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Introduction

We consider embeddings of the Calderon spaces 
L( , )E F  to rearrangement invariant spaces. The 
Calderon spaces are defined with the help of the 
best approximation e ft E( )  of f EŒ  by entire 
functions of exponential type of degree t n1/  in each 
variable in the norm of rearrangement invariant 
space E . The space L( , )F E , where F  is a 
functional lattice on (0, )• , consists of f EŒ  such 
that e f Ft E( ) Œ  with the corresponding norm or 
quasi-norm. These spaces are intimately connected 
with the Besov spaces and their generalizations. 
Thus embeddings L( , )E F XÃ  are studied along 
with the study of the embeddings of smooth 
function spaces (e.g., see [3, 5, 6]). M.Goldman and 
R.Kerman in [7] found the rearrangement invariant 
space X0  which envelope the space L( , )E F . In 
other words they found the minimal rearrangement 
invariant space which contains L( , )E F . In the 
present paper we give a new description of X0  in 
terms of interpolation spaces. We find that X0  is 
described as a J -method interpolation space with 
a concrete parameter between some Lorentz space 
and L• , thus we clarify the position of this space 
in the family of rearrangement invariant spaces. 
Some conditions added to the conditions of [7] 
enable us to give a very transparent description of 
the optimal space X0 .

Basic definitions and notation

Everywhere below we use notation from [7]. 
Denote by f *  the decreasing rearrangement of a 

measurable function f n:  Æ , i.e., f *  is the 
decreasing right continuous function on  + , 
equimeasurable to f ( )x , i.e.,

	
mes f

mes x f x

n{ :| ( ) | }

{ : ( ) },*

x x l

l

Œ > =

= Œ >+




 

for all l > 0 , where mes  denotes the Lebesgue 
measure on n  or on  +  respectively.

A Banach lattice is a space E  of measurable 
functions with a monotone norm, i.e. 

 	 f g g E f E f gE E£ Œ fi Œ £, , .
A Banach lattice E  is called a rearrangement 

invariant space if 

	 f g g E f E f gE E
* *, , .£ Œ fi Œ £

We shall use axioms of the theory of Banach 
lattices and the theory of rearrangement invariant 
spaces (RIS) given by C. Bennett, R. Sharpley [1] 
(Chapters 1—2). In particular the Fatou property 
is included in the definition of Banach lattice. 
Thus the generalized Minkowski inequality for 
infinite sums and integrals is valid in RIS E .

Recall (see [1], Theorem 4.10), that there is a 
RIS E  of functions determined on  + , such that 

 	 f fE Rn E( ) = .* 
It will cause no confusion if we use the same 

letter E  to designate this space on  + .
Let jE t( ) , where t > 0 , be the fundamental 

function of RIS E , i.e., 

 	 j cE t E
t( ) = .(0, )

It is easily seen that jE t( )  is quasi-concave, 
i.e.,

 	 0 , .1£ ( ) ≠ ( ) Ø-j jE Et t t
We assume without loss of generality that 

jE t( )  is concave, i.e., it is differentiable almost 
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everywhere, and 0 , 0£ ( ) ≠ £ ¢ ( ) Øj jE Et t  (by 
using if necessary an equivalent norm in RIS E  
(see [1] Proposition 5.11). In what follows we 
assume that jE ( 0) = 0+ . Without serious losses 
we assume also that jE ( ) =• • .

According to [7] we denote 

	 m jE Et t( ) = 1/ (1/ ).
Denote by Mn, ( )E

n  the subspace of RIS E , 
consisting of all entire functions of exponential 
type of degree n > 0  in each variable whose 
restrictions on n  belong to E . By the Paley—
Wiener theorem 

  Mn n n, ( ) = { ( ) : ( , ) },E
n n nq E q Œ Ã -supp ˆ 	 (1)

where q̂  denotes the Fourier transform of q  in n .
The best possible approximation of f  by 

functions q
t E

n
nŒM 1/ ( )
,
 , where t > 0 , is by 

definition 

   e f f q qt E E t E
n

n( ) = { : ( )}.1/ ,
inf - ŒM  	 (2)

We omit E  and t  in notation in what follows 
when we consider the corresponding function 
t e ft E ( ) .

Let us denote by F  the lattice which is 
obtained from F  by the following change of 
variables. We put by definition that 

 	 g F g t FEŒ Œ if ( (1/ )) ,j
or in other words 

 	 g F g t FEŒ Œ if (1/ ( )) .m
According to Sharply denote by LE  the 

Lorentz space corresponding to the concave 
function jE t( ) , i.e., 

 	 LE Ef f x d x= : ( ) ( ) <
0

*
•

Ú •
Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

j

with the corresponding norm.
Consider the couple { , }LE L• . The key role in 

what follows is played by the J -method applied 
to the couple { , }LE L•  with the parameter space 
F . Recall that by definition of the J -method, 
f LE F

JŒ •( , )L   means that there exists a measurable 
vector-valued function u s LE( ) Œ « •L , where 
0 < <s • , such that 

 	 J s u s L FE( , ( ),{ , }) ,L • Œ 

and 

 	 f u s
ds
s

= ( ) .
0

•

Ú
Recall also that the J -functional is defined on 

the intersection of spaces of a couple { , }0 1X X , and 
J t u X X u t uX X( , ,{ , }) = ( , )0 1 0 1

max  for t > 0.

The space ( , )LE F
JL•   is well defined if 

 	 F L t dt t Ã 1( (1,1/ )[ / ],min 	    (3)

where L t dt t1( (1,1/ )[ / ]min  denotes the weighted 
L1  space with respect to the Haar measure on 
(0, )•  and the weight min(1,1/ )t . Thus we 
suppose in what follows that (3) is fulfilled.

2. Dominating elements in ( , )LE F
JL• 

We intend to find the simplest elements 
generating ( , )LE F

JL•  .
The following proposition is well-known for 

power functions j( )s  as a particular case of the 
Holmstedt formula.

Proposition 2.1. Let j  be positive concave 
function on [0, )• ; then for any x Œ Lj  and any 
t > 0  

	 K t x L x s d s
t

( ( ), , , ) = ( ) ( ).
0

*j jjL •}{ Ú 	 (4)

Proof.  Let x x x= 0 1+ , where x0 Œ Lj , x L1 Œ •,  
then 

	 0
0 1

*

0
0
*

0
1
*

0
0
*

( ) ( ) ( ) ( ) ( ) ( ) ( )

(

t t t

t

x x s d s x s d s x s d s

x

Ú Ú Ú

Ú

+ £ + £

£

j j j

ss d s t x
L

) ( ) ( ) .1j j+
•

Hence 

	
0

*( ) ( ) ( ( ), , , ).
t

x s d s K t x LÚ £ }{ •j j jL

From the other side if we consider the expansion 
of the form x s x x x* * * *( ) = ( , ) ( ( , )),min mina a+ -  
then 

	
x x t x

x x t

L

* * *

* *

( , ) ( ) ( , )

( , ) ( )

- + £

£ - +
•

min min

min

a j a

a j a
j

j

L

L

for any a > 0 .
Let us choose the greatest a  such that the 

measure of the set s x s: ( ( ), ) =min a a{ }  is greater 
or equal to t . Then

	 x x x s d s
t

* *

0

*( , ) = ( ( ) ) ( ).- -Úmin a a j
jL

Hence 

	 x x t x s d s
t

* *

0

*( , ) ( ) = ( ) ( ),- + Úmin a j a j
jL

and

	 K t x L x s d s
t

( ( ), , , ) ( ) ( ).
0

*j jjL •{ } £ Ú
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Proposition is proved.
Let M  and N  be two measure spaces, let f  

and g  be two measurable functions on M  and N  
respectively. We write 

 	 f g≺
j

if 

	
0

*

0

*( ) ( ) ( ) ( )
t t
f x d x g x d xÚ Ú£j j

for all t > 0 . We also say that f  is dominated by 
g.

In view of Proposition 2.1 f g≺
j

 is equivalent 

to 

K t f L K t g L( ( ), ,{ , }( )) ( ( ), ,{ , }( )).j jj jL L• •£M N

As it is shown in [4] f Cg≺
j

 is equivalent to 

the existence of a linear bounded operator 

 	 T L L: { , }( ) { , }( ),L Lj j• •ÆN M

such that Tg f= .
This yields that for each interpolation space 

X  between Lj  and L•  if f g≺
j

 and g XŒ , then 

f XŒ . In particular, if f g≺
j

 and g L F
JŒ •( , ) ( )Lj  N ,  

then f L F
JŒ •( , ) ( )Lj  M .

Evidently each f L F
JŒ •( , ) ( )Lj  M  is dominated 

by f L F
J* ( , ) (0, )Œ ••Lj  . We intend to show that 

actually each f L F
JŒ •( , ) ( )Lj  M  is dominated by a 

rather simple g L F
JŒ ••( , ) (0, )Lj  .

Recall that practically we are interested in 
studying of LjE

. From now on we consider 
L LE E

= j  only, and denote for brevity f g
Ej
≺  by 

f g
E
≺ .

Let f LE F
JŒ •( , ) ( )L  M . By definition 

	 f u s ds s= ( ) /
0

•

Ú
for some measurable vector-valued function u s( )  
on (0, )•  with values in L E• « L  such that 
J s u s L FE( , ( ),{ , })L • Œ  . Without loss of generality 
we assume that u s( ) 0≥ .

We intend to transform f . First we increase 
u s( )  such that    u s s u s

E L( ) = ( )L •
 for all s > 0,  

while the corresponding f  remains in ( , )LE F
JL•  .  

Then we change u s( )  by u s( )* . The corresponding 
integral is a function in ( , ) (0, )LE F

JL• • , and we 
denote it by f x*( ) , where x Œ •(0, ) . We conclude 
f f
E
≺ * .

Indeed, 

	 K t f L

K t u s L ds s

u

E E

E E

t

( ( ), ,{ , })

( ( ), ( ),{ , }) /

= (

0

0 0

j

j

L

L

•
•

•

•

£

£ =Ú

Ú Ú (( ) ( ) ( )) / =

= ( ( ) / )( ) ( )

= ( ( ),

*

0 0

*

s x d x ds s

u s ds s x d x

K t f

E

t

E

E

j

j

j

Ú Ú
•

=

**,{ , }).LE L•

	

K t f L

K t u s L ds s

u

E E

E E

t

( ( ), ,{ , })

( ( ), ( ),{ , }) /

= (

0

0 0

j

j

L

L

•
•

•

•

£

£ =Ú

Ú Ú (( ) ( ) ( )) / =

= ( ( ) / )( ) ( )

= ( ( ),

*

0 0

*

s x d x ds s

u s ds s x d x

K t f

E

t

E

E

j

j

j

Ú Ú
•

=

**,{ , }).LE L•

And finally we change u s( )*  by c a(0, ( )) ( )/s h s s , 
where h s J s u s LE( ) = ( , ( ),{ , })L •  and a j( ) = ( )1s sE

- .  
Thus h FŒ  . Denote 

	 f h s s
ds
ss**

0
(0, ( ))= ( )/ .

•

Úc a

Again the K -functional of f**  is greater than 
the K-functional of f* , since for any u s LE( ) Œ « •L

	

K t u s L
u s t u s

u

E E

E E L

( ( ), ( ),{ , })
( ( ) , ( ) ( ) )

= (

j
j

L

L

•

•

£
£ =min

min

   

 (( ) ,
( )

( ) ) =

1,
( )

( )

= ( (

s
t
s

u s

t
s

u s

K t

E
E

E

E
E

E

  

 

L L

L

j

j

j

= Ê
ËÁ

ˆ
¯̃

=min

)), ,{ , }) ( ) / .(0, ( ))c a s E E
L u s sL L•  

Hence 

	

K t f L

K t u s L ds s

K

E E

E E

( ( ), ,{ , })

( ( ), ( ) ,{ , }) /

(

*

*

j

j

j

L

L

•
•

•

•

=

= £

£

Ú

Ú

0

0
EE s E

E E

t h s s L ds s

K t f L

( ), ( )/ ,{ , }) /

( ( ), ,{ , })

( , ( ))

**

c

j

a0 L

L

•

•

=

=

in view of integral form of the K -functional.
Thus we see f f

E
≺ ** . At the same time 

	
c

c j a

a

a

(0, ( ))

(0, ( ))

( )/ = ( )/ ,

( )/ = ( ( )) ( )/ =

s L

s
E

E

h s s h s s

h s s s h s s
•

L
hh s( ).

Hence 

	 J s h s s L h ss E( , ( )/ ,{ , }) = ( ),(0, ( ))c a L •

which means f LE F
J

** ( , )Œ •L  .
These elements f**  and the corresponding 

integrals are intimately connected with the Hardy 
operator, considered in [7]. Indeed, 

The optimal embedding for the Calderon type spaces and the J-method spaces
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	 f t t h s s
ds
s

h s
ds
ss

t

**
0

(0, ( ))
1

2( ) = ( ) ( )/ = ( ) .
•

-

•

Ú Úc a

a ( )

	(5)

If we naturally transform (5) we obtain 

	

f t
h s
s
ds h s ds

h s

t

t

E t

**

( )

/ ( )

/ ( )

( )
( )

( / )

( /

=
•

= =

=

-

-

Ú Ú

Ú

a

a

j

1
2

0

1 1

0

1

1

1 )) ( / )

( )
( ) (

( / )

/ /

ds h s ds

h d h

E t

t

E
E

t

E

= =

=
Ê
ËÁ

ˆ
¯̃

=

Ú

Ú Ú

0

1

0

1

0

1

1

1

m

m t
m t j (( / )) ( )

( ) ( ),
/

1

0

1

t m t

t m t

d

g d

E

t

E

=

= Ú
where g FŒ , since h FŒ  .

Thus we obtain that for each function 
g FŒ •(0, )  the integral 

	
0

1/

( ) ( )
t

Eg dÚ t m t 	 (6)

is a function from ( , ) (0, )LE F
JL• • . Following to 

[7] we introduce the operator 

	 H g g d
t

E: ( ) ( ),
0

1/

 Ú t m t

which is called the Hardy operator. Thus we see 
that 

	 H F LE F
J: (0, ) ( , ) (0, ).• Æ ••L 

3. Embedding to the J -method 
spaces

It is more convenient now to consider the 
Hardy operator (6) in the form 

	
0

1/

( ) ( ) = (1/ )
1
( )

,
t

E
t E

g d g dÚ Ú
•

t m t t
j t

where t > 0 .
Recall that 

	 f t
t
f x dx
t

**

0

*( ) =
1

( ) .Ú
Proposition 3.1. Let E E n= ( )R  be a RIS and 

T > 0 . There is a constant c  independent of T , 
such that for all f EŒ  and t TŒ(0, )

	 f t c
T

f H e f t
E

E
**( )

1
( )

( ( ))( ) ,£ +
Ê
ËÁ

ˆ
¯̃j

  	 (7)

where e f( )  is defined by (2).  
Proof.  Fix t TŒ(0, ) . Let N ŒN  be such 

that 

 	 2 ( ) ( ) < 2 ( ).1N
E E

N
Et T tj j j£ +

Define the sequence t t t tN0 1 2, , , ,…  by 

	 j jE i
i
Et t( ) = 2 ( ). 	 (8)

For each i N= 0,1, 2, , 1… -  there  is  a 
decomposition f b gi i= + , where g Mi t Ei

nŒ -1/ ,
 such 

that 

	 b e fi E
ti

E£ 2 ( ) .1 	 (9)

Define a Mi t Ei
nŒ -1/ ,

 by 

a b b g g i Ni i i i i= = , ( = 0,1, , 2).1 1+ +- - -… 	(10)

Then f b a g
i

N
i N= 0 =0

2

1+ +
-

-Â  and 

	 f t b t a g
i

N

i N
**

0
**

=0

2

1( ) ( ) .£ + +
-

• - •Â 	 (11)

Using the well-known inequality of different 
metrics for entire functions of exponential type 
(see [2], Theorem 1), together with (10), (9) and 
(8), we obtain 

a
c
t
a

c
t
b b

c
t
e f e

i
E i

i E
E i

i E i E

E i t
E

ti i

• +£ £ +( ) £

£ +
+

j j

j

( ) ( )

2
( )

( )

1

1 1

1

(( )
2
( )

( )

16 ( )
1
( )

1

1

1

1

2

f
c
t
e f

c e f d

E
E i t

E

t

t
E

E

i

i

i

Ê

Ë
Á

ˆ

¯
˜ £ £

£

+

+

+Ú

j

j tt

..

	(12)

By same way we deduce 

	

g
c
t

g

c
t

f b

c
T
f

c

N
E N

N E

E N
E N E

E
E

E

- •
-

-

-
-

£ £

£ + £

£ +

1
1

1

1
1

( )

( )
( )

4
( )

2
(

j

j

j j tt
e f

c
T
f c

t
e f d

N t
E

E
E t E

E

N

N

N

- -

-

£

£ + Ú

1
1

1

)
( )

4
( )

2 ( )
1
( )

.

1

1j j tt

	 (13)

On the other hand, an application of the well-
known estimate for rearrangements (see [1], 
Proposition 5.9) gives 

 	

b t
t
b

t
e f

e f d

E
E

E t
E

t

t

E
E

0
**

0 1

1

( )
1
( )

2
( )

( )

4 ( )
1
( )

.
1

£ £ £

£ Ú

j j

j tt

Substituting this estimate, (12) and (13) into 
(11), we obtain the desired conclusion (7).

Proposition is proved.
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Corollary 3.1. If jE ( ) =• •  then 

	 f cH e f** ( ( )).£ 	 (14)

Proof.  Take a limit in (7) as T Æ • .
Corollary is proved.
Corollary 3.2. The Calderon type space L( , )E F  

is contained in ( , )LE F
JL•  .

Proof.  Since f f* **£ , we conclude 

	 f cH e f* ( ( ))£
on (0, )•  by (14). If e f F( ) Œ , then H e f LE F

J( ( )) ( , )Œ •L  
H e f LE F

J( ( )) ( , )Œ •L  , and thereby f LE F
JŒ •( , )L  .

Corollary is proved.
By definition L( , )E F EÃ , hence 

	 L L( , ) ( , ) .E F L EE F
JÃ «•  	 (15)

As we see below ( , )LE F
JL E• «  sometimes is 

the smallest RIS which contains L( , )E F .

4. Optimality of the space ( , )LE F
JL• 

The above mentioned optimality is based on 
the results of [7]. First we study the condition 
which was used in the paper [7].

The following Proposition is a consequence of 
the change of variables and definition of the space 
F .

Proposition 4.1. The operator

	 G g t g
d

t

E

E

[ ]( ) = ( )
( )
( )

•

Ú t m t
m t

is bounded from F  to F  if and only if the 
operator 

	 G f t f s
ds
s

t
[ ]( ) = ( )

0
Ú

is bounded from F  to F .  
Theorem 4.1. If G F F: Æ , then the smallest 

RIS X0 , which contains L( , )E F  coincides with 
( , )LE F

JL•   on any finite interval (0, )0T .
Proof.  In view of Corollary 3.2 it is necessary 

to prove the inclusion ( , ) 0LE F
JL X• Ã , since the 

reverse inclusion is already proved.
The existence of the optimal space X0  was 

proved in [7] under condition G F F: Æ , and it 
was shown that  f X0

 is equivalent to 

 	 sup
j

j c
Œ ¢

•

•Ú - ¢ +
WEF

t f t dt fE T E
0

*
( , )( ) ( ) ,

for arbitrary T , where 

	
f t t f d

t K t f L

E E

t

E

E E E

( ) ( ) ( ) ( )

( ) ( ( ( )), ,{ , }).

( )
*= =

=

Ú
•

m t j t

m j b

b

0

L

The nature of the set ¢WEF  and the function b  
is of no importance in what follows.

We see that the norm is equivalent to 

	 sup
j

j
Œ ¢

•

Ú - ¢
WEF

t f t dtE
0

( ) ( )

on the interval (0, )0T . Thus we see that the norm 
in X0  on the interval (0, )0T  is K -monotone with 
respect to the couple { , }LE L• . Hence X0  is an 
interpolation space between LE  and L•  on the 
interval (0, )0T .

Let f  be an arbitrary element of ( , )LE F
JL•   on 

(0, )0T  and f**  be the corresponding dominating 
element. If we find y E FŒ L( , ) such that f f y

E E
≺ ≺** ,  

then f XŒ 0  on (0, )0T , and Theorem will be 
proved.

Indeed, by definition y XŒ 0 . The interpolation 
property of the space X0  between LE  and L•  on 
(0, )0T  and f y

E
≺  implies that f XŒ 0 . Hence 

( , ) 0LE F
JL X• Ã  on (0, )0T .

Thus we return to 

	 f u s
ds
s

T

** 0
= ( ) ,Ú

where u s h s ss( ) = ( )/(0, ( ))c a  and h FŒ  . We can take 
finite T  because L E• Ã L  on (0, )0T .

Recall (e.g., see [2]) that for x RŒ  

	 c n n
n n( 1/ ,1/ )

2
2 1

2( )
(2 )

,-
-

-

£x C
x

x
sin

where C  is a universal constant. Hence for 
x ŒRn  

j

n

t t j
n

j

n n
j

j
tn n

C t
t

q
=1

( 1/ 1/

2

=1

2 1 1/

21/ 1/, )( )
(2 )

=’ ’-

-
-

£c x
x

x
sin

(( ),x

where qt( )x  is an entire function of exponential 
type t > 0 .

Thereby 

	 c(0,1/ )
*.t tq£ 	 (16)

Let 

	 y q h s s
ds
s

T

s= ( )/ .
0

1/ ( )Ú a

Because of (16) we evidently have f y
E

**≺ . Let 
us show that y E FŒ L( , ) .

Recall that 

	 c(0,1/ )t E t E
q

(see [2]).
First we get y EŒ , since 
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y q h s s
ds
s

C h s s
ds
s

C h s
d

E

T

s E

T

s E

T

£ £

£

Ú

Ú Ú

0
1/ ( )

0
(0, ( ))

0

( )/

( )/ = ( )

a

ac ss
s

< •

in view of h F L t dt tŒ Ã 1( (1,1/ )[ / ]min  (see (3)).
It is easily seen that for sufficiently large 

t > 0  

	 y q h s s
ds
s
Mt

t

T

s t E
E

n= ( )/ ,
1/ ( )

1/ ( ) ,1/

m
aÚ Œ -

since for s tE> 1/ ( )m , which is equivalent to 
t s> 1/ ( )a , we have q Ms t En1/ ( ) ,1/a Œ - .

Furthermore 

	

e y y y q h s s
ds
s

q h

t t E

t

s

E

t

s E

E

E

( ) ( )/
/ ( )

/ ( )

/ ( )

/ ( )

£ - = £

£

Ú

Ú

0

1

1

0

1

1

m

a

m

a (( )/ ( )

( / ( ))
( )
( )

( )(

/ ( )

s s
ds
s

h s
ds
s

h
d

G g

E t

t
E

E

E

£ =

= =

Ú

Ú
•

0

1

1

m

m t m t
m t

tt),

where g t h tE( ) = (1/ ( ))m .
Hence e y Ft( ) Œ  since h t FE(1/ ( )m Œ . Thus 

y E FŒ L( , ) .
Theorem is proved.
Corollary 4.1. If G F F: Æ , then the smallest 

RIS containing L( , )E F  is equal to ( , )LE F
JL E• « .

 Proof.  In view (15) we have to prove 
( , ) 0LE F

JL E X• « Ã . Recall (e.g., see [2]) that the 
smallest RIS containing Mt E,  is E L« • . This 
yields that E L X« Ã• 0 . Thus if f L EE F

JŒ «•( , )L  ,  
t h e n  f XT

*
(0, ) 0c Œ  b y  T h e o r e m  4 . 1  a n d 

f E L XT
*

( , ) 0c • •Œ « Ã . Hence f X*
0Œ  and we 

conclude ( , ) 0LE F
JL E X• « Ã .

Corollary is proved.
Now we try to find an explicit description of 

the optimal space X0 .
The following Proposition is similar to 

Proposition 4.1 and we also leave the proof to the 
reader, since it may be obtained by direct change 
of variables.

Proposition 4.2. The operator 

 	 G g t
t
g d

E

t

E0
0

[ ]( ) =
1
( )

( ) ( )
m

t m tÚ
is bounded from F  to F  if and only if the 
operator 

 	 G f t t f s
ds
st

0 2[ ]( ) = ( )
•

Ú

is bounded in F .  
The sum of the operators G  and G0

  is equal 
to the Calderon operator 

S f t f s
t
s
ds
s

f s
ds
s
t f s

ds
s

t

t

[ ]( ) = ( ) (1, ) = ( ) ( ) .
0 0

2

• •

Ú Ú Ú+min

Corollary 4.2. The Calderon operator 

 	 S f t f s
t
s
ds
s

[ ]( ) = ( ) (1, )
0

•

Ú min

is bounded from F  to F , if and only if G  and G0  
are bounded in F .  

Recall that if the Calderon operator S  maps the 
parameter space F  into itself, then the J -method 
space ( , )0 1X X F

J
  coincides with the K -method space 

with the same parameter space (e.g. [1]).
Hence 

	 ( , ) = ( , ) ,L LE F
J

E F
KL L• •  	 (17)

which means that 

	 ( , ) = { : ( , ,{ , }) }.L LE F
J

EL f K t f L F• • Œ


This formula gives us opportunity to calculate 
the space ( , )LE F

JL•   in terms of the K -functional 
of the couple { , }LE L• .

If we combine (17) and (4), we conclude that 
f LE F

JŒ ••( , ) (0, )L  ,

	 K t f L f s d s FE

t

E

E

( , , , ) = ( ) ( ) ,
0

( )
*

1

L •}{ Œ
-

Ú
j

j 

and

	
0

1/
*( ) ( ) .

t

Ef s d s FÚ Œj

are equivalent.
We intend to apply these considerations to the 

restriction of spaces LE  and L•  onto a finite 
interval (0, )0T . In this case identity (17) takes 
place if the Calderon operator S  is bounded in the 
space F T(0, )  for some finite T . The operator S  
is bounded in F T(0, )  if G  and G0  are bounded in 
F T( , )1 •  for some 0 < <1T • .

Thus we obtain a new description of the 
optimal target space for embedding of the Calderon 
type spaces.

Theorem 4.2. If for some T1  the space F T( , )1 •  
is invariant under the operators 

	 G g t g
d

t

E

E

[ ]( ) = ( )
( )
( )

•

Ú t m t
m t

and 

	 G g t
t
g d

E

t

E0
0

[ ]( ) =
1
( )

( ) ( ),
m

t m tÚ
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then the optimal RIS X0  for the embedding 
L( , )E F XÃ  consists of f  such that 

	
0

1/
*

(0, )( ) ( ) ( )
t

T Ef s s d s FÚ Œc j  and f ET
*

( , )c • Œ

for some T > 0 .  
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