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NONLINEAR SCATTERING OF LASER PULSE
BY ELECTRON IN PERIODIC POTENTIAL

P. A. Golovinski, P. A. Preobrahzenski

Voronezh University of Construction and Architecture

The classical model of a nonlinear scattering of intense pulse of laser radiation by an
electron, taking place in a periodic potential field, is discussed. On the basis of the
approximation of Kapitza-Dirac the complete analytical solution in the case of compressed
pulse is obtained. The form of scattered radiation and its spectral distribution for various

forms of initial laser pulses are found.

1. INTRODUCTION

The process of the high harmonic genera-
tion as the result of the action of intense laser
radiation on various systems (atomic and
molecular gases, metal films, glass structures,
carbon nano tubes and others) is a subject of
this study. The progress in this area has given,
in particular, sources of a coherent ultra-violet
radiation and cutting of duration of a scatte-
red pulse up to atto second. The radiation with
such unique properties has practical application
at the examination of biological objects and
study of the rate of the fast chemical reactions.

Qualitatively, the mechanism of harmonic
generation on atomic gases for a low-frequency
field is explained on the basis of the semi-
classical Corkum’s model (Corkum 1993).
According to this model the electron generates
harmonics during the scattering on the
potential of the atomic core after nonlinear
ionization. The motion of an electron, in this
model, is considered as propagation of a wave
packet in a field of an electromagnetic wave
(Rae and Barnett 1993). The difficulties of
complete quantum consideration of the high
harmonic generation in strong laser fields are
not completely overcome till now, though the
satisfactory consideration of the process is
obtained both for atomic gases, and for gases
of diatomic molecules (Chin and Golovinski
1995, Chin et al 1995).

The harmonic generation in periodic
structures (crystals) was considered theoreti-
cally in (Kalman and Brabec 1995, 1996). In
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these papers the field of strong laser radiation
was taken as classic, and the remaining part
of the problem was solved as quantum. The
high harmonic generation in such model arises
as a result of a spontaneous radiation of
electrons scattered on ions of a lattice, at a
motion under the action of a strong laser field.
Thus, however, the plasma effects, essential
in available experiments were not taken into
account, and this impedes comparison of
results of the theoretical investigations with
the experimental data.

Recently serious successes are reached in
preparation and investigation of carbon nano-
tubes, containing one or several layers of
cylindrical structures by a diameter from one
up to several tens nm and length up to a several
microns (Eletzkiy 2002). They have different
structure, a different period of a lattice and
have various types of conductance (Mintmire J.
et al 1992, Ebbesen T. W. et al 1996). Nanotubes
contain only few layers of carbon that excludes
the nonlinear effects in near wall plasma under
the action of laser radiation. At the same time
the translation symmetry in them is precisely
exhibited. The development of physics and
technique of the nanostructures boosts
theoretical investigations of interaction of
laser radiation with periodic microsystems. We
shall consider the model of a nonlinear scat-
tering of a laser pulse of high intensity on
such system stipulated by nonlinear motion
of an electron in the field of periodic structure
and a laser wave.

The features of a physical picture in many
respects are connected with the shape of a
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laser pulse. In the case of asymmetrical pulses
with the effective duration of a pulse T, the
average value of the electric strength F, is
defined by

_ 1K
F =—|F(t)dt,
70

and it can be comparable with the peak value
E ... The electron under the action of the pulse
gains a kinetic energy comparable with the
energy of its interaction with a solid-state
comb. The basic part of radiation of such
electron generates after interaction with a field
and is determined by the radiative friction at
a motion in periodic potential of a lattice. This
process is nearly the same that is well known
radiation in channels.

On the other hand, when F << F, _, the
energy of an electron after interaction with a
separate laser pulse is approximately equal
zero, and the value of radiation after the
action of the pulse can be neglected. The radia-
tion in this case happens only during inter-
action of an electron with a laser pulse. The
mechanism of this process is not enough
investigated and it is the subject of the this

paper.

2. GENERAL EQUATIONS

That fact, that a spectrum of energies of
an electron in combined field of an intense
electromagnetic wave and solid-state comb is
continuous, allows to take advantage of
classical approach in description of a motion
of an electron. Besides we shall assume that
periodic structure has size L, that is much
less than a wavelength of laser radiation A,
that will allow us to be restricted by dipole
approximation. We take one-dimensional model
of periodic potential of a lattice how it is made
in the Frenkel theory of a motion of disloca-
tions (Frenkel 1950 ):

U= %[1—008(](3%)], (1)

[, is the field amplitude of a solid-state «comb»
and parameter k is defined by a spatial period
of a lattice a as follows: k =27 /a. The force
f, acting on an electron in such periodic struc-
ture, has a form:

f= _9U —f, sin(kz). (2)
oz

Let’s choose the linear polarization of the
laser field along an axis of nanotube =z,
provided that the motion of an electron is
described by the one-dimensional equation of
Newton

i = F(t)— f, sin(kz). (3)

F(t) is the force of the interaction of an
electron with a laser field, depending on time,
(we use the atomic system of units, where
m, =e =1). An initial time ¢ =0 we choose so,
that F(0)=0, and the electron is in a mini-
mum of the potential energy of the lattice in
the point z =0.

If the external field is great (F,, > f) it
is convenient to take advantage of the modi-
fied Kapitza—Dirac approximation (Landau
and Lifshitz 1973), and the solution of the
Eq. (3) can be presented as the sum of two
terms

z=d+¢&. (4)

&(t) is the solution representing fast oscillations
in a strong laser field, and d(t) takes into
account the nonlinear corrections to the motion
as a result of interaction with a lattice. Then
instead of Eq.(3) we shall obtain two equations

E=F(1), (5)

d = —f, sin(k§(t)). (6)

The initial conditions are &(0) = 0,d(0) =0

and &(0) = 0,d(0) = 0. The solution of the Eq. (5)
for any pulse is expressed in quadratures

t

T t

Et) = j( [ Fz)dz, )dr = [F@)(t-1)dz. (7)
0\ 0 0

In Eq. (7) we used the formula of Cauchy

for iterated integral. After substitution of the

solution of Eq. (7) into the Eq. (6), we shall obtain

d=-f, sin(kjF(T)(t —1)dt ] (8)

This allows us at once to calculate the shape
of a scattered pulse for various forms and
amplitudes of an initial pulse. Really, in a long-
field radiation zone of the dipole (r> A > L)
the formula (Landau and Lifshitz 1973) for
an electric field of the scattered wave is valid:

2 2
cr cr

B = WWe __fe (kj F)(t - 1)de J 9)
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Here the vector e is connected to the unit vector
of polarization of laser radiation e, and the
unit vector n, directed from an electron to a
point of observation, as follows: [[e,,n],n].

0?

3. CALCULATIONS
In particular, for a harmonic laser radiation
F = F,sin(wt)) the solution of the Eq. (5) has
the form

(10)

2

E(t) = —issin (o).
®

After substitution of Eq. (10) into Eq.(6), we
shall have

d(t) = f, sin (zsin (ot)), z=k%. (11)

For small z the dependence of intensity of
a scattered wave is harmonic function of time.
For z > the dependence of the field intensity
of a scattered pulse as a function of time has
the local minimums, with positions determined
by the formula f, = arcsin(kr /z), k=1,2,3....

Generating function for Bessel functions
(Bateman and Erdely 1966 ) is

sin(zsin@) = 22 Js,

n=1

)sin[(2n -1)0] (12)

nl

It allows us to obtain a spectral decomposi-
tion of the scattered wave as

2
E(t Cﬁ)’l’ zJZ'n 1

n=1

sm[?n la)t] (13)
Thus, in the spectrum of scattered radiation
there will be only odd harmonics as a
consequence of the symmetry of the lattice
concerning a veering of an axis x on opposite
direction at the fixed earlier starting conditions.
The intensity of radiation of an electron is
given by expression

_?LQ S (ZJin sin[(2n — 1)6075]J - (14)
C n=

The 1nten51ty I, averaged on the period
of a radiated wave, is possible to present as
the sum of the intensities of the monochro-
matic components:

= 2 3 3 2 22 1(’2)
n=1 n=1

As the result the dependence of the ave-
rage value of intensity is approximated by
the expression

(15)

= Af? 8
I = 3 exp[—§z+100 (1 —exp(l.lSn))]. (16)
in the interval n <200, 0.01 <z <100, with a
relative accuracy not exceeding 0.05. The result
of calculation of average intensity of radiation
of harmonics is given for various values of
parameter z in Fig.l. For small z the
dependence of intensity of harmonics as a
function of its number is smooth. With the
growth of the value of the parameter z, the
number of local extremes in dependence is
grows.
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Fig. 1. The dependence of the ratio of average
intensity of a radiated harmonic I, to the
approximation by Eq. (16) as a function of the number
of the harmonic n. Gauge on an axis of ordinates is
logarithmic. The curve 1 corresponds to the value of

dimensionless parameter z <1, and the curves 2
and 3 — z=10 and 100 respectively.

In theoretical investigation of the processes
of interaction of the matter with a laser field
the radiation usually is considered like a
harmonic with the slowly varying amplitude
as a function of space coordinates and time
(Shore and Kulander 1989). The progress in
generation of ultra short pulses has revealed
frames of such approximation. Therefore for
theoretical description of the processes of
nonlinear interaction of the matter with such
radiation the various models of a laser field
reflecting experimental methods of generation
of ultra short pulses were offered. One of the
procedures of generation of ultra short pulses
is based on the use of the broadband
generating mediums, as it is done in titanium-
sapphire lasers (Akhmanov et al 1988 ), for
which the radiation is represented by the sum
of harmonics of frequency Q with close
amplitudes modulated by high frequency
w >>Q
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N
F(t) =cos(wt—(p)2]5; sin (IQt).  (17)

1=0
If the amplitudes of harmonics are identi-
cal (F; = F)) the sum in Eq. (17) is easily calcula-

ted as
sin! lNQt '
=F 2 cos (0t — ).

(T

Such radiation gives an infinite sequence
of pulses with frequency of repetition Q. The
width of a separate pulse linearly decreases
with the growth of the number of harmonics
N in the sum. Thus for formation of ultra short
pulses, with the width comparable with a
period of high-frequency oscillation, it is
necessary to combine rather big (N =10%)
number of harmonics. By a special choice of
amplitudes of terms of the sum in Eq.(17) as
o -factors of Fejer (Lantzosh 1961)

o, = %[1 + (—1)“]sm(Nl’fr - ) (19)

it is possible, practically with no changing of
a pulse shape, considerably (up to x _1q)
reduce the number of terms of the harmonic
decomposition. In this case the amplitude of a
laser field is represented as

(18)

F(t)
1N\ Fo
a
Qmt
-0.001 S S 0.001
F(t)
1 Fo
b
/\ /\ Qmt
-0.001 N ~ 0.001

Fig. 2. The shapes of an incoming ultra short
pulses of the form of the Eq. (20) at number of
harmonics N =40, pulse-repetition frequency
Q = 0.01. Modulating frequency ® is equal 0.2 and
0.8 accordingly
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2m -1
F(t) = CFycos(wt) X o cos(IQt). (20)
=1
The normalization coefficient is defined by
2m~—1 N + 1

the expression 1/C = 2 o, and m = 5
=1

The shapes of the pulses for various values
of the ratio of frequencies =z =Q /@ are given
in a Fig. 2. It is evident, that at the diminution
of the parameter x the pulse becomes more
symmetric. The solution of the Eq. (5) in a
field of a wave given by the Eq. (20) has an
analytical form.

Time dependence of displacement of an
electron &(t) for pulses of the various shapes
is presented in a Fig. 3. The curve 3 corresponds
to the asymmetrical pulse, with the shape
figured in the Fig. 2a. In this case, the electron
velocity is increased as the result of interaction
with each laser pulse. The curve 1 corresponds
to a symmetric pulse, which shape is figured
in a Fig. 2b. After interaction with a pulse an
electron remains in the rest, and the radiation
happens during interaction with a laser pulse.
The curve 2 corresponds to the laser pulse of
the intermediate shape.

Substituting the solution of the Eq. (23)
into the Eq.(6), and taking into account connec-
tion of potential functions with functions of
multiple arguments, it is easy to obtain the
harmonic decomposition of a scattered pulse.
The formulas, however, are rather complex
and are not presented here.

The number of analytical evaluations
necessary for definition of the weights of har-
monics grows with magnification of intensity
of the laser field. Therefore in strong fields
more convenient is to use the algorithm based
on trigonometric interpolation of the equi-
distant data as in (Lantzosh, 1961). Besides,

)

Fig. 3. Time dependence of the displacement
of electron
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this algorithm is applicable when the harmonic
representation of a laser pulse is not known
or poorly converges. Coefficients of the Fourier
decomposition of the electric field strength
of a scattered wave

E(t) = i ¢, exp(ilt)

=N

(25)

are expressed with the use of the values of

function FE(z;) in equidistant points of any

intervals of periodicity [¢,,?,] by the formula
1 N

¢ =—— D, Ez,)exp(=ilz,).

26
w2 (26)

Here z; = %[% (t, —t,)+ to]. The calculations

according to the Eq. (26) do not depend on the
form of the laser pulse, and depend only on
the number of the harmonics N taken into
account. The result of the calculation of the
spectral distribution of the scattered pulse is
given in the Fig. 4.
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Fig. 4. Spectral distribution of scattered radiation
for the pulse of the form presented in the Fig. 2.b.
On an abscissa axis we plotted the number of a
harmonics, and on an axis of ordinates the intensity
averaged over the period, and normalized on the
unit in the maximum of radiation. The gauge on the
axis of ordinates is logarithmic

In addition to the summation of harmonics
there are also other experimental procedures
permitting to shape limiting short (down to
practically unipolar) pulses (Jones et al 1983).
Adequate complete basis for decomposition of
such pulse can be taken as wavelets or frames
(Novikov and Stechkin 1998). For the frames
the basis can be constructed, for example, as
the derivatives of Gauss function

m

- dtﬂl

v, exp(—t*), m>1. (27)

137

The double integration of the function &(t)
on time again will give decomposition, but in
the other basis with m’=m —2. For m =2 the
result of integration is Gaussian: &(t) = exp(—t*).
Earlier we used the basis with m =2:

w,(t) =220t 1) exp(-a’t’),  (28)

and it allowed us to describe a diffraction and
focusing of a ultra short pulse (Mikhailov and
Golovinski 2000).

For a pulse of an incident wave represented
by the one frame from the basis of Eq. (28), the
amplitude of the scattered wave has the form

FE
E(t) = %sin [k‘—gexp (—062152 )] (29)
cr o

The shape of the laser pulse given by
Eq. (28) is figured in the Fig. 5a. Characteristic
duration of this pulse is equal 1/a. The

dependence of electric field strength of a

F@)
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E%nax
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T

Fig. 5. a — The shape of the laser pulse for
symmetric basic frame when the value of dimen-

F
sionless parameter k—g =8m. b — The form of
o

the scattered pulse
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scattered pulse as a function of time is plotted
in the Fig. 5b. Decomposing FE(t) in the Fourier
integral, we shall have

n_ B < (-1’
E(w)=-"" X
c’ro ,Zg (2k +1)!\2k +1

Xexp(_ﬁ;)-(kig]' , (30)
o
where

Bo=—L_ p -2 (31)

Lk+1’ 20

According to the Eq. (30) the product
E(w)o’ depends only on dimensionless para-
meter fB,. The dependence of the Fourier
spectrum of the scattered pulse as a function
of intensity of the laser radiation is nonmo-
notone.

4. CONCLUSION

The model of motions of an electron in
the field of electromagnetic wave and periodic
spatial structure is described by the classical
equations, and it is capable explain a conver-
sion of an initial pulse and, in particular, high
harmonic generation. If the kinetic energy of
an electron in the laser wave considerably
exceeds the potential energy, then oscillations,
defined by the interaction with electromagnetic
wave can be described separately. The solution
of this part of a problem is expressed in
quadratures. For many of typical pulses the
integration of the equation of motion of an
electron in elementary functions is possible. In
particular, it is valid for harmonic field and
for ultra short pulses represented by the
Fourier decomposition and by the frames,
which are derivative of the Gaussian functions.

The solution of the problem of defining
the shape of the scattered wave is linked
algebraically to the solution of the equation
of motion. Thus a physical picture of the
process is clear for various pulses close to
symmetric and pulses possessing considerable
asymmetry. In this model it is possible to obtain
analytical expressions featuring conversion of
arbitrary laser pulse.

The spectral distribution of a field of a
scattered wave is determined by the Fourier
transform of a field of a scattered wave for
solitary pulses of laser radiation and by the

coefficients of the Fourier decomposition for
periodic laser pulses. The Fourier transform
of the scattered pulse for laser radiation of
arbitrary Gaussian frame can be calculated as
the power series on intensity with coefficients
depending on dimensionless parameter. For the
harmonic laser signal the Fourier coefficients
are expressed through Bessel functions. The
results of calculations testify for field of a
sine-type wave, that intensity of harmonics
decreases with the growth of parameter z
according to the power law. With increasing
of the number of a harmonics n the rate of
their slope exceeds exponential. The approxi-
mating formula ensuring in a wide interval
of the changes z and n the relative error, not
exceeding 5%, is obtained for the intensity of
harmonics.

For ultra short pulses in many practically
interesting cases the spectral distribution of
scattered radiation can be represented by
several first terms of decomposition of
amplitude of a harmonics in powers series on
amplitude of electromagnetic wave. The
development of the model, offered in the
present paper, can be derived in several
directions. Important at build-up of the more
detailed theory is to take into account the
features of the carbon nanotubes structure
such as positions of carbon atoms in the
vertexes of hexagons. The sizes of actual
nanotubes achieve several microns, and the
interest has an outcome from the boundaries
of the dipole approximation and the study of
the problem of the coherence of radiation
scattered from different electrons of the
structure. On the other hand, the application
of the given model to the processes of a
scattering of a signal on atomic and molecular
gases is possible too.
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