta N+1)} = n(Z_{min}^{k}, N_{min}^{l} + 1) +$$

$$+ (\gamma_{-}^{N}(kl)\Delta Z - \beta_{-}(k)(\Delta N - 1))/2,$$

$$n(ZN)_{\pi(\Delta Z+1),\pi(\Delta N)} = n(Z_{min}^{k} + 1, N_{min}^{l}) +$$

$$+ (\gamma_{+}^{N}(kl)(\Delta Z - 1) - \beta_{+}(k)\Delta N)/2,$$

$$n(ZN)_{\pi(\Delta Z+1),\pi(\Delta N+1)} = n(Z_{min}^{k} + 1, N_{min}^{l} + 1) +$$

$$+ (\gamma_{-}^{N}(kl)(\Delta Z - 1) - \beta_{-}(k)(\Delta N - 1))/2,$$

где $\Delta Z = Z - Z_{min}^k$, $\Delta N = N - N_{min}^l$. З начения параметров $p(Z_{min}^k, N_{min}^l)$, $p(Z_{min}^k + 1, N_{min}^l)$, $p(Z_{min}^k, N_{min}^l + 1)$, $n(Z_{min}^k, N_{min}^l)$, $n(Z_{min}^k + 1, N_{min}^l)$, $n(Z_{min}^k, N_{min}^l + 1)$, характеризующие энергию присоединения нуклонов на нижних границах сектора, в силу требования однозначности строящихся функций должны совпадать с энергиями присоединения нуклонов в соседних секторах с меньшими значениями Z и N и, в подавляющем большинстве случаев, получаются из расчетов поверхностей в этих секторах с помощью представленных ниже соотношений (4), а величины $p(Z_{min}^k + 1, N_{min}^l + 1)$ и $n(Z_{min}^k + 1, N_{min}^l + 1)$ выражаются через значения других параметров:

$$p(Z_{min}^{k} + 1, N_{min}^{l} + 1) = n(Z_{min}^{k}, N_{min}^{l}) + p(Z_{min}^{k} + 1, N_{min}^{l}) - n(Z_{min}^{k} + 1, N_{min}^{l}) + \gamma_{+}^{N}(kl) = p(Z_{min}^{k}, N_{min}^{l}) + p(Z_{min}^{k} + 1, N_{min}^{l}) - -p(Z_{min}^{k}, N_{min}^{l} + 1) + \gamma_{+}^{N}(kl)$$

$$(2)$$

И

$$n(Z_{min}^{k} + 1, N_{min}^{l} + 1) = p(Z_{min}^{k}, N_{min}^{l}) + +n(Z_{min}^{k}, N_{min}^{l} + 1) - p(Z_{min}^{k}, N_{min}^{l} + 1) + \gamma_{+}^{Z}(kl) = n(Z_{min}^{k}, N_{min}^{l}) + n(Z_{min}^{k}, N_{min}^{l} + 1) - -n(Z_{min}^{k} + 1, N_{min}^{l}) + \gamma_{+}^{Z}(kl).$$

$$(3)$$

Вследствие требования однозначности величин $\alpha_{+(-)}(l) = p(Z, N) - p(Z + 2, N)$ и $\beta_{+(-)}(k) =$ = n(Z, N) - n(Z, N + 2) удвоенные разностные производные энергий присоединения выбираются инвариантными, одними и теми же в полосах l и k, т.е. по всему диапазону изменения N и Z соответственно. Для того, чтобы работать в подавляющем большинстве случаев с положительными значениями параметров, производные берутся с обратным знаком.

Наконец, на параметры $\gamma_{+}^{Z}(kl), \gamma_{-}^{Z}(kl), \gamma_{+}^{N}(kl), \gamma_{-}^{N}(kl)$ накладывает ограничение условие «замкнутости циклов» энергии присоединения нуклонов по любому замкнутому контуру на поверхности $\{Z, N\}$, являющееся следствием требования однозначности:

$$\gamma^{Z}(kl)_{-} + \gamma^{Z}(kl)_{+} = \gamma^{N}(kl)_{-} + \gamma^{N}(kl)_{+}.$$
 (4)

Следствием условия «замкнутости циклов» является очевидное соотношение:

$$p(Z_{min}^{k}, N_{min}^{l}) + n(Z_{min}^{k} + 1, N_{min}^{l}) = = p(Z_{min}^{k} + 1, N_{min}^{l}) + n(Z_{min}^{k}, N_{min}^{l}),$$
(5)

а также представленные выше выражения (2) и (3).

В итоге, процедура минимизации модуля отклонения поверхности энергий связи ядер от набора экспериментальных значений этой величины в секторе (kl) (Z_{min}^k и N_{min}^l — четные числа) сводится к минимизации выражения:

$$\begin{split} &\sum_{\Delta Z \leq \Delta Z^{k}}^{\Delta Z \leq \Delta Z^{k}} \sum_{\Delta N_{q}=0}^{\Delta N \leq \Delta N^{l}} | p(Z_{\min}^{k}, N_{\min}^{l}) + (\gamma_{+}^{Z}(kl)\Delta N - \alpha_{+}(l)\Delta Z)/2 - \tilde{p}(ZN) | + \\ &+ \sum_{\Delta Z_{m}=1}^{\Delta Z \leq \Delta Z^{k}} \sum_{\Delta N_{q}=0}^{\Delta N \leq \Delta N^{l}} | p(Z_{\min}^{k} + 1, N_{\min}^{l}) + (\gamma_{-}^{Z}(kl)\Delta N - \alpha_{-}(l)(\Delta Z - 1))/2 - \tilde{p}(ZN) | + \\ &+ \sum_{\Delta Z_{q}=0}^{\Delta Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=1}^{\Delta N \leq \Delta N^{l}} | p(Z_{\min}^{k}, N_{\min}^{l} + 1) + (\gamma_{+}^{Z}(kl)(\Delta N - 1) - \alpha_{+}(l)\Delta Z)/2 - \tilde{p}(ZN) | + \\ &+ \sum_{\Delta Z_{m}=1}^{\Delta Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=1}^{\Delta N \leq \Delta N^{l}} | p(Z_{\min}^{k}, N_{\min}^{l}) + p(Z_{\min}^{k} + 1, N_{\min}^{l}) - p(Z_{\min}^{k}, N_{\min}^{l} + 1) + \\ &+ \sum_{\Delta Z_{m}=0}^{Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=1}^{\Delta N \leq \Delta N^{l}} | p(Z_{\min}^{k}, N_{\min}^{l}) + p(Z_{\min}^{k} + 1, N_{\min}^{l}) - p(Z_{\min}^{k}, N_{\min}^{l} + 1) + \\ &+ \sum_{\Delta Z_{m}=0}^{Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=0}^{\Delta N \leq \Delta N^{l}} | n(Z_{\min}^{k}, N_{\min}^{l}) + (\gamma_{+}^{N}(kl)Z - \beta_{+}(k)\Delta N)/2 - \tilde{n}(ZN) | + \\ &+ \sum_{\Delta Z_{m}=0}^{Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=0}^{\Delta N \leq \Delta N^{l}} | n(Z_{\min}^{k}, N_{\min}^{l} + 1) + (\gamma_{+}^{N}(kl)\Delta Z - \beta_{-}(k)(\Delta N - 1))/2 - \tilde{n}(ZN) | + \\ &+ \sum_{\Delta Z_{m}=1}^{Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=0}^{\Delta N \leq \Delta N^{l}} | n(Z_{\min}^{k}, N_{\min}^{l}) + n(Z_{\min}^{k}, N_{\min}^{l} + 1) - n(Z_{\min}^{k} + 1, N_{\min}^{l}) + \\ &+ \sum_{\Delta Z_{m}=1}^{Z \leq \Delta Z^{k}} \sum_{\Delta N_{m}=1}^{\Delta N \leq \Delta N^{l}} | n(Z_{\min}^{k}, N_{\min}^{l}) + n(Z_{\min}^{k}, N_{\min}^{l} + 1) - n(Z_{\min}^{k} + 1, N_{\min}^{l}) + \\ &+ \gamma_{+}^{Z}(kl) + (\gamma_{-}^{N}(kl)(\Delta Z - 1) - \beta_{-}(k)(\Delta N - 1))/2 - \tilde{n}(ZN) |, \end{split}$$

где $\Delta Z^{k} = Z_{min}^{k+1} - Z_{min}^{k}$ и $\Delta N^{l} = N_{min}^{l+1} - N_{min}^{l}$; $\tilde{p}(ZN)$ — измеренная экспериментально энергия присоединения протона к ядру (Z, N); $\tilde{n}(ZN)$ — соответствующая энергия присоединения нейтрона к этому ядру; индексами 'ч' ('нч') обозначены четные (нечетные) значения ΔZ и ΔN с учетом условия (4). В случае нечетных величин Z_{min}^{k} и N_{min}^{l} нижние индексы меняются на противоположные.

Кроме используемой минимизации модуля отклонения, можно минимизировать и среднеквадратичное отклонение, что проще в смысле математической процедуры, но увеличивает требования к отбору экспериментального материала.

Минимизация поверхности на всей плоскости $\{Z, N\}$ проводится с учетом упоминавшихся выше дополнительных условий, имеющих следующий явный вид:

$$p(Z_{min}^{k}, N_{min}^{l}) = p(Z_{min}^{k-1}, N_{min}^{l}) + + \gamma_{+}^{Z}(k, l-1)\Delta N^{l-1}/2,$$

$$p(Z_{min}^{k} + 1, N_{min}^{l}) = p(Z_{min}^{k-1} + 1, N_{min}^{l}) + + \gamma_{-}^{Z}(k, l-1)\Delta N^{l-1}/2,$$

$$p(Z_{min}^{k}, N_{min}^{l} + 1) = p(Z_{min}^{k-1}, N_{min}^{l} + 1) - - -\alpha_{-}(l)\Delta Z^{k-1}/2,$$

$$n(Z_{min}^{k}, N_{min}^{l}) = n(Z_{min}^{k}, N_{min}^{l-1}) + + \gamma_{+}^{N}(k-1, l)\Delta Z^{k-1}/2,$$

$$n(Z_{min}^{k}, N_{min}^{l} + 1) = n(Z_{min}^{k}, N_{min}^{l-1} + 1) + + \gamma_{-}^{N}(k-1, l)\Delta Z^{k-1}/2,$$

$$n(Z_{min}^{k} + 1, N_{min}^{l}) = n(Z_{min}^{k-1} + 1, N_{min}^{l}) - - \beta_{+}(k)\Delta N^{l-1}/2.$$
(7)

Здесь также предполагается, что граничные значения Z_{min}^{k-1} , N_{min}^{l-1} , Z_{min}^k и N_{min}^l — четные. Изменение граничных значений для какой либо из подсистем на нечетные приводит к замене в ней нижних индексов параметров на противоположные. Если же четности граничных значений (например, в нейтронной подсистеме) разные, то в первых двух уравнениях в (7) смещается точка отсчета:

$$p(Z_{min}^{k}, N_{min}^{l}) = p(Z_{min}^{k-1}, N_{min}^{l} + 1) + + \gamma_{+}^{Z}(k, l-1)(\Delta N^{l-1} - 1)/2, p(Z_{min}^{k} + 1, N_{min}^{l}) = p(Z_{min}^{k-1} + 1, N_{min}^{l} + 1) + + \gamma_{-}^{Z}(k, l-1)(\Delta N^{l-1} - 1)/2,$$

$$(8)$$

а четность нижних индексов зависит от четности величины N_{min}^l . При нечетном значении этого числа нижние индексы в (8) меняются.

Последнее выражение в (7) принимает вид:

$$n(Z_{min}^{k} + 1, N_{min}^{l}) = n(Z_{min}^{k-1} + 1, N_{min}^{l} + 1) - -\beta_{+}(k)(\Delta N^{l-1} - 1)/2.$$
(9)

Выражения для начальной энергии во втором уравнении в (8) и в уравнении (9) задаются формулами (2) и (3).

В итоге, для одиночного, не связанного общими границами с другими сектора (kl) необходимо определить 13 независимых параметров: это 16 перечисленных параметров, связанных четырьмя соотношениями (2-5) и, дополнительно, энергию связи $E_B(Z, N)$ в произвольной точке этого сектора. Наличие одной общей (угловой) точки $(Z_{min}^k = Z_{max}^{k-1}, N_{min}^l = N_{max}^{l-1})$ с уже исследованным сектором задает в новом секторе 3 параметра: $E_{\scriptscriptstyle B}(Z,N)$, $p(Z^k_{\scriptscriptstyle min},N^l_{\scriptscriptstyle min})$ и $n(Z^k_{\scriptscriptstyle min},N^l_{\scriptscriptstyle min})$. Если сектор имеет одну границу с сектором из области уже рассчитанных (например, по линии N_{\min}^{l}), то оказываются определенными параметры $p(Z_{min}^k, N_{min}^l), p(Z_{min}^k + 1, N_{min}^l), n(Z_{min}^k, N_{min}^l), n(Z_{min}^k + 1, N_{min}^l)$ и из соотношения (5) — параметры $n(Z_{min}^{k}, N_{min}^{l} + 1)$. Кроме того, становятся известными параметры $\beta_{+}(k), \beta_{-}(k)$ и остается рассчитать 6 параметров. Если две границы исследуемого сектора сопрягают его с уже изученными секторами, то известными оказываются все начальные значения энергий присоединения $p(Z_{min}^k, N_{min}^l), p(Z_{min}^k + 1, N_{min}^l), p(Z_{min}^k, N_{min}^l + 1),$ $p(Z_{min}^k + 1, N_{min}^l + 1), n(Z_{min}^k, N_{min}^l), n(Z_{min}^k + 1, N_{min}^l),$ $n(Z_{min}^k, N_{min}^l + 1), n(Z_{min}^k + 1, N_{min}^l + 1)$ и «внешние», принадлежащие целым полосам значения параметров разностных производных $\alpha_{_+}(l), \alpha_{_-}(l), \beta_{_+}(k), \beta_{_-}(k)$. Лишь «внутренние» параметры $\gamma_{+}^{Z}(kl), \gamma_{-}^{Z}(kl), \gamma_{+}^{N}(kl), \gamma_{-}^{N}(kl)$, на которые наложена одна связь (4), остаются при этом неопределенными.

Удобной оказывается итеративная схема определения значений параметров. Расчет в этом случае проводится последовательно — от сектора к сектору. Необходимые величины определяются в наиболее хорошо изученной области данных каждой полосы. Условием существования процедуры интерполяции будет требование, чтобы внутри (не на границе) каждого сектора находились измеренные массы по крайней мере для трех ядер разных типов четности. Поскольку почти всегда число измеренных масс больше этого, то проводится процедура оптимизации параметров с помощью минимизации выражения (6). Метод позволяет вовлекать в анализ и другие данные, характеризующие массы и энергии α или β -переходов. Для повышения точности метода особенно полезно проанализировать измеренные энерговыходы для α -переходов, поскольку эти данные получаются с очень большой точностью.

Подчеркнем, чтобы быть правильно понятыми, что интерполяционная процедура имеет и предсказательную силу, она дает возможность по нескольким измеренным значениям масс определить в данном секторе все остальные не известные из эксперимента значения.

В итоге, полученная поверхность энергий связи ядер представляет собой непрерывный кусочно-гладкий набор параболоидов на вышеуказанных секторах.

Для подтверждения надежности представленного метода оценки масс добавим к сказанному во введении, что в работе [27] для традиционной области тяжелых ядер от (Z, N) = (82, 126) до (104,154) почти вплоть до линии протонной стабильности интерполяционная процедура дает для 90 % из более чем 230 вычисленных масс ядер значения $E_B(Z, N)$, которые оказываются в пределах 0,1 МэВ совпадающими с экспериментальными значениями. Остальные величины этого отклонения находятся в пределах 0,2 МэВ. Отмечено лишь 3 выходящих за этот предел значения.

Экстраполяция на области ядер, где условие существования процедуры интерполяции не выполнено, осуществляется методами, разработанными в [25—27]. Основным приемом этих работ является поиск устойчивых при движении вдоль полос геометрических характеристик параболоидов.

2. ПОСТРОЕНИЕ ММПЭСЯ СВЕРХТЯЖЕЛЫХ АТОМНЫХ ЯДЕР

Для построения ММПЭСЯ тяжелых атомных ядер в широкой области значений Z и Nиспользуется современная база экспериментальных данных [32]. Для построения ММПЭСЯ сверхтяжёлых ядер этой информации недостаточно, в связи с чем она была дополнена экспериментальными данными об энергиях α -распадов из работ [6, 7, 31, 34]. Однако и этот набор данных не во всех случаях обеспечивает удовлетворение условий для процедуры интерполяции в интересующей нас области ядер. Для решения задачи экстраполяции использовались методы, разработанные в [27]. Они включают в себя следующие приемы:

1. В силу того, что α -распад сохраняет четность протонных и нейтронных чисел, в случае недостатка данных, касающихся ядер какоголибо типа четности, используются усредненные значения разностных параметров:

$$\begin{aligned} \alpha(l) &= (\alpha_{+}(l) + \alpha_{-}(l))/2, \\ \beta(k) &= (\beta_{+}(k) + \beta_{-}(k))/2, \\ \gamma^{Z}(kl) &= (\gamma^{Z}_{+}(kl) + \gamma^{Z}_{-}(kl))/2, \\ \gamma^{N}(kl) &= (\gamma^{N}_{+}(kl) + \gamma^{N}_{-}(kl))/2. \end{aligned}$$
(10)

При этом вследствие соотношения (4) выполняется равенство $\gamma^{Z}(kl) = \gamma^{N}(kl) = \gamma(kl)$.

Эта процедура несколько сглаживает четнонечетные эффекты в абсолютных значениях масс ядер, но очень слабо изменяет энергии присоединения двух протонов и двух нейтронов.

2. Поскольку в достаточно тяжелых ядрах эти параметры (как усредненные, так и исходные) слабо меняются от сектора к сектору, то они рассматриваются как непрерывные функции своих аргументов $\alpha(N)$, $\beta(Z)$ и $\gamma(Z, N)$. Поверхности энергий связи ядер различной четности в локальных областях Z и N остаются, с хорошей точностью, поверхностями второго порядка с адиабатически меняющимися коэффициентами перед соответствующими произведениями степеней Z и N.

Этот прием позволяет предсказывать параметры в областях с недостаточной экспериментальной информацией за счет использования условий непрерывности и адиабатичности.

3. В областях максимума изобарных сечений, в которых имеет место равенство энергий присоединения к ним двух протонов и двух нейтронов («линии β –стабильности»), форма поверхности соответствует, очевидно, цилиндрическому параболоиду, а для него имеет место равенство $\gamma(Z, N) = \sqrt{\alpha(N)\beta(Z)}$. Например, в области {104, 170}, где внешние параметры определены из экспериментальных данных, из этого соотношения определяется значение параметра $\gamma(Z, N) = 0,87$.

4. Положение линии максимума изобарных сечений, на которой поверхность обладает свойствами цилиндрического параболоида, для N > 20 аппроксимируется с хорошей точностью:

$$Z^* = C \ln(N+R) - B,$$
 (11)

где параметры C, R, B принимают значения: C = 346, R = 500, B = 2145.

5. Используется факт устойчивости параметра P(Z, N) в областях между главными магическими числами. Он, с одной стороны, определяет ориентацию осей симметрии обсуждаемого параболоида, а с другой — выражается через адиабатические параметры:

$$P(Z, N) = (\beta(Z) + \gamma(Z, N))/(\alpha(N) + \beta(Z) + 2\gamma(Z, N)).$$
(12)

В широких областях средних и тяжелых ядер его можно аппроксимировать линейными функциями с малым наклоном, а в районе $Z \sim 100$ он является постоянной величиной. Тем самым накладывается ограничение на параметры в секторах, находящихся на некотором расстоянии от линии β -стабильности.

Следует отметить, что свойство инвариантности параметров $\alpha(N)$ и $\beta(Z)$ (независимость от Z и N соответственно) резко повышает точность и надежность экстраполяции в областях экспериментально не изученных ядер.

В табл. 1 содержатся вычисленные значения энергий связи E_B сверхтяжелых ядер. Из анализа соответствующих этим энергиям значений энергий α -распада Q_{α} следует, что из 27 известных энергий α -переходов, изученных в работах [1—7], 16 воспроизводятся с отклонением, не превышающим 10 кэВ, и лишь для 4 переходов эта разность больше 50 кэВ.

Представленная модель дает возможность с относительно высокой точностью предсказывать массы ядер и энергии распадов, контролировать их взаимную согласованность в «новых» областях ядер, где экспериментальные данные еще не полны, не устоялись (меняются от измерения к измерению), и на некотором удалении от границ этих областей.

В то же время заметим, что удовлетворить хотя бы минимальным требованиям к точности

Таблица 1

Z	A	<i>Е_в</i> , МэВ	Z	A	<i>Е_в</i> , МэВ	Z	A	<i>Е_в,</i> МэВ	Z	A	<i>Е_в</i> , МэВ
100	240	1790,17	102	242	1791,44	104	244	1791,19	104	270	1977,98
100	242	1806,43	102	244	1808,58	104	246	1809,21	104	271	1982,06
100	244	1822,10	102	246	1825,13	104	248	1826,64	104	272	1988,03
100	246	1837,05	102	248	1840,94	104	250	1843,31	104	274	1998,16
100	248	1851,40	102	250	1856,15	104	252	1859,38	104	276	2007,85
100	249	1857,88	102	251	1863,10	104	253	1866,80	104	278	2017,55
100	250	1865,34	102	252	1871,07	104	254	1875,28	104	280	2026,76
100	251	1871,48	102	253	1877,68	104	255	1882,36	104	282	2035,48
100	252	1878,71	102	254	1885,42	104	256	1890,61	105	257	1891,95
100	253	1884,24	102	255	1891,36	104	257	1896,96	105	258	1898,44
100	254	1890,78	102	256	1898,46	104	258	1904,62	105	259	1906,39
100	255	1896,00	102	257	1904,09	104	259	1910,66	105	260	1912,57
100	256	1902,29	102	258	1910,90	104	260	1918,03	105	261	1920,23
101	249	1853,37	103	251	1857,25	104	261	1923,79	105	262	1926,24
101	250	1859,95	103	252	1864,30	104	262	1931,11	105	263	1933,67
101	251	1867,80	103	253	1872,66	104	263	1936,71	105	264	1939,56
101	252	1874,04	103	254	1879,37	104	264	1943,93	105	265	1946,89
101	253	1881,66	103	255	1887,50	104	265	1949,41	105	266	1952,66
101	254	1887,27	103	256	1893,52	104	266	1956,53	105	267	1959,89
101	255	1894,15	103	257	1900,96	104	267	1961,01	105	268	1964,50
101	256	1899,45	103	258	1906,67	104	268	1967,48	105	269	1971,24
101	257	1906,08	103	259	1913,82	104	269	1971,76	105	270	1975,65
105	271	1982,14	106	273	1991,72	107	274	1995,16	108	276	2006,28

Значения энергий связи Е_в для тяжелых и сверхтяжелых ядер

Продолжение т	аол.	1
---------------	------	---

Ζ	A	<i>Е_в</i> , МэВ	Ζ	A	<i>Е_в</i> , МэВ	Z	A	<i>Е_в</i> , МэВ		A	<i>Е_в</i> , МэВ
105	272	1986,35	106	274	1998,09	107	275	2001,80	108	277	2011,29
105	273	1992,59	106	276	2009,05	108	252	1825,13	108	278	2018,07
106	250	1826,84	106	278	2019,57	108	254	1843,46	108	279	2022,86
106	252	1844,34	106	280	2330,01	108	256	1861,19	108	280	2029,42
106	254	1861,24	106	282	2039,96	108	258	1878,87	108	282	2040,60
106	256	1878,03	106	284	2049,42	108	260	1895,98	108	284	2051,29
106	258	1894,25	107	259	1894,66	108	261	1903,29	108	286	2061,49
106	259	1901,08	107	260	1901,63	108	262	1911,61	109	265	1926,56
106	260	1909,05	107	261	1909,93	108	263	1918,65	109	266	1934,18
106	261	1915,61	107	262	1916,59	108	264	1926,72	109	267	1941,36
106	262	1923,33	107	263	1924,64	108	265	1933,28	109	268	1949,10
106	263	1929,47	107	264	1931,07	108	266	1941,36	109	269	1956, 42
106	264	1937,17	107	265	1938,88	108	267	1947,80	109	270	1963,80
106	265	1943,19	107	266	1945,19	108	268	1955,78	109	271	1971,02
106	266	1950,79	107	267	1952,90	108	269	1962,10	109	272	1976,86
106	267	1956,69	107	268	1959,09	108	270	1969,98	109	273	1984,07
106	268	1964,19	107	269	1966,70	108	271	1975,26	109	274	1989,71
106	269	1969,07	107	270	1971,71	108	273	1987,61	109	275	1996,67
106	270	1975,94	107	271	1978,85	108	274	1994,63	109	276	2002,11
106	271	1980,62	107	272	1983,66	108	275	1999,51	109	277	2008,82
106	272	1987,24	107	273	1990,55	108	272	1982,53	109	278	2014,44
109	279	2021,01	110	288	2071,28	112	272	1960,36	114	280	2006,61
109	280	2026,41	111	267	1927,48	112	273	1967,28	114	282	2020,78
109	281	2032,76	111	268	1935,40	112	274	1975,96	114	284	2034,99
110	266	1928,22	111	269	1943,22	112	275	1982,10	114	286	2048,76
110	267	1935,08	111	270	1951,02	112	276	1990,23	114	287	2054,74
110	268	1943,56	111	271	1958,74	112	277	1996,17	114	288	2061,98
110	269	1950,30	111	272	1966,42	112	278	2004,05	114	289	2067,70
110	270	1958,68	111	273	1974,04	112	279	2009,79	114	290	2074,71
110	271	1965,30	111	274	1980,31	112	280	2017,42	114	291	2080,17
110	272	1973,58	111	275	1987,95	112	281	2023,43	114	292	2086,95
110	273	1979,29	111	276	1994,02	112	282	2030,81	116	278	1976,25
110	274	1986,44	111	277	2001,41	112	283	2036,60	116	280	1992,12
110	275	1992,50	111	278	2007,28	112	284	2043,76	116	282	2007,54
110	276	1999,95	111	279	2014,42	112	285	2049,36	116	284	2022,51
110	277	2005,26	111	280	2020,54	112	286	2056,28	116	286	2037,54
110	278	2012,46	111	281	2027,41	112	287	2061,62	116	288	2052,13
110	279	2017,97	111	282	2033,31	112	288	2068,31	116	289	2058,49
110	280	2025,05	111	283	2039,96	112	289	2073,39	116	290	2066,05
110	281	2030,34	112	268	1928,50	112	290	2079,85	116	291	2072,15
110	282	2037,20	112	269	1935,66	113	284	2038,69	116	292	2079,48
110	284	2049,05	112	270	1944,54	114	276	1976,92	116	293	2085,32
110	286	2060,41	112	271	1951,58	114	278	1991,99	116	294	2092,42

предсказания энергии α -распада Q_{α} за линией Z = 116 пока не удается.

3. ПОЛУЭМПИРИЧЕСКИЙ МЕТОД ВЫЧИСЛЕНИЯ ШИРИН α-РАСПАДА

Представим схему полуэмпирического метода вычисления ширин α -распада, развитую в работах [13, 30, 35], и частично модифицированную для целей настоящей работы. В его основе лежат теоретические подходы, с которыми можно ознакомиться в монографии [28].

В микроскопической теории выражение для ширины α -распада Γ_{α} может быть представлено в виде:

$$\Gamma_{\alpha} = W_{\alpha} \Gamma_{\alpha}^{o.p.}, \tag{13}$$

где W_{α} — спектроскопический фактор; $\Gamma_{\alpha}^{o.p.}$ — одночастичная ширина α -распада для предварительно сформированного кластера, которая в квазиклассическом приближении имеет вид:

$$\Gamma_{\alpha}^{o.p.} \simeq \frac{\hbar\omega}{\pi} P_{\alpha}, \qquad (14)$$

здесь ω — характерная ядерная частота ($\hbar \omega \simeq 7 \text{ M}$ эВ); P_{α} — проницаемость потенциального барьера для α -частицы.

Использовать это приближение, однако, не обязательно. Входящую в (13) одночастичную ширину Га, нетрудно получить численным решением двухтельного уравнения Шредингера. Устойчивость решения обеспечивается тем, что ядерное взаимодействие становится исчезающе малым в области, лежащей значительно «левее» внешней кулоновской точки поворота, где условие на регулярное кулоновское решение $F_{i}(r): F_{i}(r)/G_{i}(r) \cong 0$ выполняется с чрезвычайно высокой точностью. Решение уравнения с ядерным потенциалом и гамовской асимптотикой функций $\Psi(r) = iF_i(r) + G_i(r) \cong G_i(r)$, быстро растущее в направлении от внешней, далекой от поверхности ядра области внутрь ядра, фактически, является продолжением в сторону меньших значений *г* нерегулярной кулоновской функции $G_{i}(r)$. Устойчивость процедуры получения этого численного решения в подбарьерной области обеспечивается его быстрым ростом.

Ядерное взаимодействие описывается реалистическим потенциалом, построенным на основе анализа сечений упругого рассеяния α -частиц и ширин α -распада как низколежащих, так и высоковозбужденных состояний ядер (нейтронных резонансов) [29]. Среди многих известных потенциалов такого типа самым предпочтительным представляется вариант МакФаддена—Сэчлера [36], наиболее точный при описании всех известных случаев α -распада средних и тяжелых ядер и их нейтронных резонансов [29]. Это взаимодействие имеет вид:

$$V(R) = V_0 / (1 + exp((R - R_0)/a)), \qquad (15)$$

а параметры потенциала принимают значения: $V_0 = -177,3$ МэВ; $R_0 = r_0 A^{1/3}$; $r_0 = 1,342$ фм; a = 0,569 фм.

Рассмотрим способ получения значений спектроскопического фактора W_{α} . Известно [28], что прямые микроскопические расчеты величин W_{α} для α -переходов между основными состояниями средних и тяжелых четно-четных ядер с учетом парных нуклон-нуклонных корреляций (в частности, сверхтекучих) приводят к значениям $W_{lpha} \approx 10^{-2}$, слабо зависящим от того, какое конкретное ядро исследуется. Значительно бо́льшей оказывается их зависимость от исходных предпосылок микроскопической модели и, прежде всего, от вида используемых сверхтекучих нуклон-нуклонных корреляций. Кроме того, практически для всех расчетов сохраняется зависимость от параметров используемого алгоритма: размера базиса, схемы сшивки внутреннего (многонуклонного) и внешнего (двухтельного) решений и др. Изменения результатов расчетов, связанные с этими факторами, могут достигать одного порядка.

Подходом, позволяющим избежать неточностей прямых микроскопических вычислений (по крайней мере, для четно-четных ядер), является полуэмпирический метод. Он использует то обстоятельство, что форма потенциала (15) взаимодействия α -частицы с любыми ядрами — одна и та же, а спектроскопические факторы α -частиц в средних и тяжелых четно-четных ядрах не слишком сильно и довольно плавно меняются даже при больших вариациях заряда и массы ядра [35]. Суть метода в том, что в определенной области ядер с помощью потенциала (15) рассчитываются и анализируются одночастичные ширины $\Gamma^{o.p.}_{\alpha}$ для всех имеющихся экспериментальных примеров. Выражение (13) при этом используется для получения экспериментальных спектроскопических факторов W^{exp}_{α} по известным экспериментальным ширинам Γ_{α}^{exp} . Усредненный по надлежащему набору экспериментальных данных спектроскопический фактор $\overline{W_{\alpha}^{exp}}$ (точнее, $\overline{\lg W_{\alpha}^{exp}}$) применяется в дальнейшем для расчета по формуле (13) неизмеренных ширин. Естественно, усреднение для ядер, различающихся четностью N или Z, должно проводиться отдельно. Точность процедуры усреднения контролируется величиной среднеквадратичного отклонения значений $\lg W_{\alpha}^{exp}$ от $\lg W_{\alpha}^{exp}$ для надежно измеренных α -переходов в этой области ядер.

Уникальные возможности полуэмпирического метода проявляются при анализе спектроскопических факторов *α* -переходов между основными состояниями четно-четных ядер. Так, расчет 154 известных экспериментальных примеров таких переходов в ядрах с $52 \le Z \le 108$ и $54 \le N \le 160$ дает весьма гладкую систематику величин $\lg W^{exp}_{\alpha}$. Диапазон их изменения: от -1,6 до -3,6. Наблюдается плавное уменьшение этих величин с ростом массы ядер, нарушаемое лишь областью малых ($\lg W_{\alpha}^{exp} < -3, 0$) значений, соответствующих околомагической области ядер с $120 \le N \le 126$. Статистическая обработка всех 154 известных примеров приводит к результату $\lg W^{exp}_{\alpha} = -2,52 \pm 0,37$. Для надежно измеренных 64 α -переходов в тяжелых ядрах с $84 \le Z \le 104$ и $128 \le N \le 156$ получено $\lg W_{\alpha}^{exp} = -2,44 \pm 0,25$. Следовательно, на основе таких данных можно оценивать неизмеренные периоды полураспада с точностью до фактора 2 и на высоком уровне достоверности предсказывать времена жизни α -переходов между основными состояниями тяжелых ядер с точностью до фактора 5. Среднеквадратичное отклонение в используемом подходе существенно меньше, чем при использовании версии Вайола-Сиборга формулы Гейгера-Нэттола, где для тех же 64 переходов $\sqrt{\sigma} = 0,36$. Ограниченная точность даже самых удачных микроскопических методов расчета ширин α -распада, их высокая вычислительная сложность позволяют утверждать, что по сравнению с ними представленный здесь метод является более удобным количественным методом предсказания времен жизни ядер по отношению к облегченным α -переходам.

Резервы для улучшения данного метода связаны с более детальным учетом свойств ядер в каждой конкретной области. Так, учет деформации ядра, в принципе, изменяет формализм описания α -распада, поскольку приводит к системе уравнений со связью каналов, определяющихся возбуждением ротационных состояний дочернего ядра. Однако, представленная выше одноканальная систематика величин W^{exp}_{α} для всех α -переходов между основными состояниями четно-четных ядер не проявляет заметных корреляций с параметром деформации. Поэтому главным ориентиром для выбора области усреднения оказываются масса и заряд исследуемых ядер.

Для *α* -распада нечетных и нечетно-нечетных ядер также нетрудно получить усредненные спектроскопические факторы, однако здесь следует выделять переходы различного уровня запрета, которые определяются из соотношения моментов уровней родительского и дочернего ядер. В рамках сложных экспериментов с малой статистикой подавляющая часть изученных переходов относится к облегченным и полуоблегченным, каждая группа имеет не слишком большое среднеквадратичное отклонение спектроскопических факторов от среднего, но такие группы имеют довольно близкие значения $\lg W^{exp}_{lpha}$. В связи с этим различить эти два типа переходов не всегда удается, если не известны спины родительского и дочернего ядер. Кроме того, влияние ядерной деформации на процессы распада обсуждаемых ядер становится заметным. Тем не менее, если не предъявлять чрезмерных требований к точности анализа, то можно ограничиться только этими случаями, пренебрегая сильно запрещенными переходами, и использовать единое значение $\lg W_{\alpha}^{exp}$.

Следует отметить, что потенциал (15) не является единственным, достоверно описывающим всю совокупность ширин α -распада низколежащих состояний ядер. Так, решение уравнения Шредингера с потенциалом Кристенсена—Винтера [37] приводит не только к совпадающим с высокой точностью относительным (для разных четно-четных ядер) величинам спектроскопических факторов, но даже и к хорошему совпадению их абсолютных величин для всех отмеченных выше 154 изотопов, хотя тестирование этого потенциала способом, представленным в работе [29], не проводилось.

Поскольку точность измерения времен жизни сверхтяжелых ядер невелика в силу небольшой статистики (от нескольких десятков процентов до нескольких раз), а характерное среднеквадратичное отклонение величин $\lg W^{exp}_{\alpha}$ для четно-четных ядер имеет, как указано выше, масштаб 0,25, обработка данных, касающихся четно-четных сверхтяжелых ядер в рамках сферического приближения представляется вполне обоснованной. Тогда ширина α -распада Γ_{α} может быть представлена в виде (13), а необходимое для получения решения ядерное взаимодействие вполне адекватно описывается потенциалом (15).

Идентификация источников α -излучения в рамках обсуждаемого метода основана на том, что в предположении о конкретном зарядовом Z и массовом A числах родительского ядра с помощью формулы (13) можно из соотношения энергии α -перехода Q_{α} и периода полураспада $T_{1/2}^{\alpha}$ определить спектроскопический фактор W_{α}^{\exp} , сравнить его логарифм со средней величиной lg W_{α}^{exp} и сделать заключение о справедливости предположений о значениях Z и A.

Если провести анализ сверхтяжелых изотопов в области $114 \le Z \le 118$, то, как следует из результатов, представленных в табл. 2, значения спектроскопических факторов ядер, идентифицированных как четно-четные, окажутся вполне соответствующими этим величинам для извест<u>ных яд</u>ер с Z = 100-108, где среднее значение $\lg W_{\alpha}^{exp} = -2,85$.

Таблица 2 Значения логарифмов спектроскопических факторов IgW_{α}^{exp} для четно-четных изотопов с Z=114-118

Ядро	²⁸⁶ 114	²⁸⁸ 114	²⁹⁰ 116	²⁹² 116	²⁹⁴ 118
$\overline{\lg W^{ ext{exp}}_{lpha}}$	-3,29	-3,11	-2,90	-2,74	-3,34

Способность данного подхода достаточно уверенно различать α -источники и типы α -переходов подтверждает анализ зависимости полученных величин $\lg W_{\alpha}^{\exp}$ от характеристик α -распада. Для демонстрации этого используем факторы F_i ($i = Q_{\alpha}, L, \Delta Z, \Delta N$) [13], которые учитывают влияние на значения W_{α}^{\exp} изменения энергии ΔQ_{α} α -распада, орбитального момента L, уносимого α -частицей, а также числа протонов Z и числа нейтронов N в ядрах.

Зависимость спектроскопического фактора W_{α}^{\exp} от изменения ΔL момента L характеризуется величиной F_L , значения которой резко увеличиваются с ростом ΔL : при изменении ΔL от 0 до 8 величина F_L возрастает в 1000 раз [13]. Имея в виду, что переходам с ненулевым орбитальным моментом отвечают меньшие значения спектроскопических факторов, достигнутая точность измерения времени жизни ядра позво-

ляет надежно идентифицировать в четно-четных ядрах переходы с моментом 4 и более [13].

Для типичных энергий α -распада $Q_{\alpha} \sim 9,5$ МэВ в области $104 \leq Z \leq 108$ получаем $F_{Q_{\alpha}} \equiv W_{\alpha}^{\exp}(Q_{\alpha})/W_{\alpha}^{\exp}(Q_{\alpha} + \Delta Q_{\alpha}) \simeq 10$ при $\Delta Q_{\alpha} = 0,35$ МэВ (при этом все остальные характеристики α -распада считаются неизменными). Если $Q_{\alpha} \sim 11,5$ МэВ, то при $\Delta Q_{\alpha} = 0,5$ МэВ оказывается $F_{Q_{\alpha}} \simeq 10$. Для области значений $112 \leq Z \leq 118$ и при $Q_{\alpha} \sim 9,5$ МэВ величина $\Delta Q_{\alpha} = 0,5$ МэВ также приводит к фактору $F_{Q_{\alpha}} \simeq 10$. Имея в виду уровень точности, характерный для полуэмпирического метода, можно заключить, что он надежно устанавливает такие несоответствия энергии α -распада и времени жизни четно-четного ядра.

В той же области ядер (в качестве примера можно взять ядро ²⁸⁸114) типичное изменение спектроскопического фактора W_{α}^{\exp} при изменении заряда Z ядра на единицу ($\Delta Z = 1$) приводит к величине $F_Z \simeq 2,2$ (см. табл. 3).

Таблица З

Зависимость логарифмов спектроскопических

факторов $\lg W_{\alpha}^{\exp}$ для сверхтяжелого ядра ²⁸⁸114 от предположения о величине заряда Z

в диапазоне $112 \leq Z \leq 116$

при экспериментальных значениях энергии и ширины α-распада

Ζ	112	113	114	115	116
$\lg W^{ m exp}_{lpha}$	-3,78	-3,45	-3,11	-2,77	-2,43

Если учесть, что даже для облегченных переходов в нечетных ядрах факторы запрета, обычно, больше единицы, из приведенных оценок ясно, что обсуждаемый метод позволяет с высокой степенью надежности отбросить предположение, что полученное ядро имеет заряд Z больший, чем 114, или на две единицы меньший. Что касается значения Z = 113, то представленная в табл. З величина спектроскопического фактора вполне адекватна переходу в какомлибо из изотопов этого ядра. Для отказа от этой гипотезы требуются аргументы, не связанные с характеристиками α -распада. В области сверхтяжелых ядер главный аргумент связан с реакцией получения остаточного ядра, поскольку в столкновении четно-четного тяжелого иона с таким же ядром образование конечного ядра с нечетным зарядом крайне маловероятно.

Зависимость фактора F_N от изменения числа нейтронов ΔN (за исключением четно-не-

четных эффектов) оказывается весьма слабой [13] — ширины *α* -распада не чувствительны к массам изотопов одинаковой четности по *Z*.

Анализ известных α -переходов в четно-нечетных изотопах сверхтяжелых элементов, спектроскопические факторы которых представлены в табл. 4, приводит к выводу, что все эти переходы, за исключением первого, относится к классу разрешенных, поскольку их спектроскопические факторы имеют приблизительно те же величины, что и представленные в табл. 2. Первый переход, насколько об этом позволяет судить малая экспериментальная статистика (зарегистрировано всего два случая его α -распада), является полуоблегченным.

Таблица 4

Значения логарифмов спектроскопических \mathfrak{g} акторов $\lg W^{\mathrm{exp}}_{\alpha}$ для четно-нечетных изотопов с Z=110-116

Ядро	²⁷⁹ 110	²⁸³ 112	²⁸⁵ 112	²⁸⁷ 114	²⁸⁹ 114	²⁹¹ 116	²⁹³ 116
$\lg W^{ m exp}_{lpha}$	-3,96	-3,21	-3,02	-3,09	-3,29	-2,82	-2,89

Количественное преобладание облегченных переходов дает возможность, по всей видимости, с хорошей вероятностью прогнозировать величины ширин α -переходов в других ядрах этого типа, базируясь на предположении об их облегченности и используя характерные для них значения спектроскопических факторов.

Что касается нечетно-четных и нечетно-нечетных сверхтяжелых ядер, то обоснованные выводы относительно типов α -переходов в этих ядрах делать преждевременно из-за малой набранной статистики. Можно ожидать как облегченных, так и полуоблегченных переходов. Некоторое подтверждение этому дают результаты, представленные в табл. 5 и табл. 6, где приведены спектроскопические факторы для измеренных α -переходов в таких ядрах.

Следует отметить, что в более легких ядрах встречаются промежуточные величины спектроскопических факторов, поэтому идентификация нечетных и нечетно-нечетных изотопов и предсказание ширин их распадов не столь надежны, как четно-четных, даже при условии достаточной экспериментальной статистики.

Для решения третьей из поставленных во введении задач было также использовано выражение (13). Полученные таким способом предсказания энергий Q_{α} и периодов полураспада $T_{1/2}^{\alpha}$ для α -переходов как в уже изученных, так и в до сих пор не исследованных Таблица 5

Значения логарифмов спектроскопическ	cus
${\it {\it f}\!a} \kappa mopos$ lg $W^{ m exp}_{lpha}$ для нечетно-четных	с
элементов с Z=109–115	

Ядро	²⁷⁵ 109	²⁷⁹ 111	²⁸³ 113	²⁸⁷ 115
$\lg W^{ m exp}_{lpha}$	-3,60	-4,39	-2,90	-3,08

Таблица 6

Значения логарифмов спектроскопических факторов lgW^{exp}_a для нечетно-нечетных ядер c Z=109-115

Ядро	²⁷⁶ 109	²⁸⁰ 111	²⁸⁴ 113	$^{288}115$
$\lg W^{ m exp}_{lpha}$	-3,85	-4,01	-3,30	-3,20

четно-четных изотопах сверхтяжелых элементов представлены в табл. 7. В качестве базовой здесь бралась указанная выше величина $\lg W_{\alpha}^{exp} = -2,85$. Ограничение этой таблицы со стороны больших масс связано с возможностями применяемых в данной работе методов. Четыре из указанных в таблице распадов уже наблюдались. Несмотря на это, в таблице приведены, за исключением случая Z = 118, теоретические значения Q_{α} и $T_{1/2}^{\alpha}$. Первые отличаются от экспериментальных не более чем на 10 кэВ. Небольшое отличие вторых связано с использованием усредненного значения спектроскопического фактора.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ И ВЫВОДЫ

Представленный метод, включающий в себя как ММПЭСЯ, так и полуэмпирический метод расчета времен жизни ядер по отношению к α -распаду, ранее был успешно применен для предсказания свойств тяжелых нейтронодефицитных ядер [38]. В настоящей работе он использован для идентификации ядер, получаемых в экспериментах по синтезу сверхтяжелых элементов. Продемонстрирована надежность и универсальность этого метода и его высокая чувствительность к деталям ядерной структуры. В его рамках нашла свое подтверждение идентификация полученных недавно новых сверхтяжелых изотопов, проведенная авторами экспериментальных работ, и предсказаны энергии и времена жизни по отношению к α -распаду множества четно-четных изотопов сверхтяжелых элементов.

Анализ представленных в табл. 7 значений дает основание полагать, что на линии β – стабильности ядра ²⁷⁸106 и ²⁸⁴108 обладают време-

Таблица 7

Z	A	<i>Q</i> _α , M∋B	$T^{\alpha}_{1/2}$, c	Z	A	<i>Q_α</i> , МэВ	$T^{\alpha}_{1/2}$, c
106	284	5,640	8,9(14)	110	272	10,500	1,5(-3)
106	282	5,890	2,5(13)	110	270	10,980	2,8(-4)
106	280	6,140	9,8(11)	110	268	11,460	2,5(-5)
106	278	6,890	1,4(8)	112	290	8,860	4,4(2)
106	276	7,280	3,0(6)	112	288	9,040	1,2(2)
106	274	8,190	3,7(2)	112	286	9,220	3,7(1)
106	272	8,540	5,7(1)	112	284	9,590	3,0(0)
106	270	8,890	4,8(0)	112	282	9,950	3,0(-1)
106	268	8,040	3,7(3)	112	280	10,830	1,8(-3)
106	266	8,620	4,4(1)	112	278	11,240	2,0(-4)
106	264	9,200	7,1(-1)	112	276	11,650	3,0(-5)
106	262	9,590	5,8(-2)	112	274	11,020	8,1(-4)
108	286	6,770	3,4(9)	112	272	11,500	7,1(-5)
108	284	7,020	2,2(8)	112	270	11,980	7,6(-6)
108	282	7,270	1,7(7)	114	292	9,660	6,3(0)
108	280	7,930	3,9(4)	114	290	9,870	1,7(0)
108	278	8,320	1,5(3)	114	288	10,080	4,5(-1)
108	276	9,260	1,5(0)	114	286	10,350	1,1(-1)
108	274	9,610	1,6(-1)	114	284	10,730	1,1(-2)
108	272	9,960	1,8(-2)	114	282	11,570	1,3 (-4)
108	270	9,110	5,4(0)	114	280	11,920	2,6(-5)
108	268	9,690	8,9(-2)	114	278	12,270	5,2(-6)
108	266	10,270	4,0(-3)	114	276	11,740	7,8(-5)
108	264	10,630	5,3(-4)	116	294	10,590	7,8(-2)
110	288	8,310	6,3(3)	116	292	10,800	2,3(-2)
110	286	8,490	1,7(3)	116	290	11,010	9,0(-3)
110	284	8,670	4,4(2)	116	288	11,160	3,5(-3)
110	282	9,170	1,1(1)	116	286	11,540	5,6(-4)
110	280	9,530	1,0(0)	116	284	12,400	8,9(-6)
110	278	10,470	3,2(-3)	116	282	12,750	1,9(-6)
110	276	10,880	3,9(-4)	116	280	13,100	4,8(-7)
110	274	11,290	4,8(-5)	118	294	11,810	3,9(-4)

Значения энергий Q_{α} и периодов полураспада $T^{\alpha}_{1/2}$ для сверхтяжелых ядер. В круглых скобках — показатель степени 10

нами жизни, составляющими несколько лет. Времена жизни по отношению к α-распаду четно-четных ядер ²⁸⁰106 и ²⁸⁶108, имеющих по сравнению с этими ядрами два дополнительных нейтрона — от ста до нескольких десятков тысяч лет. Эти значения быстро уменьшаются с ростом заряда ядра и несколько медленнее — при сокращении числа нейтронов.

Времена жизни ~ 1 с характерны для ядер с нейтронным избытком $D\approx 60$. На поведение

этих величин существенное влияние оказывает магическое число N = 162. Для ядер с таким числом нейтронов наблюдается увеличение времени жизни в среднем на два порядка. Примерно такие же времена жизни характерны и для изотопов с N = 168.

Зависимость времени жизни ядра от его заряда Z более плавная, но и здесь явный излом зависимости при Z = 112 позволяет, по всей видимости, говорить о нем как о магическом числе. Распределение величин спектроскопических факторов W_{α} для четно-четных ядер с $112 \le Z \le 116$ оказывается подобным соответствующему распределению для ядер с $90 \le Z \le 108$.

Представленные в табл.7 результаты могут найти применение в качестве ориентиров для оценки возможности регистрации новых синтезированных изотопов, поиска возможных изотопов, которые могут излучать «фоновые» α -частицы с энергией, близкой к полученной в эксперименте, и других методических целей.

Более высокий уровень теоретического обоснования предлагаемого в настоящей работе подхода по сравнению с различными систематиками, наличие в нем, фактически, всего одного параметра — усредненного спектроскопического фактора, делают надежными более далекие экстраполяции, позволяют сравнивать переходы в различных по четности изотопах, анализировать распады разного уровня запрета и их тонкую структуру. Это обеспечивает и достаточную надежность предсказаний энергий α -переходов и времен жизни изотопов.

Представленный метод α -диагностики продуктов ядерных реакций может быть распространен на другие интересные области ядер, в частности, использован для изучения изотопов с большим дефицитом нейтронов.

Приведенные примеры могут служить хорошей иллюстрацией применения изложенных выше методов, а сами методы — в качестве теоретического обоснования экспериментальных исследований в новых областях ядер.

СПИСОК ЛИТЕРАТУРЫ

1. Oganessian Yu.Ts. et al. The synthesis of superheavy nuclei in the $^{48}\text{Ca}+^{244}\text{Pu}$ reaction: $^{288}114$ // Phys. Rev. - 2000. - V. C62. - P. 041604-1(R) - 041604-4(R).

2. Oganessian Yu. Ts. et al. Observation of the decay of $^{292}116$ // Phys. Rev. -2001. - V. C63. - P. 011301 - 1(R) - 011301 - 2(R).

3. Oganessian Yu. Ts. et al. Synthesis of 292 116 in the 248 Cm+ 48 Ca reaction // Phys. At. Nucl. - 2001. - V. 64. - P. 1349-1355.

4. Oganessian Yu.Ts. et al. Experiments on the synthesis of element 115 in the reaction 243 Am (48 Ca, xn) $^{291-x}$ 115 // Phys. Rev. - 2004. - V. C69. - P. 021601-1(R) - 021601-5(R).

5. Oganessian Yu. Ts. et al. Measurements of cross sections for the fusion-evaporation reactions ²⁴⁴Pu(⁴⁸Ca, xn)^{292-x}114 and ²⁴⁵Cm(⁴⁸Ca, xn)^{293-x}116 //

Phys. Rev. - 2004. - V. C69. - P. 054607-1 - 054607-9.

6. Oganessian Yu. Ts. et al. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238 U, 242 Pu, and 248 Cm + 48 Ca // Phys. Rev. - 2004. - V. C70. - P. 064609 -1 - 064609 -14.

7. Oganessian Yu.Ts. et al. Synthesis of elements 115 and 113 in the reaction ²⁴⁸Am + ⁴⁸Ca // Phys.Rev. - 2005. - V. C72. - P. 034611-1 - 034611-16.

8. Оганесян Ю.Ц. Реакции синтеза тяжелых ядер: краткий итог и перспектива // Ядерная физика.— 2006.— Т. 69, № 6. — С. 961—969.

9. Smolanczuk R. Properties of the hypothetical spherical superheavy nuclei // Phys. Rev. - 1997. - V. C56. - P. 812 - 824.

10. Typel S., Brown B.A. Skyrme Hartree-Fock calculations of the α -decay Q values of superheavy nuclei // Phys. Rev. -2003. - V. C67. - P. 034313 - 1 - 031302 - 14.

11. Bender M. α -Decay chains of $^{289}_{175}$ 114 and $^{293}_{175}$ 118 in the relativistic mean-field model // Phys. Rev. – 2000. – V. C61. – P. 031302–1 – 031302–9.

12. Viola V.E., Seaborg G.T. Alpha-decay of eveneven isotopes // J. Inorg. Chem. — 1966.— V. 28 — P. 741—753.

13. Бадаев О.П., Кургалин С.Д., Чувильский Ю.М., Шайд В. Идентификация новых сверхтяжелых элементов по характеристикам α-распада // Вестник Воронеж. ун-та. Сер. физика, математика. — 2003. — № 1. — С. 19—29.

14. Оценка масс сверхтяжелых элементов и α-диагностика их синтеза / О. П. Бадаев, С. Д. Кургалин, Ю. М. Чувильский [и др.] // 52 Международ. совещ. по ядерной спектроскопии и структуре атомного ядра: тез. докл. — М., 2002. — С. 66.

15. Полуэмпирический метод расчета вероятностей α-распада и диагностика синтеза сверхтяжелых элементов / О. П. Бадаев, С. Д. Кургалин, Ю. М. Чувильский [и др.] // 53 Международ. совещ. по ядерной спектроскопии и структуре атомного ядра «Ядро-2003»: тез. докл., 7—10 окт. 2003 г. — СПб., 2003. — С. 189.

16. α-Диагностика синтеза сверхтяжелых элементов на основе полуэмпирического метода расчета вероятностей α-распада / О. П. Бадаев, С. Д. Кургалин, Ю. М. Чувильский [и др.] // Физико-математическое моделирование систем: материалы международ. семинара. — Воронеж. гос. техн. ун—т, 2004. — С. 7—8.

17. Бадаев О.П. Исследование α-распадных свойств сверхтяжелых элементов методом математического моделирования / О. П. Бадаев, С. Д. Кургалин, Ю. М. Чувильский // Информатика: проблемы, методология, технологии: материалы седьмой международ. науч.-метод. конф. (8—9 февраля 2007 г.). — Воронеж : Воронеж. гос. ун-т, 2007. — С. 19— 20. Колесников Н.Н. Энергии изобарных и изотопических переходов и новая формула для масс ядер // Вестник МГУ. Сер. Физика, астрономия. — 1966. — № 6. — С. 76—87.

19. Колесников Н.Н., Демин А.Г. Таблицы энергий связи нуклонов и энергий α- и β-распада изотопов тяжелых элементов // Сообщения ОИЯИ, P6-9420. — 1975.— 28 с.

20. Колесников Н.Н., Вымятнин В.М. Ядерные подоболочки и точная формула для энергии связи ядер // Известия вузов. Физика. — 1977. — № 6. — С. 115—123.

21. Колесников Н.Н., Бадаев О.П., Вымятнин В.М. Энергии связи нуклонов в среднетяжелых ядрах. Москва, 1980. — 12 с. Деп. в ВИНИТИ, № 4866—80.

22. Колесников Н.Н. Непрерывность энергетической поверхности и энергии связи нуклонов. Москва, 1980. — 11 с. Деп. в ВИНИТИ, № 4867—80.

23. Колесников Н.Н., Бадаев О.П. Изомультиплетные уровни, энергии отрыва нуклонов и бетараспада легких ядер. Москва, 1983. — 12 с. Деп. в ВИНИТИ, № 6180—83.

24. Колесников Н.Н. Непрерывная мозаичная ядерная энергетическая поверхность и новая массовая формула // Известия АН СССР. Сер. физическая.— 1985.— Т. 40. — С. 2144—2149.

25. Бадаев О.П. Математическое моделирование ядерной энергетической поверхности // Вестник МГУ. Сер. физика, астрономия. — 1996.— № 3.— С. 23—30.

26. Бадаев О.П. Применения математической модели ядра для прогнозирования энергий связи нестабильных тяжелых ядер // Вопросы атомной науки и техники. Сер. Ядерные константы. — 2000. — Вып.2. — С. 33—38.

27. Бадаев О.П. Математическое моделирование энергий связи сверхтяжелых атомных ядер // Физич. ф-т МГУ.— Препринт № 12/2002 05—16. — 2002. — 12 с. 28. Кадменский С.Г., Фурман В.И. Альфа-распад и родственные ядерные реакции.— М.: Энергоатомиздат, 1985.— 224 с.

29. Кадменский С.Г., Кургалин С.Д., Фурман В.И. и др. *α*-Распад нейтронных резонансов и тестирование оптических потенциалов *α*-частиц в глубокоподбарьерной области // Ядерная физика. — 1981. — Т. 33, Вып. 2. — С. 573—575.

30. Кадменский С.Г., Кургалин С.Д., Фурман В.И., Чувильский Ю.М. Полуэмпирический метод анализа относительных вероятностей спонтанной эмиссии тяжелых кластеров // Ядерная физика. — 1993. — Т. 56, Вып. 8. — С. 80—86.

31. *Hofmann S. et al.* New results on element 111 and 112 // Eur. Phys. J. - 2002. - V. A14. - P. 147-158.

32. Audi G., Wapstra A.H., Thibault C. The Ame 2003 atomic mass evaluation // Nucl. Phys. — 2003. — V. A729. — P. 337—676.

33. Zeldes N., Gronau M., Lev A. Shell-model semiempirical nuclear masses // Nucl. Phys. - 1965. - V. 63. - P. 1-75.

34. Hofmann S. New elements — approaching Z=114 // Rep. Progr. Phys. — 1998. — V. 61. — P. 639—689.

35. Вахтель В.М., Головков Н.А., Громов К.Я.и ∂р. Структурные эффекты и систематики α-переходов для ядер с 52 ≤ Z ≤ 90 // Физика элементарных частиц и атомного ядра. — 1987. — Т. 18, Вып. 4. — С. 777—819.

36. *McFadden L., Satchler G.R.* Optical-model analysis of the scattering of 24.7 MeV alpha particles // Nucl. Phys. – 1966. – V. 84, № 1. – P.177–200.

37. Christensen P.R., Winter A. The evidence on the ion-ion potentials from heavy ion elastic scattering // Phys. Lett. -1976. - V.65B. - P.19-22.

38. Бадаев О.П., Кургалин С.Д., Чувильский Ю.М. Оценка масс и вероятностей α-распада нейтронодефицитных изотопов трансурановых элементов // Известия РАН. Сер. физ. — 2000. — Т. 64, № 5. — С. 924—929.