# ПЕРЕХОДНЫЕ ПРОЦЕССЫ ПРИ ПЛАВЛЕНИИ ИОННЫХ КРИСТАЛЛОВ С ОБЩИМ КАТИОНОМ

### Е.С. Машкина

Воронежский государственный университет

Выявлено влияние аниона на переходные процессы при плавлении ионных кристаллов KCl, KBr и KI. Установлено, что увеличение радиуса аниона приводит к увеличению температурновременных интервалов существования переходных процессов пред- и постплавления и уменьшению интенсивности флуктуаций диссипируемой энергии. На основе экспериментальных данных, полученных при изучении переходных процессов при плавлении KCl, KBr и KI проведены расчеты параметров кластерных систем фаз пред- и постплавления.

## введение

При изучении кинетики плавления КСІ в различных кинетических режимах методом ДТА выше и ниже точки плавления  $T_m$  нами обнаружены отличные от плавления кооперативные переходные эффекты, имеющие экзотермический, скачкообразный, флуктуационный и неравновесный характер. Кооперативные эффекты пред- и постплавления являются новым типом неравновесных фазовых переходов, характеризующих кинетику плавления. Выделяемая теплота на этапе пред- и постплавления рассматривается как теплота диссипации, а флуктуации выделющегося тепла являются флуктуациями теплоты диссипации. Скачкообразное изменение теплосодержания системы вблизи  $T_m$  приводит к возникновению возбужденных состояний, что свидетельствует о качественном фазовом преобразовании вещества на этапе пред-и постплавления и приводит к образованию особого структурного состояния вещества — фаз пред- и постплавления. Эти состояния характеризуются системой экспериментально обнаруживаемых неравновесных термодинамических параметров J, таких как  $T'_{pre-m}$ ,  $T''_{pre-m}$  — температуры начала и конца эффекта предплавления;  $T'_{\textit{post-m}}, \ T''_{\textit{post-m}}$  — температуры начала и конца постплавления;  $\Delta au_{pre-m}, \ \Delta au_{post-m}$  — длительности тепловых импульсов пред- и постплавления; температурный интервал эффектов пред-и постплавления  $\delta T_{pre-m}, \ \delta T_{post-m}$  и теплота диссипации пред- и постплавления  $\Delta Q_{pre-m}, \ \Delta Q_{post-m}$  [1, 2]. При этом флуктуации выделяющегося тепла являются флуктуациями теплоты диссипации.

Настоящая работа посвящена изучению особенностей переходных процессов при плавлении ионных кристаллов с общим катионом.

#### МЕТОДИКА ЭКСПЕРИМЕНТА

Для исследования переходных процессов при плавлении были выбраны ионные кристаллы с общим катионом: KCl, KBr, KI. Кинетика плавления KCl, KBr, KI изучалась методом цифрового ДТА [7—9], который визуализирует динамику изменения тепловыделения при равновесных и неравновесных фазовых переходах вдоль температурно-временной шкалы, включающий как мелко- так и крупномасштабные эффекты. Контролируемая полоса пропускания низких частот позволяет идентифицировать экзотермические, скачкообразные, флуктуационные переходные процессы при плавлении.

Термографирование проводилось в кварцевых сосудах Степанова, откачанных до вакуума  $10^{-4}$  мм. рт. ст. при скорости нагревания v = 5 К/мин, в качестве датчика использовались Pt-Pt / Rh (10%) термопары. В эксперименте использовались ионные кристаллы KCl, KBr, KI с навесками 2 г марки XЧ, дважды подвергнутые перекристаллизации.

# РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характерные кривые ДТА переходных процессов при плавлении ионных кристаллов КСІ, КВг, КІ представлены на рис. 1. Как видно амплитуды тепловых импульсов пред- и постпереходных эффектов КВг, КІ меньше амплитуд тепловых импульсов пред- и постплавления КСІ и, если в случае пред- и постплавления КСІ фронты теплового импульса переходных процессов имеют резкие границы, то для КВг и КІ фронты более пологи. Типичные значения термодинамических параметров пред- и постпереходных процессов щелочно-галоидных кристаллов приведены в табл. Значение теплот пред- и постплавления представлено в относи-

<sup>©</sup> Машкина Е. С., 2007

Е. С. Машкина



Puc. 1. Кривые ДТА переходных процессов при плавлении ионных кристаллов с общим катионом

Таблица

Термодинамические параметры переходных процессов при плавлении щелочно-галоидных кристаллов с общим катионом (v = 5 K/мин)

| Вещество | Предплавление            |                           |                          |                           | Постплавление             |                            |                          |                            |
|----------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|----------------------------|--------------------------|----------------------------|
|          | $T'_{pre-m}, \mathbf{K}$ | $T''_{pre-m}, \mathbf{K}$ | $\Delta \tau_{pre-m}, c$ | $\Delta Q_{pre-m}$ , o.e. | $T'_{nost-m}, \mathbf{K}$ | $T''_{nost-m}, \mathbf{K}$ | $\Delta 	au_{post-m}, c$ | $\Delta Q_{post-m}$ , o.e. |
| KCl      | 1003.9                   | 1040.6                    | 312                      | 0.085                     | 1080.6                    | 1101.1                     | 248                      | 0.048                      |
| KBr      | 976.6                    | 1014.8                    | 456                      | 0.185                     | 1086.8                    | 1132.7                     | 615                      | 0.24                       |
| KI       | 908.6                    | 951.2                     | 506                      | 0.315                     | 965.8                     | 1062.7                     | 1272                     | 0.72                       |

тельных единицах (о.е.), являющихся модулем отношения площади переходного эффекта к площади основного эффекта плавления.

Хотя переходные процессы имеют одинаковое проявление для KCl, KBr и KI, выявляется существенная роль аниона в пред- и постплавлении. Судить о влиянии иона на переходные процессы при плавлении позволяют полуэмпирические корреляции между термодинамическими параметрами пред- и постплавления и отношением радиусов катиона и аниона  $(r^{+}/r^{-})$ (рис. 2—3). Так увеличение радиуса аниона в ряду кристаллов KCl, KBr, KI, приводит к увеличению температурных интервалов переходных процессов  $\delta T_{pre-m}, \ \delta T_{post-m}$  и теплот диссипации пред- и постплавления  $\Delta Q_{pre-m}, \ \Delta Q_{post-m}.$ При этом выявлено, что в случае предплавления зависимости  $\delta T_{{}_{pre-m}}(r^{\scriptscriptstyle +}\,/\,r^{\scriptscriptstyle -}), \ \Delta Q_{{}_{pre-m}}(r^{\scriptscriptstyle +}\,/\,r^{\scriptscriptstyle -})$ имеют линейный характер, а в случае постплавления  $\delta T_{post-m}(r^+/r^-), \ \Delta Q_{post-m}(r^+/r^-)$  — нелинейный. Таким образом, выявляется существенная роль анионной подрешетки в большей степени в переходных процессах постплавления.

В настоящее время методы спектральной обработки (Фурье и вейвлет-анализ) представляет интерес для изучения флуктуационных диссипативных процессов и нерегулярных фрактальных структур [12, 13]. Методы Фурье и вейвлет-анализа нами использованы для исследования временных рядов флуктуаций теплоты диссипации предплавления ионных кристаллов. Исследование неравновесных фазовых переходов методом Фурье показало, флуктуации теплоты диссипации могут быть идентифицированы как двухуровневый фликкер-шум [14].

Вейвлет-анализ позволил получить дополнительную информацию к Фурье-анализу выявить характерные частоты флуктуаций теплоты диссипации предплавления KCl, KBr,



*Рис. 2.* Корреляции между температурным интервалом пред- и постплавления KCl, KBr, KI и отношением радиусов катиона и аниона  $(r^+/r^-)$ 

KI как индикаторы динамической кластеризации. Одной из особенностей вейвлет-анализа является возможность выявлять локальные особенности сигнала на разных масштабах, а, следовательно, изучать локальные свойства процесса [13]. В качестве базисной функции был выбран вейвлет Symlet8.

Типичная вейвлет-диаграмма предплавления КСІ в динамическом режиме при v = 5 К/мин представлена на рис. 4. Оси абсцисс соответст-



*Рис. 3.* Корреляции между теплотой диссипации пред- и постплавления KCl, KBr, KI и отношением радиусов катиона и аниона  $(r^+/r^-)$ 

вует время  $\tau$  (или параметр сдвига *b*), оси ординат — частотный масштаб вейвлета *a*. На приведенной вейвлет-диаграмме отчетливо проявляется воспроизводимая на разных масштабах иерархическая самоподобная структура локальных экстремумов поверхности W(a,b), что демонстрирует масштабное самоподобие флуктуаций теплоты диссипации предплавления KCl. На вейвлет-диаграммах KBr, KI также как и для KCl на разных масштабах воспроиз-



*Puc.* 4. Кривая ДТА эффекта предплавления KCl и вейвлет-диаграмма флуктуаций теплоты диссипации (динамический режим, *v* = 5 К/мин)

водится иерархическая самоподобная структура локальных экстремумов W(a,b) — ветвящихся «арок».

С помощью спектра энергии коэффициентов (интенсивности) вейвлет-преобразования  $E_W(a,b) = W^2(a,b) -$ скейлограммы определялся коэффициент самоподобия  $\beta$  как угол наклона зависимости  $\lg(E_w)$  к  $\lg(a)$  (рис. 5). Скейлограмма соответствует сглаженному спектру мощности Фурье-преобразования. Коэффициент самоподобия указывает на степень коррелированности разных частотных компонент. Для исследуемой группы веществ коэффициент самоподобия  $\beta \sim 2$ . Это позволяет интерпретировать переходные флуктуационные процессы предплавления как нелинейный броуновский шум [15]. Представление скейлограмм в линейном масштабе позволило выявить различие интенсивности процессов диссипации в исследуемых веществах (рис. 6). Полученные данные показывают, что с увеличением радиуса аниона в ряду KCl, KBr, KI интенсивность флуктуаций теплоты диссипации закономерно уменьшается.



*Рис. 5.* Скейлограмма флуктуаций теплоты диссипации предплавления KCl (динамический режим, v = 5 К/мин)



*Рис. 6.* Временная эволюция интенсивности флуктуаций теплоты диссипации эффектов предплавления ионных кристаллов с общим катионом

Впервые определяющая роль частотного фактора на образование наномасштабных фаз предплавления теоретически была показана Ю. Л. Хайтом [16], а затем развита в работах [7—9, 17]. Перераспределение энергии вблизи  $T_m$  происходит спонтанно в малых объемах  $\delta V_i$ , в результате возникновения коррелированных тепловых флуктуаций. Частота тепловых флуктуаций определяется через их время жизни:

$$f = \Delta t_{01}^{-1} \exp\left[-\frac{3A_i^3 z(T)}{2} \left(\frac{\delta T_{pre-m}}{T}\right)^2\right], \qquad (1)$$
$$\Delta t_{01} \approx \frac{A_i^2 a}{c_0},$$

где  $t_{01}$  — время жизни тепловой флуктуации,  $A_i$  — характеристическая длина корреляции, z — теплоемкость на одну степень свободы, a — межатомное расстояние,  $\delta T_{pre-m}$  — температурный интервал предплавления,  $c_0$  — скорость перераспределения энергии.

Через характеристическую длину корреляции *A*, оценивался средний радиус кластеров *r*:

$$A_{i} = \sqrt[3]{\frac{(T'_{pre-m})^{2}}{\delta T^{2}_{pre-m} z(T'_{pre-m})}},$$

$$r = A_{i} \cdot a.$$
(2)

где  $T'_{pre-m}$  — температура начала эффекта предплавления.

Поскольку  $f \sim A_i$ , то изменение частоты fбудет характеризовать изменение размеров кластеров. При температурах ниже точки плавления  $T \ll T'_{pre-m} < T_m$  время жизни тепловых флуктуаций  $\Delta t_{01}$  мало и существуют только единичные тепловые флуктуации. При возрастании температуры частота тепловых флуктуаций возрастает экспоненциально, в результате возникающих корреляций в фононной подсистеме происходит формирование кластеров объемом  $\delta V_i \approx (A_i a)^3$ . Оценки параметров фаз предплавления по формуле (1) для единичного объема при экспериментально определяемом нами  $T_{pre-m} = 30 - 50$  дают следующие значения интервала частот тепловых флуктуаций  $f \sim 0.02 - 9$  Гц. Увеличение радиуса аниона  $r^{-1}$ в ряду ионных кристаллов KCl  $(r^{-} = 1.81 \text{ \AA})$ , KBr  $(r^{-} = 1.96 \text{ A})$ , KI  $(r^{-} = 2.2 \text{ A})$ , приводит к уменьшению радиусов кластеров в предплавлении. Радиус кластеров, формирующихся на этапе предплавления, рассчитанный по (2) составляет 23.1 А (KCl), 21.4 А (KBr), 20.4 А (KI). Частотный интервал тепловых флуктуаций,

рассчитанный по (1), совпадает частотным интервалом флуктуаций теплоты диссипации предплавления в динамических режимах, определяемым методом вейвлет-анализа. В фазе постплавления ионных кристаллов KCl, KBr и КІ происходит незначительное ослабление корреляций и уменьшение размеров кластеров. Для расчета радиусов кластеров, формирующихся на этапе постплавления в (2) подставляем  $T'_{\textit{post-m}}, \,\, \delta T_{\textit{post-m}}$  и  $z(T'_{\textit{post-m}}).$  Радиус кластеров постплавления KCl составляет в среднем  $\sim 20$  A, радиус кластеров постплавления KBr  $r \sim 19$  A, радиус кластеров постплавления KI  $r \sim 17 \, \mathrm{A}$ . Следовательно кластерные структуры пред- и постплавления достаточно близки между собой.

Таким образом, интегральная частота тепловых флуктуаций, регистрируемая методом ДТА, выступает как индикатор динамической кластеризации фаз предплавления. Увеличение радиуса аниона в ряду ионных кристаллов KCl, KBr, KI приводит к уменьшению радиусов кластеров, формирующихся в пред- и постплавлении.

#### СПИСОК ЛИТЕРАТУРЫ

1. *Френкель Я.И*. Кинетическая теория жидкости. Л.: 1975. — 592 с.

2. Abramczyk H., Paradowska-Moszkowska, Wiosna G. // J. Chem. Phys. 2003. Vol. 118.  $\mathbb{N}$  9. P. 4169–4175.

3. Жукова Л.А., Манов В.П., Попель С.И., Разикова Н.И. // Расплавы. 1992. № 5. С. 15—20.

4. *Hiroaki K.* //J. Phys. Sos. Jap. 1983. Vol. 8. P. 2784–2789.

5. *Kojima S.* // Jap J. Appl. Phys. Pt. 1. 1989. Vol. 28. P. 228–230.

6. *Майборода В.П.* // Расплавы. 1997. № 1. С. 82—89.

7. *Bityutskaya L.A., Mashkina E.S.* // Phase Transition. 2000. Vol. 71. P. 317-330.

8. Битюцкая Л.А., Машкина Е.С. // ЖТФ. 1999. Т. 69. № 12. С. 57—61.

9. Битюцкая Л.А., Машкина Е.С. // ЖФХ. 2000. Т. 74. № 7. С. 1189—1194.

10. *Постон Т., Стюарт И.* Теория катастроф. М.: Мир. 1980. — 608 с.

11. *Уэндланд У.* Термические методы анализа. М.: Мир. 1978. — 526 с.

12. *Марпл С.Л*. Цифровой спектральный анализ и его приложения. М.: Мир. 1990. — 584 с.

13. Астафьева Н.М. // УФН. 1996. Т. 166. № 11. С. 1145—1170.

14. Битюцкая Л.А., Селезнев Г.Д. // ФТТ. 1999. Т. 41. Т. 9. С. 1679—1682.

15. *Малинецкий Г.Г., Подлазов А.В.* // Известия вузов. Прикладная нелинейная динамика. 1997. Т. 5. № 5. С. 89—106.

16. *Khait Yu.L.* // Phys. Stat. Sol. (b). 1985. Vol. 131. P. K19-K22.

17. Lev B., Yokoyama H. // Int. J. Modern Physics B. 2003. Vol. 17. № 27. P. 4913–4933.