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The parameters of the equation of the domain wall motion for its translational movement
have been calculated: the effective mass of the wall connected with involving in motion of the
bulk of ferroelectric through the piezoeffect, the coefficient of the quasielastic force effecting
on the wall and connected with the change of charging state on the surface of the material at
the displacement of domain boundary and the effective resistance to the motion of domain
boundary in crystal with defects. On the basis of the equation of motion for the domain wall
the value of its shift is determined in dependence on the amplitude and frequency of external
electrical field. The contribution of domain boundaries into the dielectric permeability and the
frequency dispersion of the latter are calculated. The obtained results are compared with the
experimental data. It has been shown, that the dispersion of the dielectric permeability € in
KH,PO, crystal at the frequencies 10’+10° Hz can be explained by inertial properties of domain
boundaries. Rather low-frequency dispersion € at the frequencies ~10° Hz in ¥ -irradiated
crystals KH,PO, is due to the decrease of mobility of the domain boundaries in crystals with

defects.

According to numerous experimental data
the dispersion of dielectric permeability and
tangent of the dielectric losses angle in ferro-
electrics besides the so-called soft mode [1] is
connected with the motion of domain bound-
aries [2]. Dispersion of a resonant type ob-
served in ferroelectrics with perovskite-type
structure in the megaherz range of frequen-
cies [3], and dispersion of relaxation type noted
in the kiloherz range in numerous crystals of
KH,PO, group, exposed to y - or electron ir-
radiation [4] is also related to the same class
of phenomena.

For theoretical description of the above
mentioned dispersion the study of the motion
regularities of domain boundaries in a wide
range of frequencies is necessary. They de-
pend on the inertial properties of the bound-
aries [5] as on the materials themselves [6, 7],
on the forces arising at the displacement of
domain boundaries from their equilibrum po-
sitions [8—10], and, finally, on the mobility
of the boundary determined by dissipative
processes in the ideal material [11, 12] as well
as by the interaction of the moving boundary
with defects of the crystal lattice [13—15]. A
particular character of the motion of domain
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boundaries depends on the relative role of terms
in the equation of motion of the domain wall.

Let’s specify the physical reasons of appear-
ance of different terms in the equation of mo-
tion of the domain wall. In the initial state in
the absence of external field the charges on
the surface of ferroelectric are compensated as
a rule at the expense of the bulk or surface
conductivity. The applying of external electric
field results in appearance of the pressure on
the domain walls. Being displaced under this
pressure the domain boundaries break the bal-
ance of charges on the surface of ferroelectric.
It results in the increase of electrostatic ener-
gy of the crystal and, hence, the appearance
of quasielastic returning force effecting on the
displaced boundary. In the crystal of ferroelec-
tric-ferroelastic and also in the case of ferroe-
lectric with 90-degree domain boundaries be-
sides of the electrical returning force there also
arises a returning force of the elastic nature
related to the appearance of the elastic stress-
es under displacement of domain boundaries
in the place of contact of ferroelectric with
the nonferroelectric layer [9, 10].

Any domain wall has its local effective mass
connected with the inertial properties of the
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particles, composing the wall, since due to their
motion the vector of polarization is overturned
in the region of the moving boundary. Besides
[7], even in the process of translational motion
of domain walls there appears also their effec-
tive nonlocal mass. It occurs due to involving in
the motion through piezoeffect of the whole
layer of the ferroelectric. The source of the
corresponding fields is the above mentioned non-
compensated charges on the surface of the fer-
roelectric. The thickness of the layer involved
in motion and, hence, the value of nonlocal
effective mass depend on the wave length of
translational displacements. For ultimately long-
wave shifts all the bulk of ferroelectric can be
considered as such a layer.

The presence of defects of the crystal lat-
tice interacting with the domain wall, depend-
ing on the mobility of such defects is the rea-
son, in a general case, of appearance of addi-
tional as quasielastic as dissipative terms in the
equation of the motion of domain wall.

Let’s formulate now the equation of motion
of the domain wall in ferroelectric in an external
field. For definiteness we shall begin the consid-
eration with the case of pure ferroelectric with
180-degree domain structure. As the latter one
we shall choose an infinite ferroelectric plate with
thickness of L_ along the polar axis. We shall
place the origin of coordinate system into the
middle of its thickness and choose it as coincid-
ing with one of the walls along Z axis. Let’s begin
with the case of a non-defect crystal. Taking into
account all the above mentioned facts, the equa-
tion of motion of the domain wall in an external
field E here takes the following form:

(m, +m)U + KU =2P,E . (1)

Here m, and m, are local and nonlocal effective
mass of the domain wall, respectively. KC is the
coefficient of the quasielastic force effecting on
the displaced domain wall, 2P F' is the pressure
on this wall from the external field. Let’s note,
that the equation (1) will be of the same form
for all the domain walls since the field F varying
in time, will be identical at any moment of time
for all the points of the sample.

In order to calculate the coefficient of the
quasielastic force K the equation (1) it should

be completed by the equation of electrostatics
oD,

2 — 2

™ (2)

0,

BECTHUEK BI'Y, Cepua ¢pusura, matematuxa, 2002,

53

the equation of motion of the elastic medium
dJo;

(3)
ax].

and by the corresponding material equations in
a crystal with piezoeffect:

O, = Cyly + BkijEk’
D, =¢e,E, +4n b, —Anf u,,.

/7]

Piiy =

(4)

Here D. is the vector of electrostatic induc-
tion, P, and E are vectors of spontaneous polari-
zation and strength of the electrical field, u, is
the vector of elastic shift of the medium points,
u, and o, are tensors of deformation and elastic
stresses, respectively, ¢, ﬁl.].k, g, are tensors of
modules of elasticity, piezocoefficients and dielect-
ric permeability, p is the density of medium.

In order to calculate the coefficient K and
mass m, we shall calculate the electrical field
arising at the displacement of domain bounda-
ries. For the considered small displacements of
domain walls U< d (d — average width of the
domain) the source of the indicated fields is
the charges arising with the surface density

0,(z) = X, 7,6(z = nd) (5)
on the surfaces of ferroelectric, where y, =2FU,
at r= L /2 and correspondingly is equal to —2F,U,
at z = —L_/2; n — is the number of the domain
wall. Substituting the relationship (4) into (2)
and (3) with the account of expressions for the
tensor of deformation and of the connection
between the strength of the electrostatic field
and its potential for determination of the field
arising at the displacement of the one domain
wall we shall obtain the following system of
the equations [16]:

2’ o*u,
—€. —A4nf. . L =Any 6(x)d(z),
81] aZIJlafL'] ﬂﬁzjk afl}kafEl ﬂ’J/n (x) (Z)
L oy, o’p (6)
Pl = G dz,07, " 02,07, '

Let’s present ¢(z,z) and w,(z,z) as a Fouri-
er-expansions

ik, . dk dk
T,z)= t) e e g e
o(z,2) J .(t) oy
e e dhdk (8)
. = - t . ik, . ik,z #.
'Uq J‘uzk( ) e e (27.[)2
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For elastically-isotropic material the equation
of dynamics for the elastic medium looks as
following

0* 0° 0’
pi; = (A + 1) =— g; +ual§ ﬂkwaxg)x 9)

where A and u are Lame coefficients. Deter-
mining with the account of (9)
- 0A,/0z,
divi = ————5—
plek —o7)

where A, = B,.0°¢/0z,0z;, and ¢, =.(A+2u)/p
is the ve1051ty of longitudinal sound wave we
obtain instead of (9)

=k 4k, (10)

A+ PNz, Fu,
i == : —— + ~—A (11
pPu p(clgIgQ —COZ) al‘z i ( )

The substitution in (11) and in the equation of
electrostatics in (7) of Fourier-expansions (8) gives
us now the system of equations for determination
of Fourier-coefficients u . and ¢,

(¢ —¢)

Uy = |:Bk7] % ﬁﬁkljkkkjklki ?;
(C ]C (Clk ) )

& kk; P 4ﬂﬁijkkkkvluﬂg

Yoy

=4my

(12)

(¢, =Ju/p — is the velocity of the transvers
sound wave). Then

(1) = 4my, {guktkj + %
’ p(C,,k - )
P - ©as
[ﬂp]mkpkm - (6(2]% ) ) ﬂplmkpkjkk :|} . ( )
1

The expression (13) contains the contribu-
tions as into the coefficient of quasielastic force
K, as into effective mass of the domain wall
m, arising by means of piezoelectric interac-
tions. For their determination we shall expand
@, in a sieries over . Thus, with respect of
static contribution into ¢, we shall take into
account that in a view of real relationship
4n8°/pc’e <1 the contribution of the piezoef-
fect into ¢ (@ = 0) can be neglected. As a result
we shall obtain

0.
Q. = (0=0)+ az’; O

0

(14)

where @ (0 =0) = 4nyek

’JlJ’

a(l)}; | 47ryn {47[[3 ijk ﬁ mmk klkpkfm
aa)2 |U (eykzkj) pC k
(¢ —¢!) 47B B,k k1 k Kk,

} (15)

The bulk density of the charge correspond-
ing to (5) and distributed on both surfaces of
the ferroelectric plate is

Dl o5

(16)

According to properties of the Green’s func-
tion the potential of these charges

4 4
¢/c i’

iy dk
¢,(z,2) = J‘p;;(P;f P n) =
R (e d) =k (= i dk, dk, (17)
= S fpe e e T

(2m)

where ¢, = ¢./7,,y, =2RU, and y, =2RU, (-1)"™". g
Appearance in the last expression of the factor
(=1)"™ takes into account that at the identical
signs of U, and U, the charge arising on the
surface of the crystal near the neighbouring
domain walls has the opposite sign.

The energy of interaction of charges (16)
between themselves with the account of (5) and
(17) in a general case is

f=Lchl<x— £.2)- 0,0 = . 2)dz =
, dk_dk

_ L —ik,d(n-n") 1— —tk, L, e i 2 (18)
Z,J/n,}/n (P [ € ] (271-)2

While calculating the sum over n and n’ in
(18) in the case of the displacement of the do-
main boundaries in external field it is neces-
sary to take into account the following. In this
case the neighbouring domain walls are dis-
placed towards each other by equal distances.
Therefore, while calculating here all the sum-
mands except for n =n’ the coefficient (—1)"™"
in y,. should be rejected and we should take all
the terms with one and the same sign. Expres-
sion (18) can not be used for the case of n =n’,
because it does not allow to separate the self-
interaction effect of the charges arising in the
field of the displaced domain wall. In this case
it is necessary to take into account that the con-
tribution in F corresponding to the displace-
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ment of only one domain wall is equivalent to
the displacement of all the walls except the
given one by the same distances in an opposite
direction. Thus the contribution in F at n=n’
is obtained by summation in (18) of all the terms
with alternating (with the account of the mul-
tiplier (—1)"™) signs. As a result, the total con-
tribution into F corresponding to the displace-
ment of all the domain walls can be obtained
under merging of the mentioned contributions
where the odd terms are doubled while the even
ones are neglected. Thus, with the account of
the fact that all y, =y =2FU we have

dk,dk,

F = 16E)2U2NLy2 (plzef’ikzd(%lfl)[l ik, L, ] = (13)

n=1 : (271')
where N is the real number of domain walls in
the material of the ferroelectric plate. The
substitution of the expression for ¢. (14) in
(19) allows to write down F as

2 2172
F=NILL, {’Cg ¢ oY }

2
where the effective coefficient of quasielastic
force K effecting on some domain wall, and its
effective mass m, are equal, respectively, to:

2P & w1 1 dk. dk,
IC _ —zk d(2n-1) 1— —ik, L,
P2 Jor ek’ L= e

(20)

z g g

2P & At (¢) =¢))
ml:L zj(ekk){l44tx

glvilvy G G
4ﬂﬁlzkﬁpljk kzkpkzkekm _ 47rﬁnk ﬂmmk kzkpkm }X (22)
Pk pc' it
Xe—ikzd(Zn—l) [1 _ 6‘iksz ] dkzdkz
(2r)’

Here, as usual, the summation by the repeating
indexes is assumed and k = (0 with the account
of symmetry of the task

In the particular case of tetragonal sym-
metry of the polar phase [17]

e, 0 0
e, =10 ¢ 0 (23)
0 0 ¢

the calculations of the coefficient K provides
the following expression

2P 13 e, L 1
K=—% —)» In[l+-=+— =
e, L Z{ | e d (2n—1)2]
32P? ~ [EL, (24)
AN 2\e¢, d
In this case the matrix of piezomodules B, , = B,..

has the following non-equal to zero coefficients

Biii = Bis Bias = By = Bos Booy = Baiy = By [17]. The
estimation of the value of m, gives [18] here
21p2 Q2 2
- 167r2PO4[3 L, 25)
£.pc, d
Note, that in the case of the crystal of ferro-
electric—ferroelastic and also for ferroelectric
with 90-degree domains in addition to the
introduced coefficient K it is necessary to add
the coefficient K, caused by the elastic inter-
action of the displaced spontaneously deformed
material with the surface nonferroactive layer.
In the case of the enough large thickness of
the ferroelectric plate K, =4ue}/d, where u is
the the elastic module and ¢, is the spontaneous
deformation or the corresponding deformation
accompanying the appearance of F, for 90-de-
gree domain structure [10].

Let’s consider the influence of defects of
the crystal lattice on the motion of domain wall.
We shall confine to the case of point defects.
Depending on the mobility of the defects their
influence on the motion of the domain wall can
take place in two qualitatively different ways —
through the forces of dry and viscous friction
respectively. In the first case the motion of
domain wall is an advance through the system
of stationary obstacles consisting of the con-
secutive acts of dispinning of the boundary
from those stoppers and its further capture by
new defects. The second case takes place if the
domain wall interacts with the system of mo-
bile defects accompanying its motion.

These both types of the motion can be de-
scribed within the frameworks of one-dimen-
sional model. Thus, in spite of a general scheme
of consideration due to the difference in terms
their particular description is convenient to
perform separately. Let’s consider the first of
the mentioned type of motion, when the do-
main wall in external field advances through
the system of immobile stoppers.

Let’s determine the expression for the force
acting on the moving boundary from the de-
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fects interacting with it. The power per unit of
area of domain wall spent by the external elect-
rical field to overcome the resistance of de-
fects to the motion of any domain wall is equal
to

F-U-= Ja—WU -n(z,t)dz = —Uja—Wn(z, t)dz. (26)
oU 0z

Here W(z-U(t)) is the increase of energy
related to the deviation of the wall from its
equilibrum position in the system of points of
its pinning by defects, U is the coordinate of
the plane of average orientation of the domain
wall interacting with defects, U is its speed,
n(z,t) is the bulk concentration of points of
pinning for the boundary by defects.

The time evolution of the function n(z,t) is
described by kinetic equation with one relaxa-
tion time 7:

o __non. 27)
dt T
where the equilibrum distribution of the pinning
points in the given place of the crystal [7]

n. =n-0(U —1z).

Here 6(z) is the Heaviside function, n is the

bulk concentration of defects, U is the

maximum distance of a defect from the plane

of the average orientation of the boundary, at

which the boundary is still captured by a defect.
The solution of (27) is

n(z,t) = I exp|—(t -&)/t]-n & %

—c0

(28)

(29)

This pressure on the boundary from defects is

t

F = —T Won(z,t)dz = J exp(—5%)- T W)

—co —oo

p (30)
xnw[U(t)—U(é)]-dzT.
In the case of linear response the difference
U(t)— U(&) can be considered to be small. In a
view of the specific form of n_(z) the spatial
integral in (30) can be presented here as
K- (Ut)-U(&)) where K =nkU and k is the
coefficient of quasielasticity describing the
interaction of the boundary with an isolated
defect [7]. As a result the pressure F' looks as

F= [ exp(- =5k - vE) %

T T (31)

The obtained expression enables us to write
down the complete equation of motion of the
domain wall in a crystal with defects. Substi-
tuting (31) into (1) we obtain

(m, +m,)U(t)+ (K + K)U(t) -

| exp(-#)U(g)ﬁ _opE(p). (32)

Now we find the solution of the equation
(32). Let the external electrical field alters in
time under the harmonic law E(t) = E exp(iot).
Let’s search for solution of the equation (32)
for the steady motion as U(t) = U exp[(i(wt + )] .
Substituting it into (32), in a general case we
obtain

2B E(t)/(m, +m,)
(0 - ®*) — @} /(1+ ioT)]

Ut) = (33)
where @] = (K + E)/(mo +m) and @), = K/(m, +m,)
is the square of the fundamental frequency of
the ultimately longwave translational vibrations
of domain boundaries in crystals with defects
and purely defect contribution into it, respecti-
vely.

Being displaced in an external field the do-
main boundaries carry out a repolarization of
the ferroelectric material and thus provide the
contribution to its dielectric permeability &.The
value of the latter with the account of the
determination of the dielectric constant is

g_47rAP_87rPD‘g
E E d
Substituting of the expression (33) in (34)

gives the general expression for the domain
contribution into €:

(34)

167 P?
g(w) = 2 x 2 : » (35)
d(m, +m))[(w; —®") — /(1 +ioT)]
which can be rewritten in a routine form
167 P?
£(o) = onhy  (36)
d(my +m))[@* — o + ifo]
where
? WA T
@’ = > — 01 , B = 01 ) 37
" 1+’ p 1+ 0’1’ (37)

According to (35—37) the type of dielectric
dispersion of the domain origin depends on the
ratio between the frequencies @ and ®’. Thus,
the value of @ depends on @ (or on 7). For
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7 — 0 (highly mobile defects) &° = ®; — @], and
it is controlled only by the coefficient K. In the
other ultimate case for T — o, ®*= @ .

The dispersion of dielectric permeability of
a resonant type is realized at @ ~ @. In the oth-
er practically important case of relatively small
frequencies w the inertial term in (33) and in
(35) can be neglected. In this case we have dis-
persion of a relaxation type where

2P E KIK
= —4q| 1+ S— |cos ot +
K+ K 1+ w77,

a)rﬁ/lc} .
+—-——+sin wt,

U(t)

2,2

1+, (38)
TC:T(ICHC)‘
' K
and
& — &
ew)=¢ +——— 39
(@)=, 1 +iwrt, (39)

Here g, =16nP//Kd and g =16nP*/d(K +K)
are static (i.e. measured at w =0) and high-
frequency (w — ) dielectric permeabilities,
respectively, controlled by the charges on the
surface of ferroelectric or by another interaction
of the boundary with the nonferroelectric layer
and by the interaction of the boundaries with
defects, respectively.
The height of the maximum tgd is
_&~& _

) nkU
Taking into account the concentration depen-
dence of the coefficient K ~ n one can see that
in the case of immobile defects the dielectric
permeability & ~1/n. With increase of con-
centration of defects the originally linear uprise
of the height of a maximum tgdé (where
> IC) is replaced then with root dependence,
ie. the growth rate of the height of a maximum
tgd with increase of n gradually slows down.

The description of motion of the domain
wall interacting with mobile defects is performed
similarly with the only difference that the ini-
tial equilibrum distribution here is

n.(z)=n+n-lexpW,/T)-1]-a-6(z-U(t)), (41)

where a is the size of the elementary cell, W, is
the energy of interaction of the boundary with

(tgd) (40)

a defect. As a result, all the final expressions (35—
40) here should be kept, where K = nkU should
be replaced with IC = nkalexp(W,/T)~1] and 7
here is the relaxation time of the defect
atmosphere.

Let’s compare the obtained theoretical de-
pendences with the experimental data. In the
experiment the domain contribution to dielec-
tric permeability was observed practically in all
basic families of ferroelectric crystals - in the
crystals of TGS, BaTiO,, KH,PO, groups etc.
[19—21].

The domain contribution into € in the meg-
aherz range of frequencies was observed, in
particular, in barium titanate [3] and, appar-
ently, in kalium dihydrophosphate [22], where
in a nominally pure crystal the dependence of
&(w) in the «plateau» region was displayed only
in the field of frequencies 10"+10® Hz. At these
frequencies of the measuring field the values
of € in the area of «plateau» sharply decreased,
while the maximum of tgd from area of
«freezing» was abruptly shifted into the area
of high temperatures.

The reason of these phenomena in a defect-
less crystal should be, obviously, the inertial exclu-
sion of domain boundaries from the switching
processes at @ > @,. In order to confirm this we
shall estimate the value of the latter. For usual
P, ~10" CGSE units, ¢ ~10°,e ~10,L, ~ 107,
Ly, L ~1 the value of K proves to be ~ 10", and
the value of m, at § ~10°,d ~ 107, p ~ 5,¢, ~ 10°
of the order of 107", respectively. It provides

o, = K/m, ~10" s, ie. just that value of o,

at which the mentioned peculiarity has been
observed in experiment.

Low-frequency peculiarities of the domain
contribution in & were investigated especially
well with the example of the family of kalium
dihydrophosphate. In numerous experiments it
was shown that in the «plateau» region (where
below 7. the high values of € are realized) at
the frequencies of ~ 10° Hz the quasistatic con-
tribution into € is realized here [23]. Its value is
controlled (can be reduced) by applying to a
sample of a constant electrical field [24]. Intro-
duction into the crystal of the defects under its
doping with chromium ions during the process
of growth [25], and also under irradiation of
the sample either by 7 -rays, or by electron
beam [26], or by neutrons [27] also result in a
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decrease of the values of & in the «plateau»
region.

All these features can be described with the
help of expressions (39, 40). In particular, ex-
perimentally observed contribution into € in
nominally pure crystals can be described by
the quasistatic expression for g;. It is also fa-
voured by observing in the experiment of the
thickness dependence (growth along with L)
of the value of &, which is predicted by the
expression for g,.

The defects appearing in KH,PO, crystal
under its doping are immobile. Therefore, the
dielectric constant of such a material can be
described by the expression for g, . The expect-
ed inverse proportional dependence of £ on n
according to the above-stated formulas agrees
well enough with the experimental results on
the measurement of & values in the «plateau»
range in KH,PO, crystal with a various degree
of its doping by ions of chromium.

The numerical estimation of & also coin-
cides well with the experiment in the consid-
ered cases. With the above-obtained value of K
the quasistatic dielectric permeability &, in a
defectless crystal proves to be of ~10'. The
ions of chromium in the doped crystals of
KH,PO, can be considered as charged defects,
and their energy of interaction with domain
boundaries is of ~ 107 erg. The calculated value
of K at this value of W, proves to be of ~ 10"
[14] while the value of g itself proves to be
~10°, which also corresponds to the experi-
mental data [24].

Finally, the formulas (39, 40) are well de-
scribed the experimental dependences on de-
fects concentration of components of dielec-
tric permeability and maximum tgd in crys-
tals KH,PO, exposed to y - or electron irradia-
tion: in particular, the fact of delay of the
height growth of the maximum tgd in 7y -ir-
radiated crystal with the increase of defects
concentration [4].
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