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introDUction

we consider embeddings of the Calderon spaces 
L( , )E F  to rearrangement invariant spaces. The 
Calderon spaces are defined with the help of the 
best approximation e ft E( )  of f EŒ  by entire 
functions of exponential type of degree t n1/  in each 
variable in the norm of rearrangement invariant 
space E . The space L( , )F E , where F  is a 
functional lattice on (0, )• , consists of f EŒ  such 
that e f Ft E( ) Œ  with the corresponding norm or 
quasi-norm. These spaces are intimately connected 
with the Besov spaces and their generalizations. 
Thus embeddings L( , )E F XÃ  are studied along 
with the study of the embeddings of smooth 
function spaces (e.g., see [3, 5, 6]). M.Goldman and 
R.Kerman in [7] found the rearrangement invariant 
space X0  which envelope the space L( , )E F . In 
other words they found the minimal rearrangement 
invariant space which contains L( , )E F . In the 
present paper we give a new description of X0  in 
terms of interpolation spaces. we find that X0  is 
described as a J -method interpolation space with 
a concrete parameter between some lorentz space 
and L• , thus we clarify the position of this space 
in the family of rearrangement invariant spaces. 
Some conditions added to the conditions of [7] 
enable us to give a very transparent description of 
the optimal space X0 .

Basic Definitions anD notation

Everywhere below we use notation from [7]. 
Denote by f *  the decreasing rearrangement of a 

measurable function f n:  Æ , i.e., f *  is the 
decreasing right continuous function on  + , 
equimeasurable to f ( )x , i.e.,

 
mes f

mes x f x

n{ :| ( ) | }

{ : ( ) },*

x x l

l

Œ > =

= Œ >+




 

for all l > 0 , where mes  denotes the lebesgue 
measure on n  or on  +  respectively.

A Banach lattice is a space E  of measurable 
functions with a monotone norm, i.e. 

  f g g E f E f gE E£ Œ fi Œ £, , .
A Banach lattice E  is called a rearrangement 

invariant space if 

 f g g E f E f gE E
* *, , .£ Œ fi Œ £

we shall use axioms of the theory of Banach 
lattices and the theory of rearrangement invariant 
spaces (RIS) given by C. Bennett, R. Sharpley [�] 
(Chapters �—2). In particular the Fatou property 
is included in the definition of Banach lattice. 
Thus the generalized Minkowski inequality for 
infinite sums and integrals is valid in RIS E .

Recall (see [�], Theorem 4.�0), that there is a 
RIS E  of functions determined on  + , such that 

  f fE Rn E( ) = .* 
It will cause no confusion if we use the same 

letter E  to designate this space on  + .
let jE t( ) , where t > 0 , be the fundamental 

function of RIS E , i.e., 

  j cE t E
t( ) = .(0, )

It is easily seen that jE t( )  is quasi-concave, 
i.e.,

  0 , .1£ ( ) ≠ ( ) Ø-j jE Et t t
we assume without loss of generality that 

jE t( )  is concave, i.e., it is differentiable almost 
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everywhere, and 0 , 0£ ( ) ≠ £ ¢ ( ) Øj jE Et t  (by 
using if necessary an equivalent norm in RIS E  
(see [�] proposition 5.��). In what follows we 
assume that jE ( 0) = 0+ . without serious losses 
we assume also that jE ( ) =• • .

According to [7] we denote 

 m jE Et t( ) = 1/ (1/ ).
Denote by Mn, ( )E

n  the subspace of RIS E , 
consisting of all entire functions of exponential 
type of degree n > 0  in each variable whose 
restrictions on n  belong to E . By the paley—
wiener theorem 

  Mn n n, ( ) = { ( ) : ( , ) },E
n n nq E q Œ Ã -supp ˆ  (�)

where q̂  denotes the Fourier transform of q  in n .
The best possible approximation of f  by 

functions q
t E

n
nŒM 1/ ( )
,
 , where t > 0 , is by 

definition 

   e f f q qt E E t E
n

n( ) = { : ( )}.1/ ,
inf - ŒM   (2)

we omit E  and t  in notation in what follows 
when we consider the corresponding function 
t e ft E ( ) .

let us denote by F  the lattice which is 
obtained from F  by the following change of 
variables. we put by definition that 

  g F g t FEŒ Œ if ( (1/ )) ,j
or in other words 

  g F g t FEŒ Œ if (1/ ( )) .m
According to Sharply denote by LE  the 

lorentz space corresponding to the concave 
function jE t( ) , i.e., 

  LE Ef f x d x= : ( ) ( ) <
0

*
•

Ú •
Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

j

with the corresponding norm.
Consider the couple { , }LE L• . The key role in 

what follows is played by the J -method applied 
to the couple { , }LE L•  with the parameter space 
F . Recall that by definition of the J -method, 
f LE F

JŒ •( , )L   means that there exists a measurable 
vector-valued function u s LE( ) Œ « •L , where 
0 < <s • , such that 

  J s u s L FE( , ( ),{ , }) ,L • Œ 

and 

  f u s
ds
s

= ( ) .
0

•

Ú
Recall also that the J -functional is defined on 

the intersection of spaces of a couple { , }0 1X X , and 
J t u X X u t uX X( , ,{ , }) = ( , )0 1 0 1

max  for t > 0.

The space ( , )LE F
JL•   is well defined if 

  F L t dt t Ã 1( (1,1/ )[ / ],min     (3)

where L t dt t1( (1,1/ )[ / ]min  denotes the weighted 
L1  space with respect to the haar measure on 
(0, )•  and the weight min(1,1/ )t . Thus we 
suppose in what follows that (3) is fulfilled.

2. Dominating elements in ( , )LE F
JL• 

we intend to find the simplest elements 
generating ( , )LE F

JL•  .
The following proposition is well-known for 

power functions j( )s  as a particular case of the 
holmstedt formula.

Proposition 2.1. Let j  be positive concave 
function on [0, )• ; then for any x Œ Lj  and any 
t > 0  

 K t x L x s d s
t

( ( ), , , ) = ( ) ( ).
0

*j jjL •}{ Ú  (4)

Proof.  let x x x= 0 1+ , where x0 Œ Lj , x L1 Œ •,  
then 

 0
0 1

*

0
0
*

0
1
*

0
0
*

( ) ( ) ( ) ( ) ( ) ( ) ( )

(

t t t

t

x x s d s x s d s x s d s

x

Ú Ú Ú

Ú

+ £ + £

£

j j j

ss d s t x
L

) ( ) ( ) .1j j+
•

hence 

 
0

*( ) ( ) ( ( ), , , ).
t

x s d s K t x LÚ £ }{ •j j jL

From the other side if we consider the expansion 
of the form x s x x x* * * *( ) = ( , ) ( ( , )),min mina a+ -  
then 

 
x x t x

x x t

L

* * *

* *

( , ) ( ) ( , )

( , ) ( )

- + £

£ - +
•

min min

min

a j a

a j a
j

j

L

L

for any a > 0 .
let us choose the greatest a  such that the 

measure of the set s x s: ( ( ), ) =min a a{ }  is greater 
or equal to t . Then

 x x x s d s
t

* *

0

*( , ) = ( ( ) ) ( ).- -Úmin a a j
jL

hence 

 x x t x s d s
t

* *

0

*( , ) ( ) = ( ) ( ),- + Úmin a j a j
jL

and

 K t x L x s d s
t

( ( ), , , ) ( ) ( ).
0

*j jjL •{ } £ Ú
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proposition is proved.
let M  and N  be two measure spaces, let f  

and g  be two measurable functions on M  and N  
respectively. we write 

  f g≺
j

if 

 
0

*

0

*( ) ( ) ( ) ( )
t t
f x d x g x d xÚ Ú£j j

for all t > 0 . we also say that f  is dominated by 
g.

In view of proposition 2.� f g≺
j

 is equivalent 

to 

K t f L K t g L( ( ), ,{ , }( )) ( ( ), ,{ , }( )).j jj jL L• •£M N

As it is shown in [4] f Cg≺
j

 is equivalent to 

the existence of a linear bounded operator 

  T L L: { , }( ) { , }( ),L Lj j• •ÆN M

such that Tg f= .
This yields that for each interpolation space 

X  between Lj  and L•  if f g≺
j

 and g XŒ , then 

f XŒ . In particular, if f g≺
j

 and g L F
JŒ •( , ) ( )Lj  N ,  

then f L F
JŒ •( , ) ( )Lj  M .

Evidently each f L F
JŒ •( , ) ( )Lj  M  is dominated 

by f L F
J* ( , ) (0, )Œ ••Lj  . we intend to show that 

actually each f L F
JŒ •( , ) ( )Lj  M  is dominated by a 

rather simple g L F
JŒ ••( , ) (0, )Lj  .

Recall that practically we are interested in 
studying of LjE

. From now on we consider 
L LE E

= j  only, and denote for brevity f g
Ej
≺  by 

f g
E
≺ .

let f LE F
JŒ •( , ) ( )L  M . By definition 

 f u s ds s= ( ) /
0

•

Ú
for some measurable vector-valued function u s( )  
on (0, )•  with values in L E• « L  such that 
J s u s L FE( , ( ),{ , })L • Œ  . without loss of generality 
we assume that u s( ) 0≥ .

we intend to transform f . First we increase 
u s( )  such that    u s s u s

E L( ) = ( )L •
 for all s > 0,  

while the corresponding f  remains in ( , )LE F
JL•  .  

Then we change u s( )  by u s( )* . The corresponding 
integral is a function in ( , ) (0, )LE F

JL• • , and we 
denote it by f x*( ) , where x Œ •(0, ) . we conclude 
f f
E
≺ * .

Indeed, 

 K t f L

K t u s L ds s

u

E E

E E

t

( ( ), ,{ , })

( ( ), ( ),{ , }) /

= (

0

0 0

j

j

L

L

•
•

•

•

£

£ =Ú

Ú Ú (( ) ( ) ( )) / =

= ( ( ) / )( ) ( )

= ( ( ),

*

0 0

*

s x d x ds s

u s ds s x d x

K t f

E

t

E

E

j

j

j

Ú Ú
•

=

**,{ , }).LE L•

 

K t f L

K t u s L ds s

u

E E

E E

t

( ( ), ,{ , })

( ( ), ( ),{ , }) /

= (

0

0 0

j

j

L

L

•
•

•

•

£

£ =Ú

Ú Ú (( ) ( ) ( )) / =

= ( ( ) / )( ) ( )

= ( ( ),

*

0 0

*

s x d x ds s

u s ds s x d x

K t f

E

t

E

E

j

j

j

Ú Ú
•

=

**,{ , }).LE L•

And finally we change u s( )*  by c a(0, ( )) ( )/s h s s , 
where h s J s u s LE( ) = ( , ( ),{ , })L •  and a j( ) = ( )1s sE

- .  
Thus h FŒ  . Denote 

 f h s s
ds
ss**

0
(0, ( ))= ( )/ .

•

Úc a

Again the K -functional of f**  is greater than 
the K-functional of f* , since for any u s LE( ) Œ « •L

 

K t u s L
u s t u s

u

E E

E E L

( ( ), ( ),{ , })
( ( ) , ( ) ( ) )

= (

j
j

L

L

•

•

£
£ =min

min

   

 (( ) ,
( )

( ) ) =

1,
( )

( )

= ( (

s
t
s

u s

t
s

u s

K t

E
E

E

E
E

E

  

 

L L

L

j

j

j

= Ê
ËÁ

ˆ
¯̃

=min

)), ,{ , }) ( ) / .(0, ( ))c a s E E
L u s sL L•  

hence 

 

K t f L

K t u s L ds s

K

E E

E E

( ( ), ,{ , })

( ( ), ( ) ,{ , }) /

(

*

*

j

j

j

L

L

•
•

•

•

=

= £

£

Ú

Ú

0

0
EE s E

E E

t h s s L ds s

K t f L

( ), ( )/ ,{ , }) /

( ( ), ,{ , })

( , ( ))

**

c

j

a0 L

L

•

•

=

=

in view of integral form of the K -functional.
Thus we see f f

E
≺ ** . At the same time 

 
c

c j a

a

a

(0, ( ))

(0, ( ))

( )/ = ( )/ ,

( )/ = ( ( )) ( )/ =

s L

s
E

E

h s s h s s

h s s s h s s
•

L
hh s( ).

hence 

 J s h s s L h ss E( , ( )/ ,{ , }) = ( ),(0, ( ))c a L •

which means f LE F
J

** ( , )Œ •L  .
These elements f**  and the corresponding 

integrals are intimately connected with the hardy 
operator, considered in [7]. Indeed, 

The optimal embedding for the Calderon type spaces and the J-method spaces
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 f t t h s s
ds
s

h s
ds
ss

t

**
0

(0, ( ))
1

2( ) = ( ) ( )/ = ( ) .
•

-

•

Ú Úc a

a ( )

 (5)

If we naturally transform (5) we obtain 

 

f t
h s
s
ds h s ds

h s

t

t

E t

**

( )

/ ( )

/ ( )

( )
( )

( / )

( /

=
•

= =

=

-

-

Ú Ú

Ú

a

a

j

1
2

0

1 1

0

1

1

1 )) ( / )

( )
( ) (

( / )

/ /

ds h s ds

h d h

E t

t

E
E

t

E

= =

=
Ê
ËÁ

ˆ
¯̃

=

Ú

Ú Ú

0

1

0

1

0

1

1

1

m

m t
m t j (( / )) ( )

( ) ( ),
/

1

0

1

t m t

t m t

d

g d

E

t

E

=

= Ú
where g FŒ , since h FŒ  .

Thus we obtain that for each function 
g FŒ •(0, )  the integral 

 
0

1/

( ) ( )
t

Eg dÚ t m t  (6)

is a function from ( , ) (0, )LE F
JL• • . Following to 

[7] we introduce the operator 

 H g g d
t

E: ( ) ( ),
0

1/

 Ú t m t

which is called the hardy operator. Thus we see 
that 

 H F LE F
J: (0, ) ( , ) (0, ).• Æ ••L 

3. emBeDDing to the J -methoD 
sPaces

It is more convenient now to consider the 
hardy operator (6) in the form 

 
0

1/

( ) ( ) = (1/ )
1
( )

,
t

E
t E

g d g dÚ Ú
•

t m t t
j t

where t > 0 .
Recall that 

 f t
t
f x dx
t

**

0

*( ) =
1

( ) .Ú
Proposition 3.1. Let E E n= ( )R  be a RIS and 

T > 0 . There is a constant c  independent of T , 
such that for all f EŒ  and t TŒ(0, )

 f t c
T

f H e f t
E

E
**( )

1
( )

( ( ))( ) ,£ +
Ê
ËÁ

ˆ
¯̃j

   (7)

where e f( )  is defined by (2).  
Proof.  Fix t TŒ(0, ) . let N ŒN  be such 

that 

  2 ( ) ( ) < 2 ( ).1N
E E

N
Et T tj j j£ +

Define the sequence t t t tN0 1 2, , , ,…  by 

 j jE i
i
Et t( ) = 2 ( ).  (8)

For each i N= 0,1, 2, , 1… -  there  is  a 
decomposition f b gi i= + , where g Mi t Ei

nŒ -1/ ,
 such 

that 

 b e fi E
ti

E£ 2 ( ) .1  (9)

Define a Mi t Ei
nŒ -1/ ,

 by 

a b b g g i Ni i i i i= = , ( = 0,1, , 2).1 1+ +- - -…  (�0)

Then f b a g
i

N
i N= 0 =0

2

1+ +
-

-Â  and 

 f t b t a g
i

N

i N
**

0
**

=0

2

1( ) ( ) .£ + +
-

• - •Â  (��)

Using the well-known inequality of different 
metrics for entire functions of exponential type 
(see [2], Theorem �), together with (�0), (9) and 
(8), we obtain 

a
c
t
a

c
t
b b

c
t
e f e

i
E i

i E
E i

i E i E

E i t
E

ti i

• +£ £ +( ) £

£ +
+

j j

j

( ) ( )

2
( )

( )

1

1 1

1

(( )
2
( )

( )

16 ( )
1
( )

1

1

1

1

2

f
c
t
e f

c e f d

E
E i t

E

t

t
E

E

i

i

i

Ê

Ë
Á

ˆ

¯
˜ £ £

£

+

+

+Ú

j

j tt

..

 (�2)

By same way we deduce 

 

g
c
t

g

c
t

f b

c
T
f

c

N
E N

N E

E N
E N E

E
E

E

- •
-

-

-
-

£ £

£ + £

£ +

1
1

1

1
1

( )

( )
( )

4
( )

2
(

j

j

j j tt
e f

c
T
f c

t
e f d

N t
E

E
E t E

E

N

N

N

- -

-

£

£ + Ú

1
1

1

)
( )

4
( )

2 ( )
1
( )

.

1

1j j tt

 (�3)

On the other hand, an application of the well-
known estimate for rearrangements (see [�], 
proposition 5.9) gives 

  

b t
t
b

t
e f

e f d

E
E

E t
E

t

t

E
E

0
**

0 1

1

( )
1
( )

2
( )

( )

4 ( )
1
( )

.
1

£ £ £

£ Ú

j j

j tt

Substituting this estimate, (�2) and (�3) into 
(��), we obtain the desired conclusion (7).

proposition is proved.
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corollary 3.1. If jE ( ) =• •  then 

 f cH e f** ( ( )).£  (�4)

Proof.  Take a limit in (7) as T Æ • .
Corollary is proved.
corollary 3.2. The Calderon type space L( , )E F  

is contained in ( , )LE F
JL•  .

Proof.  Since f f* **£ , we conclude 

 f cH e f* ( ( ))£
on (0, )•  by (�4). If e f F( ) Œ , then H e f LE F

J( ( )) ( , )Œ •L  
H e f LE F

J( ( )) ( , )Œ •L  , and thereby f LE F
JŒ •( , )L  .

Corollary is proved.
By definition L( , )E F EÃ , hence 

 L L( , ) ( , ) .E F L EE F
JÃ «•   (�5)

As we see below ( , )LE F
JL E• «  sometimes is 

the smallest RIS which contains L( , )E F .

4. oPtimality of the sPace ( , )LE F
JL• 

The above mentioned optimality is based on 
the results of [7]. First we study the condition 
which was used in the paper [7].

The following proposition is a consequence of 
the change of variables and definition of the space 
F .

Proposition 4.1. The operator

 G g t g
d

t

E

E

[ ]( ) = ( )
( )
( )

•

Ú t m t
m t

is bounded from F  to F  if and only if the 
operator 

 G f t f s
ds
s

t
[ ]( ) = ( )

0
Ú

is bounded from F  to F .  
theorem 4.1. If G F F: Æ , then the smallest 

RIS X0 , which contains L( , )E F  coincides with 
( , )LE F

JL•   on any finite interval (0, )0T .
Proof.  In view of Corollary 3.2 it is necessary 

to prove the inclusion ( , ) 0LE F
JL X• Ã , since the 

reverse inclusion is already proved.
The existence of the optimal space X0  was 

proved in [7] under condition G F F: Æ , and it 
was shown that  f X0

 is equivalent to 

  sup
j

j c
Œ ¢

•

•Ú - ¢ +
WEF

t f t dt fE T E
0

*
( , )( ) ( ) ,

for arbitrary T , where 

 
f t t f d

t K t f L

E E

t

E

E E E

( ) ( ) ( ) ( )

( ) ( ( ( )), ,{ , }).

( )
*= =

=

Ú
•

m t j t

m j b

b

0

L

The nature of the set ¢WEF  and the function b  
is of no importance in what follows.

we see that the norm is equivalent to 

 sup
j

j
Œ ¢

•

Ú - ¢
WEF

t f t dtE
0

( ) ( )

on the interval (0, )0T . Thus we see that the norm 
in X0  on the interval (0, )0T  is K -monotone with 
respect to the couple { , }LE L• . hence X0  is an 
interpolation space between LE  and L•  on the 
interval (0, )0T .

let f  be an arbitrary element of ( , )LE F
JL•   on 

(0, )0T  and f**  be the corresponding dominating 
element. If we find y E FŒ L( , ) such that f f y

E E
≺ ≺** ,  

then f XŒ 0  on (0, )0T , and Theorem will be 
proved.

Indeed, by definition y XŒ 0 . The interpolation 
property of the space X0  between LE  and L•  on 
(0, )0T  and f y

E
≺  implies that f XŒ 0 . hence 

( , ) 0LE F
JL X• Ã  on (0, )0T .

Thus we return to 

 f u s
ds
s

T

** 0
= ( ) ,Ú

where u s h s ss( ) = ( )/(0, ( ))c a  and h FŒ  . we can take 
finite T  because L E• Ã L  on (0, )0T .

Recall (e.g., see [2]) that for x RŒ  

 c n n
n n( 1/ ,1/ )

2
2 1

2( )
(2 )

,-
-

-

£x C
x

x
sin

where C  is a universal constant. hence for 
x ŒRn  

j

n

t t j
n

j

n n
j

j
tn n

C t
t

q
=1

( 1/ 1/

2

=1

2 1 1/

21/ 1/, )( )
(2 )

=’ ’-

-
-

£c x
x

x
sin

(( ),x

where qt( )x  is an entire function of exponential 
type t > 0 .

Thereby 

 c(0,1/ )
*.t tq£  (�6)

let 

 y q h s s
ds
s

T

s= ( )/ .
0

1/ ( )Ú a

Because of (�6) we evidently have f y
E

**≺ . let 
us show that y E FŒ L( , ) .

Recall that 

 c(0,1/ )t E t E
q

(see [2]).
First we get y EŒ , since 
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y q h s s
ds
s

C h s s
ds
s

C h s
d

E

T

s E

T

s E

T

£ £

£

Ú

Ú Ú

0
1/ ( )

0
(0, ( ))

0

( )/

( )/ = ( )

a

ac ss
s

< •

in view of h F L t dt tŒ Ã 1( (1,1/ )[ / ]min  (see (3)).
It is easily seen that for sufficiently large 

t > 0  

 y q h s s
ds
s
Mt

t

T

s t E
E

n= ( )/ ,
1/ ( )

1/ ( ) ,1/

m
aÚ Œ -

since for s tE> 1/ ( )m , which is equivalent to 
t s> 1/ ( )a , we have q Ms t En1/ ( ) ,1/a Œ - .

Furthermore 

 

e y y y q h s s
ds
s

q h

t t E

t

s

E

t

s E

E

E

( ) ( )/
/ ( )

/ ( )

/ ( )

/ ( )

£ - = £

£

Ú

Ú

0

1

1

0

1

1

m

a

m

a (( )/ ( )

( / ( ))
( )
( )

( )(

/ ( )

s s
ds
s

h s
ds
s

h
d

G g

E t

t
E

E

E

£ =

= =

Ú

Ú
•

0

1

1

m

m t m t
m t

tt),

where g t h tE( ) = (1/ ( ))m .
hence e y Ft( ) Œ  since h t FE(1/ ( )m Œ . Thus 

y E FŒ L( , ) .
Theorem is proved.
corollary 4.1. If G F F: Æ , then the smallest 

RIS containing L( , )E F  is equal to ( , )LE F
JL E• « .

 Proof.  In view (�5) we have to prove 
( , ) 0LE F

JL E X• « Ã . Recall (e.g., see [2]) that the 
smallest RIS containing Mt E,  is E L« • . This 
yields that E L X« Ã• 0 . Thus if f L EE F

JŒ «•( , )L  ,  
t h e n  f XT

*
(0, ) 0c Œ  b y  T h e o r e m  4 . �  a n d 

f E L XT
*

( , ) 0c • •Œ « Ã . hence f X*
0Œ  and we 

conclude ( , ) 0LE F
JL E X• « Ã .

Corollary is proved.
Now we try to find an explicit description of 

the optimal space X0 .
The following proposition is similar to 

proposition 4.� and we also leave the proof to the 
reader, since it may be obtained by direct change 
of variables.

Proposition 4.2. The operator 

  G g t
t
g d

E

t

E0
0

[ ]( ) =
1
( )

( ) ( )
m

t m tÚ
is bounded from F  to F  if and only if the 
operator 

  G f t t f s
ds
st

0 2[ ]( ) = ( )
•

Ú

is bounded in F .  
The sum of the operators G  and G0

  is equal 
to the Calderon operator 

S f t f s
t
s
ds
s

f s
ds
s
t f s

ds
s

t

t

[ ]( ) = ( ) (1, ) = ( ) ( ) .
0 0

2

• •

Ú Ú Ú+min

corollary 4.2. The Calderon operator 

  S f t f s
t
s
ds
s

[ ]( ) = ( ) (1, )
0

•

Ú min

is bounded from F  to F , if and only if G  and G0  
are bounded in F .  

Recall that if the Calderon operator S  maps the 
parameter space F  into itself, then the J -method 
space ( , )0 1X X F

J
  coincides with the K -method space 

with the same parameter space (e.g. [�]).
hence 

 ( , ) = ( , ) ,L LE F
J

E F
KL L• •   (�7)

which means that 

 ( , ) = { : ( , ,{ , }) }.L LE F
J

EL f K t f L F• • Œ


This formula gives us opportunity to calculate 
the space ( , )LE F

JL•   in terms of the K -functional 
of the couple { , }LE L• .

If we combine (�7) and (4), we conclude that 
f LE F

JŒ ••( , ) (0, )L  ,

 K t f L f s d s FE

t

E

E

( , , , ) = ( ) ( ) ,
0

( )
*

1

L •}{ Œ
-

Ú
j

j 

and

 
0

1/
*( ) ( ) .

t

Ef s d s FÚ Œj

are equivalent.
we intend to apply these considerations to the 

restriction of spaces LE  and L•  onto a finite 
interval (0, )0T . In this case identity (�7) takes 
place if the Calderon operator S  is bounded in the 
space F T(0, )  for some finite T . The operator S  
is bounded in F T(0, )  if G  and G0  are bounded in 
F T( , )1 •  for some 0 < <1T • .

Thus we obtain a new description of the 
optimal target space for embedding of the Calderon 
type spaces.

theorem 4.2. If for some T1  the space F T( , )1 •  
is invariant under the operators 

 G g t g
d

t

E

E

[ ]( ) = ( )
( )
( )

•

Ú t m t
m t

and 

 G g t
t
g d

E

t

E0
0

[ ]( ) =
1
( )

( ) ( ),
m

t m tÚ
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then the optimal RIS X0  for the embedding 
L( , )E F XÃ  consists of f  such that 

 
0

1/
*

(0, )( ) ( ) ( )
t

T Ef s s d s FÚ Œc j  and f ET
*

( , )c • Œ

for some T > 0 .  
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