APPROXIMATE PROPERTIES OF THE DISCRETE PARTIAL FOURIER-JACOBI SUMS OF THE RECTANGULAR TYPE

Korkmasov F.M.

It is shown if $P_m^{\alpha,\beta}(x)$ $(\alpha,\beta > -1, m=0,1,2,...)$ is the classical Jacobi polynomials, then the system of polynomials of two variables $\{\Psi_{mn}^{\alpha,\beta}(x,y)\}_{m,n=0}^r = \{P_m^{\alpha,\beta}(x)P_n^{\alpha,\beta}(y)\}_{m,n=0}^r (r=m+n\leq N-1)$ is an orthogonal system on the grid $\Omega_{N\times N}=\{(x_i,y_j)\}_{i,j=0}^N$, where x_i,y_j are the zeros of the Jacobi polynomial $P_N^{\alpha,\beta}(x)$. Given an arbitrary continuous function f(x,y) on the square $[-1,1]^2$, if, we construct the discrete partial Fourier–Jacobi sums of the rectangular type $S_{m,n,N}^{\alpha,\beta}(f;x,y)$ over the orthonormal system introduced above. We prove that the order of Lebesgue constant $\|S_{m,n,N}^{\alpha,\beta}\|$ of the discrete sums $S_{m,n,N}^{\alpha,\beta}(f;x,y)$ for $-1/2 < \alpha,\beta < 1/2$, $m+n\leq N-1$ is $O((mn)^{q+1/2})$, where $q=\max\{\alpha,\beta\}$. As a consequence of this result, we consider a several approximate properties of the discrete sums $S_{m,n,N}^{\alpha,\beta}(f;x,y)$.

The key words: Jacobi polynomial, Lebesgue fun-stion, Lebesgue constant, discrete set, best approximation, discrete partial Fourier–Jacobi sums, Christoffel's numbers.