ТАБЛИЦЫ ДЛЯ СИНТЕЗА ДВУХЗВЕННЫХ ВХОДНЫХ СОГЛАСУЮЩИХ ЦЕПЕЙ МОЩНЫХ ВЧ И СВЧ ТРАНЗИСТОРОВ С УЧЕТОМ ПОТЕРЬ МОЩНОСТИ ИЗ-ЗА ВЗАИМНОЙ ИНДУКЦИИ

Б. К. Петров, О. М. Булгаков

Воронежский государственный университет Воронежский институт МВД России

Рассмотрена процедура синтеза двухзвенного *LC*-трансформатора входного импеданса мощного ВЧ (СВЧ) транзистора с учетом потерь входной мощности из-за неоднородности индуктивностей входных *LC*-звеньев транзисторных ячеек, обусловленной взаимоиндукцией. Показана возможность минимизации такого рода потерь путем размещения в полосе согласования как можно большего количества резонансных максимумов *LC*-звеньев транзисторных ячеек за счет вариации длинами проволочных проводников.

введение

Синтез входной согласующей цепи (ВСЦ) мощного ВЧ (СВЧ) транзистора является важным моментом его проектирования, так как на этом этапе определяется частотная зависимость его коэффициента усиления по мощности $K_p(f)$. Для трансформации входных импедансов ВЧ и СВЧ транзисторов обычно используются многозвенные Г-образные *LC*-фильтры нижних частот (ФНЧ) чебышевского типа [1], входное сопротивление которых определяется выражением [2]: 2 и 3 соответственно), соединяющими обкладки МДП-конденсаторов (4, 5) — емкостей C_1 и C_2 ВСЦ с электродами корпуса транзистора (6, 7, 8) и металлизацией активных областей транзисторных структур (9, 10).

ПРОБЛЕМЫ АНАЛИЗА И СИНТЕЗА ВХОДНЫХ СОГЛАСУЮЩИХ ЦЕПЕЙ МОЩНЫХ ВЧ (СВЧ) ТРАНЗИСТОРОВ

Мощный ВЧ (СВЧ) транзистор представляет собой систему параллельно соединенных по входу и выходу транзисторных ячеек (ТЯ),

$$Z_{\Phi H^{q}}(f) = \frac{\operatorname{Re}\{Z_{\mathrm{Tp}}(f)\} + j[A_{n}(f)X_{n}(f) - (\operatorname{Re}\{Z_{\mathrm{Tp}}(f)\})^{2}B_{n}(f)Y_{n}(f)]}{A_{n}^{2}(f) + (\operatorname{Re}\{Z_{\mathrm{Tp}}(f)\})^{2}B_{n}^{2}(f)},$$
(1)

где $\operatorname{Re}\{Z_{\operatorname{Tp}}(f)\}$ — активная составляющая входного импеданса транзистора; величины $A_n(f)$, $X_n(f), B_n(f), Y_n(f)$ вычисляются по рекуррентным формулам:

$$\begin{aligned} A_n(f) &= A_{n-1}(f) - X_n(f) \cdot 2\pi f \cdot C_n, \\ B_n(f) &= B_{n-1}(f) + Y_n(f) \cdot 2\pi f \cdot C_n, \\ Y_n(f) &= Y_{n-1}(f) - B_{n-1}(f) \cdot 2\pi f \cdot L_n, \\ X_n(f) &= X_{n-1}(f) + A_{n-1}(f) \cdot 2\pi f \cdot L_n, \end{aligned}$$

причем $A_0 = 1, B_0 = 0, Y_0 = 1, X_0 = 0.$

В современных конструкциях ВЧ и СВЧ транзисторов, как правило, одно или два LC-звена ВСЦ располагаются корпусе транзистора (рис. 1). Индуктивности L_1 и L_2 образованы за счет самоиндукции и взаимоиндукции контуров, ограниченных проводниками (позиции 1,

Рис. 1. Мощный СВЧ транзистор с внутренней входной двухзвенной согласующей LC-цепью

[©] Петров Б. К., Булгаков О. М., 2006

каждая из которых включает в себя область транзисторной структуры с системой соединений, приходящуюся на один проводник «МДПконденсатор — транзистор». Каждая из общего количества N ТЯ, таким образом, имеет собственную ВСЦ (рис. 1). Вследствие взаимоиндукции входных контуров, индуктивности L_{ij} и L_{2j} (j = 1,...,N) ВСЦ ТЯ будут различаться [3]. Частотная зависимость коэффициента передачи мощности ВСЦ транзистора $K_{\rm PCII}(f)$ получается в результате усреднения характеристик $K_{\rm PCIII}$ (f) ВСЦ отдельных ТЯ [1]:

$$K_{\text{PCII}}(f) = \sum_{j=1}^{N} \rho_j K_{\text{PCII}j}(f) / \sum_{j=1}^{N} \rho_j, \qquad (2)$$

где весовые коэффициенты $\rho_j = P_{\text{вх}j} / \max\{P_{\text{вх}j}\};$ $P_{\text{вх}j}$ — активная входная мощность, приходящаяся на *j*-ю транзисторную ячейку;

$$K_{\text{PCU}i}(f) = \frac{4 \operatorname{Re}\{Z_{\Phi H \Psi i}(f)\}NR_{\text{r}}}{(NR_{\text{r}} + \operatorname{Re}\{Z_{\Phi H \Psi i}(f)\})^{2} + (\operatorname{Im}\{Z_{\Phi H \Psi i}(f)\})^{2}}.$$
⁽³⁾

 $R_{\rm r}$ — сопротивление эквивалентного входного генератора для данного усилительного каскада, т.е. выходное сопротивление предыдущего усилительного каскада или другого блока устройства. Зависимости $Z_{\Phi H \Psi i}(f)$ определяются выражением (1).

Наличие в составе транзистора *N* ТЯ с параллельно соединенными входами согласующих *LC*-звеньев с различными индуктивностями L_{ij} и L_{2j} не позволяет при проектировании ВСЦ мощных ВЧ (СВЧ) транзисторов напрямую использовать традиционные методики синтеза трансформаторов импеданса, например, [4]. Рис. 2 демонстрирует искажение функций $K_{\rm PCL}(f)$, рассчитываемых по формулам (2), (3) (кривая 2) относительно «идеальных» характеристик [4] (кривая 1), сопровождающееся увеличением характеризующего потери мощности в полосе согласования Δf параметра $\delta P = 10 \log(1/K_{\rm min})$, где $K_{\rm min}$ — минимальное значение $K_{\rm PCL}(\omega)$.

ОСНОВНЫЕ ПОЛОЖЕНИЯ МЕТОДИКИ СИНТЕЗА ДВУХЗВЕННЫХ СОГЛАСУЮЩИХ ЦЕПЕЙ

Неоднородность значений L_{nj} характерна для n = 1, 2, поэтому рассмотрим процедуру оптимизации $K_{PCII}(f)$ двухзвенного LC-ФНЧ.

Возможность размещения в полосе $\Delta f 2N$ максимумов функций $K_{\text{PCUi}}(f)$ позволяет сни-

зить потери мощности на согласование за счет приведения результирующей характеристики $K_{\rm PCLI}(f)$ к гребенчатому равноколебательному виду.

1. Исходя из имеющихся рассчитанных значений $\operatorname{Re}\{Z_{\operatorname{rp}}(f)\}$, а также требуемых Δf и R_{r} , определим коэффициент трансформации:

$$K_{\rm rp} = R_{\rm r} / {\rm Re}\{Z_{\rm rp}(f_0)\},\$$

где f_0 — центральная частота диапазона согласования, а также L_1, L_2, C_1, C_2 , обеспечивающие реализацию данного значения $K_{\rm тр}$ и минимальную величину потерь на согласование $\delta P(f_0, \Delta f, K_{\rm тр})$ [4].

2. Из набора конструкционных данных транзистора определим длины l_1 и l_0 проводников 1 (рис.1), соединяющих активные области ТЯ соответственно с верхней и нижней обкладкой МДП-конденсатора и ограничивающих контуры, индуктивности которых образуют набор значений L_{ii} , так чтобы выполнялось условие:

$$\min\{L_{1j}(l_1;l_0)\} < L_1 \cdot N < \max\{L_{1j}(l_1;l_0)\};$$

$$j = 1, \dots, N.$$
(4a)

Аналогично для 2-го звена ВСЦ определим длину l_2 проводников 2 (рис. 1), обеспечивающую выполнение условия:

$$\min\{L_{2j}(l_2)\} < L_2 \cdot N < \max\{L_{21j}(l_2)\};$$

$$j = 1, \dots, N.$$
(46)

Методики расчета индуктивностей L_{ij} и L_{2j} (j = 1,...,N), учитывающие особенности геометрии систем соединений мощных ВЧ и СВЧ транзисторов, приведены в [5].

В случае размещения внутри корпуса транзистора только 1-го LC-звена ВСЦ индуктивность 2-го звена будет складываться из индуктивности $L_{\rm пров}$ ряда проводников 3 (рис. 1) и индуктивности $L_{\rm ЛЭ}$ ленточного электрода 6, т.е.

$$L_2 = L_{\rm JI\Im} + L_{\rm npob}.$$
 (5)

Обычно $L_{\rm ЛЭ}$, как минимум, в два раза больше, чем $L_{\rm пров}$ [6]. Поэтому неоднородность значений $L_{\rm пров}$, обусловленная взаимоиндукцией, не будет приводить к заметному различию величин L_{2i} . В этом случае L_2 может быть определена из (5), где

$$L_{\text{пров}} = \left(\sum_{j=1}^{N} \frac{1}{L_{\text{пров}j}}\right)^{-1} \approx \frac{1}{N^2} \sum_{j=1}^{N} L_{\text{пров}j}.$$
 (6)

3. На индуктивности L_{ij} и L_{2j} оказывают влияние смежные ряды проводников, поэтому дальнейший синтез ВСЦ, исходя из набора значений индуктивностей ВСЦ отдельных ТЯ как функций длины проводников: $L_{11}(l_1; l_0; l_2), ..., L_{1N}(l_1; l_0; l_2), ...; L_{21}(l_2; l_1; l_0), ..., L_{2N}(l_2; l_1; l_0), требу$ $ет оптимизации значений <math>l_0, l_1$ и l_2 . Критерием оптимизации может быть совместное достижение минимумов функций [7]:

$$\Delta L_{k} = \left| \left(\sum_{j=1}^{N} \frac{1}{L_{kj}(l_{0}; l_{1}; l_{2})} \right)^{-1} - L_{k} \right|, \tag{7}$$

$$\delta L_k = \frac{1}{L_k} \sum_{j=1}^N \left| L_{kj}(l_0; l_1; l_2) - L_k \right|, \ k = 1, 2, \qquad (8)$$

что обеспечивает размещение максимального количества экстремумов $K_{\rm PCL}(f)$ в диапазоне Δf , а также реализация минимума функции:

$$\Xi(L_1;L_2) = \sum_{j=1}^{N} \int_{f_{\rm nr}}^{f_{\rm nr}} \operatorname{Im}\{Z_{\Phi H \Psi_j}(f;L_1;L_2)\} df, \quad (9)$$

что, наряду с минимумами ΔL_k и δL_k равносильно минимуму функции

$$\Xi(L_{1j};L_{2j}) = \sum_{j=1}^{N} \int_{f_{\rm hr}}^{J_{\rm hr}} \operatorname{Im} \{Z_{\Phi H q_j}(f;L_{1j};L_{2j})\} df, (10)$$

являющемуся необходимым условием минимума отраженной мощности в полосе согласования.

4. Поиск оптимальных значений емкостей *C*₁ и *C*₂ осуществляется путем минимизации интегрального параметра [2, 7]:

$$\Delta P = \frac{1}{f_{\rm BF} - f_{\rm HF}} \int_{f_{\rm HF}}^{f_{\rm BF}} (1 - K_{\rm PCII}(f)) df, \qquad (11)$$

соответствующего относительным потерям мощности входного сигнала в полосе частот $\Delta f = f_{\rm BF} - f_{\rm HF}$, где $f_{\rm BF}$ и $f_{\rm HF}$ — соответственно верхняя и нижняя частоты полосы согласования, в приближении равномерного распределения спектральной плотности мощности сигнала: $W(f) = P_{\rm BX} / \Delta f$. При этом ВСЦ каждой ТЯ может рассматриваться по отдельности, т.е. C_1 и C_2 , обеспечивающие минимум ΔP , находятся из условия [7]:

$$\frac{\partial \left[\Delta P_{j}(C_{1j};C_{2j};L_{1j};L_{2j}) \right]}{\partial C_{1j}} + \frac{\partial \left[\Delta P_{j}(C_{1j};C_{2j};L_{1j};L_{2j}) \right]}{\partial C_{2j}} = 0; j = 1,...,N,$$
(12)

где ΔP_j — функция потерь ВСЦ *j*-й ТЯ, с последующим суммированием (ввиду параллельного соединения ТЯ) соответствующих корней \hat{C}_{kj} уравнений (12):

$$C_k = \sum_{j=1}^{N} \hat{C}_{kj}; k = 1, 2.$$
(13)

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 кривая 3 показывает частотную зависимость коэффициентов передачи мощности двухзвенных ВСЦ, синтезированных по итерационной процедуре на основе последовательности операций, изложенной в пп. 1-4, с учетом условий (4)—(13) для транзистора с N = 12, $\operatorname{Re}\{Z_{TD}\}=0,123$ om, $l_1=1,5$ MM, $l_2=2,2$ MM, paдиусом поперечного сечения проводников $r_0 = 50$ мкм. Неоднородность значений L_{4i} и L_{2i} приводит к тому, что для транзистора в целом во всей полосе частот не выполняется условие $\operatorname{Im}\{Z_{\Phi H \Psi}(f)\} = 0$, поэтому $K_{PCII}(f) < 1$. С другой стороны, следствием различия резонансных частот f_{0j} 1-*x LC*-звеньев ВСЦ является сглаживание не только максимумов, но и минимумов функции $K_{\text{PCII}}(f)$. В результате величина потерь ΔP остается на уровне результатов кривой 1 за счет лучшей относительной неравномерности характеристики $K_{\rm PCH}(f)$ в полосе частот Δf .

 $K_{PCU}(f)$

Рис. 2. Частотные зависимости коэффициентов передачи мощности двухзвенных *LC*-трансформаторов входного импеданса мощного ВЧ транзистора

В табл. 1 приведены результаты синтеза двухзвенных ВСЦ для рассмотренного выше примера с учетом реализуемых диапазонов $l_1 = 1, 2...1, 7$ мм, $l_2 = 2, 1...3, 5$ мм, $r_0 = 50...60$ мкм.

Для пересчета табличных значений на другой диапазон частот с центральной частотой f_0^* и другое сопротивление транзистора $\operatorname{Re}\{Z_{\operatorname{Tp}}^*\}$ значения L_1 и L_2 умножаются на $\frac{f_0}{f_0^*} \cdot \frac{\operatorname{Re}\{Z_{\operatorname{Tp}}^*\}}{\operatorname{Re}\{Z_{\operatorname{Tp}}\}}$, а значения C_1 и C_2 — на $\frac{f_0}{f_0^*} \cdot \frac{\operatorname{Re}\{Z_{\operatorname{Tp}}\}}{\operatorname{Re}\{Z_{\operatorname{Tp}}\}}$, где $f_0 = 150$ МГц.

Таблицы для синтеза двухзвенных входных согласующих цепей мощных ВЧ и СВЧ транзисторов ...

Таблица 1

		$\Delta f, M\Gamma_{\rm H}; \omega = \Delta f / f_0$								
		190 - 210	180 - 220	170 - 230	160 - 240	140-260	133 - 267	120-280	100-300	
K		0,1	0,2	0,3	0,4	0,6	0,67	0,8	1,0	
4	L_1	0,22763	0,22917	0,23175	0,23523	0,24512	0,2495	0,2758	0,2766	
	L_2	0,62186	0,62106	0,6194	0,6162	0,60427	0,5982	0,6790	0,5525	
	C_1	1,8511	1,8388	1,8193	1,7927	1,7215	1,6911	1,5257	1,52874	
	C_2	0,792	0,791	0,787	0,7805	0,760	0,7515	0,6725	0,7085	
	δR	1,00364	1,01525	1,0451	1,099	1,304	1,4109	1,887	2,143	
	δP	0,00162	0,0129	0,0436	0,1037	0,3466	0,4789	0,8588	1,512	
5	L_1	0,23931	0,24116	0,2440	0,2481	0,2592	0,2644	0,2605	0,29645	
	L_2	0,71605	0,71585	0,71434	0,71115	0,6983	0,6926	0,5915	0,6402	
	C_1	1,7638	1,7516	1,7303	1,703	1,62665	1,5937	1,6200	1,42107	
	C_2	0,7131	0,7147	0,7137	0,7095	0,6950	0,6875	0,727	0,654	
	δR	1,00537	1,0217	1,0621	1,1343	1,408	1,5516	1,682	2,5206	
	δP	0,00171	0,0138	0,0465	0,1114	0,3707	0,5115	0,8046	1,634	
6	L_1	0,24796	0,24999	0,2531	0,2574	0,2697	0,2754	0,28775	0,3120	
	L_2	0,80135	0,8014	0,8000	0,7970	0,7837	0,7772	0,7606	0,7228	
	C_1	1,6985	1,68632	1,6648	1,6355	1,5568	1,5231	1,4543	1,3403	
	C_2	0,654	0,656	0,654	0,652	0,642	0,6352	0,6245	0,609	
	δR	1,00819	1,0289	1,0829	1,175	1,5167	1,697	2,107	2,909	
	δP	0,00183	0,01426	0,04837	0,115	0,387	0,536	0,897	1,726	
8	L_1	0,2605	0,26265	0,2662	0,2709	0,2851	0,29122	0,3057	0,3344	
	L_2	0,95429	0,95435	0,9535	0,9504	0,9396	0,9204	0,9132	0,8708	
	C_1	1,60832	1,5949	1,5727	1,5419	1,4579	1,4240	1,3513	1,2306	
	C_2	0,569	0,571	0,5705	0,569	0,5625	0,5607	0,554	0,5445	
	δR	1,0144	1,0451	1,1225	1,2575	1,742	1,984	2,555	3,682	
	δP	0,00187	0,0150	0,0512	0,121	0,407	0,564	0,948	1,827	
10	L_1	0,2692	0,2715	0,2751	0,28033	0,2957	0,3025	0,3184	0,3498	
	L_2	1,08946	1,0899	1,0892	1,0863	1,0770	1,0665	1,0506	0,9998	
	C_1	1,54662	1,5327	1,5092	1,4784	1,3917	1,3568	1,2813	1,1595	
	C_2	0,5085	0,511	0,512	0,5122	0,5075	0,506	0,5015	0,4975	
	δR	1,0197	1,0666	1,1647	1,338	1,967	2,281	3,017	4,418	
	$\delta \overline{P}$	0,00191	0,0155	0,0526	0,129	0,420	0,582	0,978	1,890	

Значения индуктивностей (нГн) и емкостей (нФ) входной согласующей цепи в виде LC-ФНЧ чебышевского типа

Обозначения: $\delta R = \max\{\operatorname{Re}\{Z_{\Phi H \Psi}(f)\}\}/\min\{\operatorname{Re}\{Z_{\Phi H \Psi}(f)\}\}; K_{\text{тр}} = \max\{\operatorname{Re}\{Z_{\Phi H \Psi}(f)\}\}/\operatorname{Re}\{Z_{\text{тр}}\} - \kappa \circ \Rightarrow \phi \phi$ ициент трансформации входного импеданса транзистора согласующей целью.

Значения δP в таблице 1 выше, чем для «идеальных» ВСЦ [3], однако они предельно минимальны для возможных реализаций двухзвенных LC-ВСЦ в рассмотренном примере.

В таблице 2 отражены результаты синтеза рассматриваемой ВСЦ для больших значений коэффициента трансформации. Как видно из сравнения значений δP и δR таблиц 1 и 2, потери мощности определяются в большей степени относительной шириной полосы согласования и в меньшей — значением $K_{\rm pp}$. Налицо недостаточность двух *LC*-звеньев для согласо-

вания входного импеданса транзистора в полосе частот, превышающей октаву.

ЛИТЕРАТУРА

1. Шахгильдян В.В. Проектирование радиопередатчиков / В. В. Шахгильдян, М. С. Шумилин, В. Б. Козырев и др.; Под ред. В. В. Шахгильдяна. — М.: Радио и связь, 2000. — 656 с.

2. Булгаков О.М. Потери мощности во входных цепях оконечных каскадов широкополосных мощных СВЧ транзисторных радиопередатчиков / О. М. Булгаков // Радиотехника (Москва). — 2000. — № 9. — С. 79—82.

Б. К. Петров, О. М. Булгаков

Таблица 2

		$\Delta f, M\Gamma \mu; \omega = \Delta f/f_0$							
		190 - 210	180 - 220	170 - 230	160 - 240	140 - 260	133 - 267	120 - 280	100 - 300
K _{TP}		0,1	0,2	0,3	0,4	0,6	0,67	0,8	1,0
15	L_1	0,28298	0,2855	0,2896	0,2954	0,3140	0,3205	0,3385	0,3750
	L_2	1,378323	1,3798	1,3794	1,3788	1,3760	1,3798	1,3612	1,3415
	C_1	1,45071	1,4346	1,4130	1,380	1,290	1,2542	1,1773	1,050
	C_2	0,4147	0,419	0,421	0,421	0,421	0,420	0,418	0,419
	δR	1,0357	1,133	1,264	1,546	2,501	3,015	4,154	6,313
	δP	0,0020	0,0162	0,0548	0,1296	0,4485	0,6046	1,0185	1,981
20	L_1	0,2914	0,2940	0,2983	0,3046	0,3220	0,3312	0,3506	0,3896
	L_2	1,6228	1,6253	1,6255	1,6270	1,6120	1,6035	1,5815	1,521
	C_1	1,3938	1,3787	1,3546	1,3221	1,2335	1,1960	1,1184	0,9887
	C_2	0,361	0,363	0,364	0,364	0,364	0,370	0,370	0,382
	δR	1,062	1,204	1,396	1,7745	3,139	3,7056	5,216	7,976
	δP	0,00202	0,0163	0,0556	0,1317	0,4488	0,6161	1,0404	2,033
25	L_1	0,2973	0,300	0,30455	0,311	0,3302	0,3389	0,3595	0,4028
	L_2	1,839	1,84213	1,8437	1,8457	1,8375	1,823	1,800	1,739
	C_1	1,35537	1,3403	1,3165	1,2831	1,193	1,15586	1,0775	0,9442
	C_2	0,321	0,324	0,3255	0,328	0,329	0,3305	0,3335	0,337
	δR	1,075	1,271	1,5402	1,983	3,6647	4,482	6,344	10,02
	δP	0,00206	0,0164	0,05614	0,1331	0,4492	0,62304	1,0551	2,051
30	L_1	0,3016	0,3044	0,3091	0,3158	0,3354	0,34465	0,3660	0,4115
	L_2	2,034	2,0378	2,0406	2,0430	2,0297	2,0213	2,005	1,934
	C_1	1,3266	1,3118	1,2879	1,2546	1,16488	1,12665	1,0475	0,9135
	C_2	0,293	0,296	0,2975	0,298	0,302	0,304	0,3065	0,310
	δR	1,097	1,3491	1,7008	2,214	4,1227	5,1915	7,450	11,896
	δP	0,00209	0,01660	0,05626	0,1342	0,452	0,6277	1,0612	2,0707
40	L_1	0,3077	0,3109	0,3155	0,3227	0,3433	0,353	0,37535	0,4238
	L_2	2,3807	2,3877	2,3899	2,3985	2,3889	2,3774	2,3550	2,285
	C_1	1,28629	1,2726	1,24795	1,2145	1,124	1,0858	1,0062	0,871
	C_2	0,253	0,2546	0,257	0,259	0,262	0,2641	0,266	0,271
	δR	1,135	1,471	1,9968	2,695	5,3805	6,6866	9,762	15,687
	δP	0,00216	0,0165	0,05728	0,1354	0,456	0,6337	1,069	2,0914

Значения индуктивностей (нГн) и емкостей (нФ) LC-ФНЧ с большими значениями коэффициента трансформации входного импеданса транзистора

3. Булгаков О.М. Компенсация уменьшения коэффициентов усиления по мощности оконечных каскадов узкодиапазонных ВЧ и СВЧ транзисторных усилителей, вызванного индуктивным взаимодействием входных цепей транзисторных ячеек / О. М. Булгаков, Б. К. Петров // Сборник докладов VII Международной научно-технической конференции «Радиолокация, навигация, связь» (Воронеж, 24—26 апреля 2001 г.). — Воронеж: ВНИИС, ВорГУ, 2001. — Т. 3. — С. 1791—1799.

4. *Маттэй Г.Л.* Фильтры СВЧ, согласующие цепи и цепи связи / Г. Л. Маттэй, Л. Янг, Е. М. Т. Джонс: Пер. с англ.; Под ред. О. В. Алексеева, Ф. В. Кушнира. — М.: Связь, 1971. — Т. І. — 439 с., Т. ІІ. — 495 с. 5. Булгаков О.М. Композиционные модели индукционных взаимодействий в мощных ВЧ и СВЧ транзисторах / О. М. Булгаков, Б. К. Петров. — Воронеж: ВорГУ, 2005. — 253 с.

6. Петухов В.М. Биполярные транзисторы средней и большой мощности сверхвысокочастотные и их зарубежные аналоги. Справочник. Т. 4 / В. М. Петухов. — М.: КУбК-а, 1997. — 544 с.

7. Петров Б.К. Минимизация потерь во входной широкополосной согласующей цепи мощного ВЧ (СВЧ) транзистора / Б. К. Петров, О. М. Булгаков // Вестник Воронежского госуниверситета. — 2004. — Вып. 2. — С. 72—77.