РАДИАЦИОННО-ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПРОИЗВОДСТВЕ МДП ИНТЕГРАЛЬНЫХ СХЕМ

В. Р. Гитлин

Воронежский государственный университет

Разработана радиационная технология прецизионной регулировки порогов МДП транзисторов на основе использования мягкого рентгеновского (<20 кэВ) и УФ излучений. Возможность реализации этих процессов основана на контролируемом радиацией формировании термостабильного заряда в подзатворных окислах, содержащих примесь фосфора. Успешно проведено моделирование этих технологических процессов. Обобщены результаты внедрения технологии, основанной на использовании ионизирующей радиации в полномасштабном производстве серийных МДП интегральных схем.

Радиационная технология (РТ) становится одним из перспективных направлений в современной микро-(нано)электронике, интенсивно развиваемых в последнее время. Это обусловлено целым комплексом неоспоримых достоинств РТ: воспроизводимостью процессов, высоким уровнем контроля, простотой технической реализации, совместимостью со стандартными технологическими процессами, возможностью использования на различных этапах технологического процесса, включая финишные, избирательностью воздействия, отсутствием внесения дополнительных загрязнений и элементов нестабильности в полупроводниковые структуры в процессе реализации способа.

Современные РТ используют широкий класс ионизирующих излучений в диапазоне энергий от единиц до миллионов электронвольт. Воздействие излучений на твердотельные объекты приводит к изменению их структурных, механических, электрофизических и других характеристик, а также существенно влияет на характер протекания различных технологических процессов при их формировании. Выбор полезных, с точки зрения практического использования, изменений свойств полупроводниковых структур под радиационным воздействием позволяет проводить регулировку ряда важнейших параметров полупроводниковых приборов (ПП) и интегральных схем (ИС), решать задачи повышения надежности изделий и повышения выхода годных. Вид радиационного воздействия в радиационно-технологическом процессе (РТП) определяется конкретными технологическими задачами [1, 2].

Экспериментальные данные по воздействию различных видов ионизирующей радиации на МДП-структуры к началу выполнения настоящей работы носили разрозненный характер, а существующих модельных представлений было недостаточно для их понимания.

Традиционный интерес разработчиков к применению потоков высокоэнергетических частиц и гамма-квантов для РТП был связан с испытаниями изделий на радиационную стойкость при использовании ограниченного круга стандартных радиационных источников [3]. Подобный подход ограничивал использование

Радиационно-индуцированное изменение параметров МДП-структур связано с ростом плотности поверхностных состояний на границе раздела Si—SiO₂ и в объеме подзатворного окисла. Контролируемое изменение заряда в подзатворных диэлектриках МДП-структур открывало путь к управлению важнейшими параметрами изделий, воспроизводимость которых в значительной мере влияет на выход годных и определяет технико-экономические показатели производства. Однако развитие РТП для МДП ПП и ИС долгое время сдерживалось устоявшимся мнением о нестабильности радиационно-индуцированного заряда в слоях и на границах раздела подзатворного диэлектрика. Это было справедливым для ранних разработок МДП ПП на основе *p*-канальных МДП-транзисторов с металлическими затворами и беспримесными подзатворными окислами и не выполняется для МДП-транзисторов с самосовмещенными поликремниевыми затворами легированными фосфором и с подзатворными слоями оксида кремния, содержащими примесь фосфора.

РТП низкой производительностью из-за слабого поглощения высокоэнергетических излучений с малым сечением взаимодействия в тонких технологических слоях планарных структур, а также внесением в облучаемые МДП ПП и ИС нежелательных структурных дефектов. Повышение мощности радиационных излучений для высокоэнергетических РТП плохо совместимо со стандартными технологическими процессами изготовления изделий, требует специальных мер защиты оборудования и персонала.

Указанные ограничения определили актуальность разработки новых РТП на основе низкоэнергетических воздействий. В работе представлены РТП подгонки пороговых напряжений МДП ИС с использованием низкоэнергетического рентгеновского (< 20 кэВ) и ультрафиолетового (ближний спектр) излучений. Основой для управления параметрами МДП ИС является возможность формирования стабильного радиационно-индуцированного заряда в подзатворном слое оксида кремния легированного фосфором. Обобщен опыт использования данных РТП в серийном производстве широкого класса МДП ИС и перспективы их развития.

Предложена модель МДП-структуры, учитывающая наличие собственных и примесных дефектов в слое двуокиси кремния и поверхностных состояний на границе окисла с полупроводниковой подложкой, адекватно описывающая экспериментальные результаты исследований процессов накопления заряда в диэлектрике при воздействии ионизирующих излучений и его последующей релаксации.

Для выявления чувствительных к воздействию радиации электрофизических характеристик МДП ИС, оценки термополевой стабильности радиационно-индуцированного изменения параметров МДП ИС, анализа деградационных процессов в МДП ИС, контроля характеристик всех технологических слоев и их композиций, формирующих ИС, были разработаны тестовые кристаллы с набором специальных тестовых структур, отражающих схемотехнические особенности, топологические допуски и технологию изготовления контролируемых изделий. Корреляция между параметрами ИС и параметрами структур тестовых кристаллов обеспечивалась формированием тестовых кристаллов на рабочие пластинах (по 3-5 кристаллов на пластину) и их изготовлением в едином

технологическом маршруте с контролируемой МДП ИС. Для оценки однородности распределения электрофизических параметров МДПструктур в пределах рабочей пластины и выбора режимов индивидуальной обработки пластин контроль параметров проводился по тестовым структурам, формируемых у края кристалла ИС между контактными площадками. Контроль параметров тестовых структур осуществлялся на автоматизированном измерительный комплексе, разработанном на основе тестера Т-4503. Была создана и прошла апробацию в производственных условиях автоматизированная подсистема статистического анализа результатов тестового контроля [4].

В качестве радиационных воздействий использовались гамма-кванты с энергией $\sim 1,2$ Мэв, низко- и высокоэнергетические рентгеновские излучения с энергиями квантов ~ 15 кэВ (X_1) и ~ 150 кэВ (X_2), низкоэнергетические (10-35 кэВ) и высокоэнергетические ($\sim 3,5$ МэВ) электроны, альфа-частицы с энергией ~ 5 МэВ, ближний УФ с энергией квантов <6 Эв.

Облучение гамма-квантами проводилось на установке «Исследователь» с источником Со⁶⁰. Рентгеновское облучение — на установках РУМ-17 с анодной трубкой 4ВТМ-250 (вольфрамовый анод, анодное напряжение $V_4 = 90$ — 250 Кв, ток трубки $I_{\scriptscriptstyle A} \sim 15\,$ Ма) и модифицированной установке СРМ-20 с рентгеновской трубкой БХВ-9 (палладиевый анод, $V_A = 15 - 15$ 40 Кв, $I_{A} = 50$ Ма). В применявшихся трубках не менее 70 % потока рентгеновских квантов излучались с энергией $E_{\chi}\sim 2\,/\,3V_{A}.$ Экспозиционная доза ренгеновского излучения контролировалась ионизационным дозиметром RFT-VF7 с точностью не хуже 5 %. Неравномерность потока излучения по поверхности пластин диаметром 100 мм не превышала 10 %. Облучение электронами проводилось в растровом электронном микроскопеРЭМ-200 и на электронном ускорителе ЭЛУ-4. Обработка альфа-частицами осуществлялась от источника «Факт» (Po²¹⁰) на установке РТУ ОПИ-АМ. Активность единичного источника составляла (3,7 — 11,1) × 10 Бк. Облучение проводилось на финишной стадии изготовления МДП ИС перед резкой пластин на кристаллы в интервале экспозиционных доз до 10^6 рентген (P).

Исследования показали, что из 64-х параметров тестового контроля, полностью определяющих работоспособность МДП БИС, чувствительны к воздействию радиации только пороговые напряжения активных транзисторов, крутизна сток-затворных характеристик, а также токи поверхностных утечек, изменение которых носит нерегулярный характер. Выявлены общие механизмы, вызывающие смещение пороговых напряжений в область отрицательных потенциалов и уменьшение крутизны активных транзисторов. Деградация порогового напряжения является интегральным проявлением различных причин, основные из которых — накопление фиксированного радиационно-индуцированного положительного заряда в подзатворном диэлектрике и изменение плотности поверхностных состояний на границе подзатворного диэлектрика с подложкой [10, 11, 13].

Сопоставление радиационных воздействий по дозовым зависимостям порогового напряжения V_{th} крутизне S активных транзисторов БИС (p-, n-канальные МДП БИС, КМОП БИС) показало, что дозовые зависимости линейны на начальном участке и выходят на насыщение с ростом поглощенной дозы для всех видов исследованных излучений. Установлена возможность взаимной имитации воздействий при облучении МДП-структур в электрически пассивном режиме для «мягкого» (X_1) и «жесткого» (X_2) рентгеновского излучения в интервале экспозиционных доз до 10⁶ Р, для X_1, X_2 , гамма-излучения, альфачастиц до доз 10⁴ Р [5]. Коэффициенты подобия

Рис. 1. Дозовые зависимости изменения порогового напряжения тестового *n*-канального МДП транзистора серийной ИС после воздействия ренгеновского излучения, *γ*-квантов и последующего отжига (после отжига все зависимости совпадают)

относительно гамма-излучения в этих диапазонах доз: $K_{\alpha} = 3.3, K_{\chi_1} = 3.1, K_{\chi_2} = 2.10$. Интервал доз, в котором возможна взаимная имитация, уменьшается по мере увеличения деструктивной компоненты излучения, вызывающей структурные нарушения в слоях и на границе раздела системы кремний-двуокись кремния, в последовательности: Х₄, Х₂, гамма-излучение, альфачастицы. При этом возрастает вклад поверхностных состояний на границе раздела подзатворного диэлектрика с полупроводниковой подложкой в сдвиг порогов, что коррелирует с уменьшением крутизны. Этот факт объясняется тем, что эффективность взаимодействия излучения с веществом возрастает с увеличением сечения захвата $\sigma \sim const(E_{X})^{-7/2},$ однако оптимальный энергетический диапазон лежит в пределах 10-20 кэВ. При более низких энергиях происходит интенсивное поглощение излучения в верхних пассивирующих слоях МДП-структуры, что снижает эффективность воздействия.

Эффективность ионизации, приводящей с изменению пороговых напряжений за счет накопления радиационного заряда в подзатворном диэлектрике, увеличивается с ростом сечения взаимодействия излучения с веществом в последовательности: гамма-кванты, Х₂, Х₄, электроны, альфа-частицы. Общей для всех воздействий закономерностью является накопление заряда в объеме подзатворного диэлектрика без изменения крутизны на начальном (не более 10⁴ P) участке дозовой зависимости. При более высоких дозах начинает превалировать генерация поверхностных состояний (ПС). При термическом отжиге (до 450 °C) восстановление параметров происходит в обратной последовательности: сначала отжигаются ПС (при этом восстанавливается крутизна МДП-транзистора), а затем отжигается часть объемного заряда. Неотжигаемая часть радиационно-индуцированного заряда обеспечивает термостабильное изменение порогового напряжения. Установлено, что величина термостабильного изменения порогового напряжения определяется дозой облучения и не зависит от вида радиации и режима облучения. Этот результат является предпосылкой для разработки радиационных методов управления пороговым напряжением на финишных этапах изготовления МДП ИС.

Сопоставление различных видов радиации позволило выбрать мягкое рентгеновское излучение с энергией 10—20 кэВ в качестве наиболее

эффективного воздействия для изменения пороговых напряжений МДП ИС за счет формирования термостабильного заряда в окисле. Выбор определен тем, что мягкое рентгеновское излучение имеет высокую ионизирующую способность, обеспечивающую эффективное накопление заряда в диэлектрике, и непосредственно не создает структурных дефектов в полупроводнике. Очевидна контролируемость, избирательность, технологичность, простота технической реализации, совместимость РТП с использованием мягкого рентгеновского излучения. С существующими технологическими маршрутами

В качестве источников рентгеновского излучения для реализации РТП могут быть использованы модификации промышленных установок. Подобная установка была разработана и эксплуатировалась в серийном производстве МДП ИС для радиационной обработки рабочих и тестовых пластин [9]. Установка самозащищенная, не требует дополнительной защиты и не предъявляет специальных требований к рабочим помещениям. Конструктивно установка состоит из высоковольтного блока питания, рентгеновской трубки в защитном кожухе, облучательной камеры и блока автоматики с панелью управления. Тройная система блокировок обеспечивает нормальное функционирование установки и безопасную работу персонала: управление свинцовой задвижкой перед окном рентгеновской трубки, гидроблокировка в системе водяного охлаждения трубки, блокировка по высокому напряжению. Мощность, потребляемая установкой — 2.5 кВт. Мощность дозы рентгеновского излучения — 40 Р, неравномерность плотности потока рентгеновского излучения по площади пластины диаметром 100 мм не более 20 %. Производительность установки — от 20 до 50 пластин за 1 час рабочего времени в зависимости от типа изделия и дозы облучения. Аналогичные выпускаемые промышленностью установки в 16-20 раз менее эффективны. С 1986 года установка используется в ПО «Электроника» (Воронеж) в качестве производственного оборудования при проведении РТП в рамках технологических маршрутов изготовления серийных МДП БИС.

Облучение МДП-транзисторов приводит к образованию в подзатворном окисле положительного заряда, имеющего две составляющие с различной термополевой стабильностью и сдвигающего сток-затворные вольт-амперные характеристики (ВАХ) в сторону отрицательных потенциалов. Нестабильная («отжигаемая») часть радиационно-индуцируемого заряда обусловлена захватом дырок на напряженные связи Si—O и/или Si—Si.

Стабильная часть радиационно-индуцированного изменения V_{th} составляет от 30 до 70 % от его начального значения в зависимости от типа изделия и его технологии и связана с наличием примеси фосфора в слое подзатворного окисла. Установлено, что стабильная («неотжигаемая») часть радиационно-индуцированного заряда в окисле представляет собой заряд ионизированных атомов пятивалентной примеси (фосфора) изоморфно замещающих атомы кремния к кислородных тетраэдрах стеклообразной окиси кремния. Заряженные примеснокислородные тетраэдры (PO₂)⁺ встроены в сетку двуокиси кремния и неподвижны, что обеспечивает высокую термополевую стабильность этого заряда. В стандартных технологиях изготовления МДП ИС фосфор вносится в подзатворный окисел из поликремниевых затворов при их легировании фосфором. При этом сам процесс легирования может осуществляться как ионным легированием, так и диффузией из слоя фосфоросиликатного стекла с последующей высокотемпературной разгонкой примеси.

Термополевые испытания изделий с радиационной подгонкой порогов проводились в экстремальных температурных и электрических режимах ($T_{\text{test}} = 150$ °C, $E = 5 \cdot 10^5$ B/см, $t_{\text{test}} = 1200$ ч). При этом отклонение порогового напряжения МДП транзистора находилось в пределах точности метода измерения и составляло $V_{tb} < 0.1$ B.

С использованием предложенного метода определения констант, характеризующих процессы термостимулированной релаксации параметров облученной МДП БИС [8,12] и на основе экспериментальных данных установлено, что время наработки серийных изделий, подвергнутых рентгеновской обработке, превышает нормативные требования к ним по надежности и безотказности ($t_{\rm work}$ более 10^8 ч). Расчет проводился по формулам для температурновременной зависимости изменения порогового напряжения облученной МДП ИС и для оценки времени сохранения корректируемого параметра в рабочем интервале ($t_{\rm test}$ и $t_{\rm work}$ — времена

испытания и эксплуатации МДП ИС при температурах T_{test} и T_{work} , соответственно):

$$\Delta V_{th}(t) = \Delta V_{th}(0) \cdot \exp\left(-\lambda \cdot \exp\left(-\frac{E_a}{kT}\right) \cdot t\right), \ (1)$$

$$t_{\rm work} = t_{\rm test} \cdot \exp\left(-E_a \cdot \left(\frac{1}{kT_{\rm test}} - \frac{1}{kT_{\rm work}}\right)\right). \quad (2)$$

На основе управления величиной радиационно-индуцированного термостабильного заряда в подзатв-орном окисле МДП-структуры на финишном этапе изготовления БИС на пластинах разработаны РТП корректировки пороговых напряжений с использованием низкоэнергетического ($E_x \sim 10 - 20$ кэВ) рентгеновского излучения и низкотемпературных (<450 °C) неразрушающих термических отжигов [8, 12, 22].

Физическими ограничениями радиационной подгонки порогов для МДП транзисторов являются захват горячих носителей из канала при уменьшении его длины, пробой и туннельная разрядка радиационно-индуцированного заряда в окисле при уменьшении его толщины. При реализации РТП не требуется информация о количестве и пространственном распределении фосфора в слое подзатворного окисла. Достаточно определить дозовую зависимость стабильного заряда в предварительном тестировании изделий малыми дозами излучения. Радиационная чувствительность V_{th} определяется по тестовым структурам на рабочих пластинах изделий, затем определяют коэффициенты чувствительности с учетом термического отжига и рассчитывают по пластинам необходимые дозы для требуемой подгонки V_{th} рабочих кристаллов. Серийные МДП ИС имеют коэффициенты радиационной чувствительности $2 - 8 \cdot 10^{-5}$ B/P.

В качестве сопутствующих позитивных эффектов при использовании рентгеновских РТП было обнаружено повышение пробивных напряжений окисных пленок (на 10—15 В) и снижение (в 3—5 раз) первоначального разброса параметров кристаллов по пластине, что может быть объяснено улучшением границы подложки под воздействием радиационно-термической обработки. Без предварительной рентгеновской обработки, одними термическими отжигами подобные результаты не достигались.

Принципиальным ограничением метода рентгеновской корректировки пороговых напряжений МДП ИС является возможность их изменения только в сторону отрицательных потенциалов, что объясняется захватом дырок на ловушечные центры подзатворного диэлектрика. Однако если энергия квантов меньше ширины запрещенной зоны двуокиси кремния, облучение может вызвать надбарьерную эмиссию электронов в подзатворный окисел из затвора и подложки. Захват фотоэлектронов на дырочные ловушки в подзатворном окисле приводит к накоплению в нем отрицательного заряда и к сдвигу V_{th} в сторону положительных потенциалов. Это представляет значительный интерес для использования УФ ближнего спектра (<6Эв) с целью расширения возможностей РТП [14]. Первичное облучение УФ не изменяет параметры МДП транзисторов. Но УФ облучение приводит к уменьшению радиационноизмененных порогов ΔV_{th} вплоть до исходных значений V_{th}. Термостабильность пороговых напряжений не зависит от степени восстановления их УФ. Восстановление стабильности V₄, определяется тем, что надбарьерная эмиссия

Рис. 2. РТП подгонка порогов МПД ИС: 1) исходная; 2) доза 10⁴ Р; отжиг 400 °С; 3) 15 мин; 4) 90 мин

электронов приводит к их захвату на положительно заряженные центры (PO₄)⁺ в окисле, снижая величину заряда, и, не влияя на его природу.

Затворы серийных МДП ИС непрозрачны для УФ излучения, а его влияние на заряд в окисле обусловлено тем, что слои окисла являются для УФ-квантов световодами, обеспечивая их проникновение под затворы МДП транзисторов. Термостабильное изменение радиационно-индуцированного заряда с использованием УФ-излучения расширяет возможности РТП, дает дополнительные возможности развития радиационных методов управления параметрами МДП ИС.

Дальнейшее развитие рентгеновских РТП было реализовано в следующих направлениях [15—21].

Разработан РТП двухэтапной подгонки порогов, включающий смещение пороговых напряжений ионным легированием за пределы технологических норм в сторону положительных потенциалов на первом этапе и последующую подгонку порогов рентгеновским облучением и термическим отжигом на втором этапе. РТП двухэтапной подгонки снимает ограничения на рентгеновскую корректировку порогов, исходные значения которых смещены в сторону отрицательных потенциалов относительно технологических норм.

Разработан РТП корректировки пороговых напряжений МДП ИС в расширенных пределах. Процесс основан на многократном повторении цикла облучение—отжиг, обеспечивающем существенное расширение пределы радиационно-термического изменения пороговых напряжений за счет аддитивного накопления термостабильного заряда в каждом цикле. Показано, что облучение при температуре отжига также расширяет диапазон рентгеновской корректировки порогов за счет накопления при высокотемпературном (~ 450 °C) облучении только термостабильной части радиационно-индуцированного заряда.

Разработан РТП индивидуальной рентгеновская подгонки порогов по кристаллам или группам кристаллов, обеспечивающей 100 % воспроизводимость пороговых напряжений по пластине.

Разработаны РТП на основе обратимого изменения порогов МДП ИС при последовательном воздействии мягкого рентгеновского и ближнего УФ излучений, с последующей термообработкой для стабилизации параметров. РТП с индивидуальным УФ облучением кристаллов ИС по пластине после рентгеновского облучения и термической обработки позволяет реализовать 100 %-ный выход годных по корректируемому параметру. Показано, что РТП с УФ облучением после рентгено-термической обработки обеспечивает одновременную корректировку нескольких независимых параметров.

Предложены РТП с последовательным воздействием рентгеновского и УФ-излучений для замены ими сложных комплексных трудноконтролируемых процессов фотолитографии и ионного легирования на операциях «прошивки» и подгонки пороговых напряжений в технологических маршрутах изготовления МДП БИС.

Ниже приведены формулы, описывающие изменение пороговых напряжений КМОП пары при воздействии рентгеновского и УФ излучений (3—4) и формулы для расчета рентгеновской дозы и УФ экспозиции, требуемых для подгонки порогов (5—6).

$$\Delta V_{th1} = k_1 D + \lambda_1 t_{uv}, \qquad (3)$$

$$\Delta V_{th2} = k_2 D + \lambda_2 t_{uv}, \qquad (4)$$

$$D = \frac{\lambda_2 \cdot \Delta V_{th1} - \lambda_1 \cdot \Delta V_{th2}}{k_1 \cdot \lambda_2 - k_2 \cdot \lambda_2}, \qquad (5)$$

$$t_{uv} = \frac{k_2 \cdot \Delta V_{th1} - k_1 \cdot \Delta V_{th2}}{k_1 \cdot \lambda_2 - k_2 \cdot \lambda_2}.$$
 (6)

Разработаны РТП, основанные на интегральном облучении рабочих пластин рентгеновским и УФ излучением с целью снижения статистического разброса параметров микросхем по пластине.

Показано, что в условиях производства методы рентгеновской корректировки параметров позволяют проводить подгонку порогов МДП ИС с точностью не хуже 0.05 В, что является недостижимым в рамках существующих технологий.

Разработанные РТП были опробованы на широком классе МДП БИС (*p*-, *n*-канальные МДП БИС, КМОП БИС 24-х типов, 8-ми серий) и с 1986 г. Внедрены в серийное производство на ПО «Электроника» (Воронеж). За первые 5 лет использования (1986—1990 гг.) с помощью рентгеновских РТП восстановлено из окончательного брака и переведено в годную продукцию 2 млн 362 тыс. изделий указанных типов, что дало экономический эффект в размере 4212,3 тыс. рублей в ценах 1990 г. Всего за время использования (1986—1998 гг.) восстановлено из брака и переведено в годную продукцию 4 млн 287 тыс. изделий, составивших от 9 % до 65 % общего объема выпуска по различным типам изделий в разные годы.

Разработанные РТП, существенно повышают ют процент выхода годных МДП БИС при обеспечении высокого качества и надежности изделий, принципиально улучшают техникоэкономические показатели производства, имеют широкие возможности для своего дальнейшего усовершенствования и могут быть эффективно использованы при разработке и изготовлении новых перспективных изделий электронной техники [22].

Дальнейшие разработки технологических процессов с использованием ионизирующей радиации, решение проблем оценки радиационной стойкости МДП ИС, создание дозиметров на их основе, потребовали количественного описания процессов накопления и релаксации радиационного заряда в МДП транзисторах с учетом глубоких ловушечных уровней примесных центров в окисном слое [23, 24, 25].

С этой целью было проведено моделирование воздействия ионизирующих излучений на зарядовые свойства структур *poli*-Si—SiO₂(P)—Si на основе решения системы уравнений, описывающих процессы накопления и релаксации радиационного заряда в МДП-структурах с двумя ловушечными уровнями, учитывающими наличие собственных и примесных ловушечных уровней в слое двуокиси кремния. Достигнуто количественное совпадение рассчитанных дозовых и отжиговых зависимостей изменения эффективного заряда в модельных МДП-структурах с экспериментальными зависимостями, измеренными ранее на структурах *poli*-Si— SiO₂(P)—Si.

Проведен расчет полевых зависимостей фотоэмиссионных токов в МДП-структурах с глубокими ловушками и радиационным зарядом в окисном слое. Рассчитанные зависимости имеют два пологих участка, обусловленных эмиссией электронов с противоположных границ МДП-структуры, разделенных участком резкого измененияфотоэмиссионного тока, что согласуется с экспериментальными данными для структур *poli*-Si—SiO₂(P)—Si с накопленным радиационным зарядом. Вид фотоэмиссионных вольт-амперных характеристик отражает пространственное распределение объемного заряда в окисле и позволяет определить эффективные значения этого заряда с обеих границ раздела.

Были рассчитаны полевые зависимости тока, протекающего в МДП-структурах с глубокими ловушками и радиационным зарядом в окисном слое под воздействием низкоинтенсивного рентгеновского излучения Рассчитанные зависимости согласуются с экспериментальными зависимостями, измеряющимися ранена структурах *poli*-Si—SiO₂(P)—Si. Наклон расчетных вольт-амперных характеристик зависит от подвижности электронов в окисле, что позволяет обнаружить электрически нейтральные дефекты в объеме окисла, являющиеся центрами рассеяния электронов проводимости в облучаемом окисле, но не проявляющиеся в обычных электрофизических измерениях.

Были проанализированы изменения стабильного заряда на глубоких примесных уровнях в структурах *poli*-Si—SiO₂(P)—Si в процессах рентгеновского облучения и термического отжига, многократного повторения облучения и отжига, облучения при повышенных температурах и при последовательных рентгеновском, ультрафиолетовом и термическом воздействиях. Результаты моделирования полностью согласуются с результатами ранее разработанных РТП корректировки пороговых напряжений МДП ИС [23, 25].

Проведенное моделирование РТП позволило количественно описать наблюдавшиеся эффекты расширения пределов изменения стабильного заряда при высокотемпературном рентгеновском облучении, обратимого изменения стабильного заряда при последовательном воздействии рентгеновского и ультрафиолетового излучений, а также значительное снижение разброса пороговых напряжений МДП транзисторов по пластине при последовательном воздействии рентгеновского облучения и термического отжига. Количественное соответствие рассчитанных зависимостей изменения порогового напряжения ранее полученным экспериментальным зависимостям свидетельствует об адекватности выбранной модели.

СПИСОК ЛИТЕРАТУРЫ

1. Коршунов Ф.П., Богатырев Ю.В., Вавилов В.А. Воздействие радиации на интегральные микросхемы. Минск: Наука и техника. 1986. — 256 с. 2. Вавилов В.С., Горин Б.М., Данилин Н.С. и др. Радиационные методы в твердотельной электронике. М.: Радио и связь, 1990. — 183 с.

3. *Митчелл Дж.., Уилсон Д*. Поверхностные эффекты в полупроводниковых приборах, вызванные радиацией. М.: Атомиздат. 1970. — 90 с.

4. Десятов Д.Б., Еремин С.А, Фетисова С.В., Гитлин В.Р. Статистический анализ тестового контроля производства интегральных микросхем // Автоматизированное проектирование машин и производственных систем. Сборник научных трудов. Воронеж, 1985. С. 75—83.

5. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Татаринцев А.В. Сопоставление воздействия различных видов ионизирующих излучений на параметры серийных МДП БИС // Электронная техника. Сер. 7. «Технология, организация производства и оборудование». 1990, № 6 (163). С. 9—12.

6. Першенков В.С., Попов В.Д., Шальнов А.В. Поверхностные радиационные эффекты в ИМС. М.: Энергоатомиздат. 1988. — 253 с.

7. *Ma T.P., Dressendorfer P.V.* Editors Ionizing Radiacion Effects in MOS Devices and Circuits. New-York: Wileu-Interscience. 1989. P. 650.

8. Вахтель В.М., Гитлин В.Р., Кадменский С.Г., Левин М.Н. Радиационная технология корректировки электрофизических параметров МДП БИС с использованием рентгеновского излучения // Электронная техника. Сер. 7. «Технология, организация производства и оборудование». 1990. № 6 (163). С. 19—23.

9. Бугров В.П., Вахтель В.М., Гитлин В.Р., Гуменников В.В., Кадменский С.Г. Рентгеновская технологическая установка для финишной радиационной обработки БИС на пластинах // «Технология, организация производства и оборудование». 1990. № 6(163). С. 13—19.

10. *Shimizu H., Munakata C.* Phosphorus-Induced Positive Charge in NativeOxide of Silicon Wafers // Appl. Phys. Lett. 1994. V. 64. P. 3598.

11. Warren W.L., Shneyfelt M.R., Fleetwood D.M., Winokur P.S. Nature of Defect Centers in Doped Thin Film SiO₂ // Appl. Phys. Lett. 1995. V. 67. P. 995.

12. Levin M.N., Gitlin V.R., Kadmenmski S.G., Jstrouhov S.S., Pershenkov V.S. X-ray and UV Controlled Adjustment of MOS VLSI Circuits // Microelektronics Reliabiliti. 2001. V. 41. № 2. P. 185– 191.

13. Benedetto I.M., Boesch H.F., Mc Lean F.B. Dose and energi dependence of interface trap formation in Co-60 and X-ray environments // IEEE Trans. Nucl. Sci., 1988. No 35. P. 1260-1264.

14. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Татаринцев А.В. Использование ультрафиолетового излучения в радиационно-термических процессах корректировки параметров МДП БИС // Электронная техника. Сер. 7. «Технология, организация производства и оборудование». 1990. № 6 (163). С. 23—26.

15. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Остроухов С.С. и др. Способ изготовления МДП БИС // Патент РФ № 1436768 от 10.08.1993.

16. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Остроухов С.С. и др. Способ изготовления МДП БИС // Патент РФ № 1762688 от 12.08.1993.

17. Гитлин В.Р., Кадменский С.Г., Остроухов С. С. и др. Способ изготовления МДП транзисторов // Патент РФ № 4159435 от 12.10.1993.

18. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Остроухов С.С. и др. Способ изготовления МДП БИС // Патент РФ №1752128 от 12.08.1993.

19. Гитлин В.Р., Кадменский С.Г., Левин М.Н., Остроухов С.С. и др. Способ изготовления МДП транзисторов // Патент РФ №1419418 от 10.08.1993.

20. Гитлин В.Р., Кадменский С.Г., Остроухов С.С. и др. Способ изготовления МДП транзисторов // Патент РФ № 1176777 от 10.08.1993.

21. Гитлин В.Р., Кадменский С.Г., Остроухов С.С. и др. Способ изготовления МДП транзисторов // Патент РФ №1499614 от 12.08.1993.

22. Левин М.Н., Гитлин В.Р., Татаринцев А.В., Остроухов С.С., Кадменский С.Г. Рентгеновская корректировка пороговых напряжений в производстве МДП интегральных схем // Микроэлектроника.2002. том 31. № 6. С. 408—413.

23. Левин М.Н., Татаринцев А.В., Макаренко В.А., Гитлин В.Р. Моделирование процессов рентгеновской корректировки пороговых напряжений МДП интегральных схем // Микроэлектроника. 2006. том 35. № 5. С. 382—391.

24. Левин М.Н., Гитлин В.Р., Татаринцев А.В., Макаренко В.А., Меньшикова Т.Г. Моделирование процессов релаксации радиационного заряда в МОП-структурах // Вестник Воронежского государственного университета. Серия физика, математика. 2003. № 1. С. 71-77.

25. Гитлин В.Р., Татаринцев А.В., Макаренко В.А., Левин М.Н. Моделирование процессов радиационной технологии в производстве МДП интегральных схем // Вестник Воронежского государственного университета. Серия физика, математика. 2004. № 2. С. 16—24.