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§ 1. Introduction

The present paper! is devoted to the
investigation of certain questions of the spectral
theory of linear relations (multivalued linear
operators) as well as to the construction of
solutions of linear generalized differential
equations in a Banach space with the help of
degenerate semigroups of linear bounded
operators. The extensive bibliography on the
indicated topics is contained in monographs [1,
2], which successfully complement each other.
At the same time the theory of linear relations
is covered insufficiently in the Russian mathe-
matical literature. Let us draw attention to paper
[3], in which linear relations on Hilbert space
are considered.

Let us introduce principal notions of the
theory of linear relations used below. We do
not adhere to the terminology of [1, 2] (for
example, we avoid the notion of the multiva-
lued linear operator) and consider linear relations
on one Banach space, as usual.

Let X and Y be complex Banach spaces.
Every linear subspace A c XxY is called a
linear relation between X and Y. If A is closed
in X xY, then it is called a closed linear relation.

The subspace D(A)={re X|Jdye Y such
that (x,y)e A} from X is called the domain of
relation A € XXY.The sets {ye Y |(x,y)e A},

{xe D(A)|(x,00e A}, {ye Y|Jxre D(A) such
that (x,y)e A} = U Ax are denoted by Ax

xeD(A)
(where x € D(A)), Ker A, Im A, respectively. Note
that D(A) and Im A is the projection of A on
X and Y, respectively; Axr=y+ A0Vye Ax.
The linear subspace A+ B ={(x,y)e XXY |
x € D(A)ND(B), y e Ax + Bx}is called the sum
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of linear relations A,BcXxY. So
D(A + B) = D(A) N D(B), and the algebraic sum
of sets Ax, Bx is understood as Ay + Bx for
x € D(A) N D(B).

Let Z be a Banach space. The linear subspace
BA ={(x,2)e XxZ|3ye D(B)cY such that
(x,y)e A,(y,z)e B} is called the product of
linear relations A c XXY,BcYXxZ.

The relation A™, which is defined by equa-
lity A7 ={(y,x)e YxXX (x,y)€ A, is called the
inverse relation with respect to A.

Each linear relation A c XxY is a graph
of multivalued operator A:DA)c X - 27,
where Ax = Ax e 2". Further they are identi-
fied and the same symbol A is used for their
notation.

Let us denote by LR(X,Y) the set of closed
linear relations from X xY; if X =Y, then we
suppose that LR(X)= LR(X,X). Moreover, set
LO(X,Y) of linear closed operators, acting from
X to Y, is considered as a subspace of LR(X,Y).
Besides, LR(X,Y) contains Banach space
Hom(X,Y) of linear bounded operators (homo-
morphisms), defined on X with values in Y. If
X =Y, then LO(X)=LO(X,X), and End X is
Banach algebra of linear bounded operators
(endomorphisms), acting in X. Thus,
End X c LO(X) c LR(X).

Definition 1.1. The relation A from LR(X,Y)
is called injective, if Ker A = {0}, and surjective,
if ImA=Y.

Definition 1.2. The relation A from LR(X,Y)
is called continuously reversible, if it is injective
and surjective, simultaneously, and then
A e Hom (Y, X).

The symbol I is used for the notation of the
identity operator in any Banach space in the
following definition and later on.

Definition 1.3. The set p(A) of all Ae C
for which (A-AI)"'e EndX, is called the
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resolvent set of relation A€ LR(X). The set
o(A)=C\ p(A) is called the spectrum of
relation A € LR(X).
The set p(A) is open, set o(A) is closed.
Definition 1.4. The mapping

R(,A): p(A) = End X, R(A, A) = (A - AI)",
e p(A)

is called the resolvent of relation A € LR(X).

The resolvent of relation A e LR(X) is the
pseudoresolvent in the generally accepted
sense [4], and also KerR(4,A)=A4A0,
ImR(A,, A) = D(A), VA, € p(A).

If Be End X is the quasinilpotent operator,
then o(B")=@ (see §2). To avoid problems
connected with the possible emptiness of the
spectrum of the relation let us use the following
notion.

Definition 1.5. The subset of the extended
complex plane C =C uU{w}, coinciding with
o(A), if 1) A0={0}, i. e. Ae LO(X); 2) the
resolvent R(., A) of relation A admits the ana-
lytic extension into point oo; 3) lim R(4,.A) =0,
and coinciding with o (A) U {} 0 the opposite
case is called the extended spectrum &(A) of
relation A € LR(X). The set p(A4)=C \ o(A) is
called the extended resolvent set of relation
A e LR(X).

_ Note that if X # {0}, then
o(A) # 0 VAe LR(X), besides, «e o(A), when
dimA02>1, i. e. when A e LR(X)\ LO(X).

The definition of the extended spectrum of
the linear operator is found in monographs [4,
5]. Note that the results from §§ 2—5 demon-
strate that the definition of the extended spect-
rum of the linear relation is of primary impor-
tance.

Urgency of investigation of linear relations
is demonstarated by the examples of the
problems given below. The presentation will be
accompanied by the introduction of new notions
and definitions.

1. If Ae LO(X) and Ker A # {0}, then A
is a relation from LR(X)\ LO(X).

2. Let A e LO(X) be a linear operator with a
nondense domain, i. e. D(A)# X. Then the
conjugate operator is not defined. Nevertheless
one may define (see also [2. p. 1.5]) the conjugate
relation A" ¢ X" x X" to A, where X" is a dual
Banach space to X, in a natural way:

A" ={n,8)e X' xX" | {(y) =n(x) V(x,y) € A}.(1.1)

It is clear that
A0={ne X |nx)=0Vxe D(A)} = D(A)".

It is significant that this definition of A" is
appropriate for A e LR(X)\ LO(X).

The definition of a conjugate linear relation
was first given by von Neumann J. in [6], and
his paper has given impetus to the development
of the theory of linear relations, evidently.

3. Any pseudoresolvent R : U c C - End X,
defined on open set U c C, is a resolvent of
relation A =(R(4,))" + A4,I, where A, € U, and
also p(A) > U, and the definition of A does
not depend on the choice of number A, from
U (see § 2).

4. The operator sequence A, from LO(X) is
called convergent, if resolvent sets p(A,), n=>1

have a nonempty intersection, besides, ﬂ p(A,)

n=1
contains an open connected set U, and for cer-
tain A, € U sequence R(4,,A ), n =1 is funda-
mental with respect to the operator norm
in End X. Then for any A€ U there exists

%i_r)n R(A,A) = R(A) € End X,
R :U — End X is a pseudoresolvent, but it does
not need to be a resolvent of a certain operator
from LO(X). With regard to p. 3 we conclude
that limit A, of the sequence of closed linear
operators is, generally speaking, a linear rela-
tion.

5. The linear operator A:D(A)c X — X is
called admitting a dense extension (see [8,
ch. ITI, §1, p. 3]), if from conditions:

1) lima, =0, x, € D(A); 2) there exists lim Ax, =y,

n—eo

and function

it follows that y =0. The equivalent definition: lin-
ear operator A :D(A)c X — X admits a dense
extension, if closure I(A) of its graph
['(A) ={(x, Ax)e Xx X |xe D(A)} is a graph of
a linear operator. Generally, the closure I'(A) of
the graph of operator A is relation A € LR(X).

6. Let A,Be Hom(X,Y). The function
P(A)=A+AB, Ae C is called a linear bundle. It
is known that many problems of mathematical
physics are reduced to the study of the revers-
ibility conditions of operators P(A), A€ C. Lin-
ear bundles appear also after special transfor-
mations of polynomial bundles and S. G. Krein
bundle, while the investigation of linear bun-
dles is reduced in many cases to the study of
spectral properties of relations B A, AB™" from
LR(X), LR(Y), respectively (see § 6).
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7. Let us consider Cauchy problem
x0)=x,e X (1.2)
for homogeneous linear differential equation
Fx(t) = Gx(t), te R, =[0;+40) (1.3)

with the pair of linear closed operators mapping
from Banach space X to Banach space Y under
condition Ker F = {0}.

In the questions of the solvability and of
the construction of solutions to equation (1.3)
two approaches are used. The first is founded
on the spectral theory of ordered pairs of linear
operators (see, for example, [9—12]). The second
is based on the use of the linear generalized
differential equation

yt)e Ay(t), te R,, y(0) =y, € D(A), (14)

where A € LR(X) and it is written in the form
A = F'G. This technique is used in monograph
[2] (see also [13]).

In this paper certain questions of the spectral
theory of linear relations are considered, which
are poorly dealt with in monographs [1, 2].
However, they are very useful in applications
to the theory of generalized differential
equations of form (1.4). In § 2 certain results
concerning pseudoresolvents are contained,
which one may obtain using linear relations, as
well as theorems are proved about the spectral
resolution of the linear relation and about the
spectrum of the inverse relation. In § 3 isolation
conditions of point e in the extended spectrum
of the linear relation are obtained. In § 4 with
the help of ergodic theorems the description
of the phase space for the generalized
differential equation (1.4) is obtained, and also
strongly continuous degenerate semigroups of
operators with respect to linear relations with
the use of certain analogs of Hille—Philli ps—
Yosida—Feller—Miyadera (HPYFM) theorem
conditions [4] are constructed. In § 5 analytic
degenerate semigroups are constructed with
respect to sector linear relations. Applications
of the spectral theory of linear relations to the
spectral theory of ordered pairs of linear
operators are given in § 6.

§ 2. On pseudoresolvents, the spectral
resolution of the linear relation and
spectrum of the inverse relation

The widest class of strongly continuous for
t >0 semigroups of bounded operators, which

is considered in monograph [4], are semigroups
of class E (see [4, definition 18.4.1]).

The pseudoresolvents, the construction of
which was carried out in [4] with the help of
Laplace transform of semigroups, give the total
information about semigroups of class E.
Sufficiently great attention is focused on the
investigation of pseudoresolvents in [4, ch. 18,
theorems 5.8.3—5.8.6, 5.9.1—5.9.3] as well as in
a number of modern papers (see [1,2,7,14,15]).
The spectral theory of linear relations may
provide an essentially useful guide to the study
of pseudoresolvents, since they are resolvents
of linear relations, which were not considered
in [4].

Let us describe this approach more explicitly.
Let us appeal to a number of the well-known
results and obtain them in a simple way and at
times make them more precise.

Definition 2.1. The function
R :QcC— EndX is called a pseudoresolvent,
it for all A, 4, € Q the equality (Hilbert iden-
tity)

R(4) - R(4,) = (4 = L)R(L)R(4,)

is fulfilled.

Note that definition 2.1 admits the case,
when Q ={A,} is a singleton, and then R(4,)
may be an arbitrary endomorphism from
algebra End X.

Definition 2.2. The pseudoresolvent

Riax 2,y €C > End X is called a maximal
extension of pseudoresolvent

R:QcC— EndX, if it is the completion of
any extension R. Such pseudoresolvent is called
maximal. Set SingR =C/Q . 1is called a
stngular set of pseudoresolvent R.

Definition 2.3. Let Q€ End X, A, € C and
R:QcC—->EndX be a pseudoresolvent.
Operator @ will be called embedded into R at
point A,, if 4, € Q and @ =R(4).

Directly from definitions 2.1—2.3 it follows
that the question of the embedding of a certain
operator into the set of values of the pseudo-
resolvent may be reduced to the question of
the construction of the maximal extension of
the pseudoresolvent.

Theorem 2.1. Every pseudoresolvent
R:QcC— EndX has the unique maximal
extension. It is a resolvent of a certain linear
relation A, and Sing R = 6(A). In particular, if
Q€ End X and A, € C, then the unique maximal

BECTHUEK BI'Y, Cepua ¢pusura, marematura, 2002, Ne 1



84 A. G. Baskakov, K. I. Chernyshov

pseudoresolvent R, : Q ¢ C — End X exists such
that A, € Q, and operator Q is embedded into
R, at point A,.

The statement of theorem 2.1 about the
existence of the maximal extension was obtai-
ned in [4, theorem 5.8.6]. The statement about
the embedding of the bounded operator into a
certain pseudoresolvent is proved in [7, theorem
3.6]. Since the estimate

IR(A, A)| = #(R(A, A)) > (dist(A, 6(A)))™
VAe p(A)

is valid (see corollary 2.1 of theorem 2.4), then
theorem 2.1 contains also proposition 3.5 from
[7] about the increase of the pseudoresolvent
norm under the approach to SingR .

The notion of a pseudoresolvent singular set
was introduced in [15]. By virtue of theorem
2.1 it coincides with the linear relation spectrum,
the resolvent of which is the extension of the
pseudoresolvent under investigation.

The following theorem defines more exactly
statement 5.8.4 from [4], and it easily arises from
theorem 2.1.

In its conditions let us denote by symbol
Sp2 the spectrum of the commutative
Banach algebra 2 with the unity, i.e. Sp2 is
a compact topological space of nonzero conti-
nuous complex homomorphisms of algebra
A,a:SpA —>C,aly) =), xe Sp is Gel-
fand transform of element a from Sp%2l (see [16]).

Theorem 2.2. Let R:Q cC - EndX be a
maximal pseudoresolvent and be the least
closed subalgebra from Banach algebra End X,
which contains all operators R(A), Ae Q and
operator I. Then its spectrum Sp® is
homeomorphic to the extended spectrum o(A)
of linear relation A e LR(X), for which func-
tion R:Q=p(A) > EndX is the resolvent.
Further, homeomorphism o :Sp2 — o(A)
exists, for which

R(A,A)y) = , X € SpA Le p(A).

A—o(y)
Besides, o()..) = o for the character y.. € Sp%, de-
fined by conditions: R(A, A)e Ker y. VAe p(A),
x.(I)=1.

Due to theorem 2.1 the definitions, intro-
duced further, and the statements, proved on
their basis, are quite correct.

Definition 2.4. The closed linear subspace
X, c X is called tnvariant for relation A € LR(X)

with nonempty p(A), if X, is invariant with
respect to all operators R(A,A), A€ p(A). The
restriction of relation A€ LR(X) on subspace
X, is called relation Aj € LR(X), the resolvent
of which is the restriction R, : p(A) — End X,,,
R,(A)=RAA)| X,, Ae p(A) of resolvent
R(.,A): p(A) > End X on X, and it is denoted
by A =ATX,.
Definition 2.5. Let

X=X, 0X, (2.1)

be a direct sum of invariant with respect to
A e LR(X) subspaces, A, =A[ X,, A=A X,.
Then relation A is called a direct sum of relations
A, and A, and it is written as

A=A ®A. (2.2)

In addition, A0=4,0® A 0, and equalities
(2.1), (2.2) mean that set Ax for every ax € D(A)
is defined by formulae

Ax = Ax, + Ax, x=x, +x,
where x;,€ D(A)c X,,1=0,1 and Ax is an
algebraic sum of sets Ax,, Ax,.

Lemma 2.1. If for relation Ae LR(X)
equalities (2.1), (2.2) take place, then
o(A)=0(A,) Vo(A) where A, is the restriction
A on X,1=0,1.

Lemma 2.2. Let
¢ 0(A) = Ae End X. N

Note that in [1] the condition ¢ o(A) for
relation A e LR(X) means, in the definition,
that 0¢ o(A™).

Theorem 2.3. Let A € LR(X) and its extended
spectrum o(A) be represented in the form

Ae LR(X). Then

(2.3)

where o, 1s a compact set from C, o, is a closed
set from C and o, "o, =. Then expansions
(2.1), (2.2) exist, in which invariant with respect
to A closed subspaces X,, X, and restrictions
A=Al X,, A =A[ X, possess the following
properties: B

1) A € EndX,, 0(A) =0(A) =0,

2) A0=.A40=KerR(.,A)=KerR(.,A)c X,
D(A) =X, ®D(A), o(A)=o0,.

Theorem 24. If A € LR(X), then the extended
spectrum o(A') of the inverse relation
A7 € LR(X) to A is represented in the form
oA ={A" | Le o(A)}.

Corollary 2.1. If Ae LR(X) and pe p(A),
then o(R(u, A) ={(u-2A)"[Le o(A)}.

The conclusion of corollary 2.1 is obtained
in [1, theorem V.4.2].

o(A)=0,uU0,
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Note that the definition of the linear relation
spectrum was introduced by A. Favini, A. Yagi
in [17], however, they do not use the notion of
the linear relation extended spectrum neither
in [17], nor in monograph [2]. The definition of
the extended spectrum for linear relations on
normed spaces was introduced in monograph
[1] by R. Cross, but, essentially, it was little
used.

Corollary 2.2. For A e LR(X) the following
conditions are equivalent:

D AecEndX; 2)¢ o(A); 3)0¢ o(A™).

_ Corollary 2.3. For Ae LR(X) equality
0(A) = {eo} is valid iff A" € EndX 1is a qua-
sinilpotent operator.

Corollary 24. If Ae p(A), A #0, then the
following equalities take place

(A7 =2 =-AT - A (A - D7,

(2.4)
(A-AD" ' =-ATT-27A" -4

1 1)71'

Corollary 2.5.If A = B™', where B is a quasin-
ilpotent operator from EndX then G(A) = {o)
and (A-AI)"' =B+ AB*+A°B’ +.... In parti-
cular, R(.,A) is a polynomial, if B is the
nilpotent operator from End X.

Theorem 2.4 and correlations (2.4) allow us
to state that for the extended spectrum of linear
relations all points of the extended complex
plane C, including oo, have the same rights in
a sense. If point o is contained in the extended
spectrum of the linear closed operator and is
isolated there, then it may only be an essential
singularity of its resolvent (see [4, theo-
rem 5.9.4]).

Let A be an open set from the extended comp-
lex plane C containing the extended spectrum
o(A) of the relation. The algebra of complex
functions, defined and analytic on A, will be
denoted by symbol §(A). Let y be a certain closed
Jordan curve, surrounding o(A), and function

fe F(A) be such that integral j (AR, A)dA
14
converges absolutely. Then formula

F(A) = 8 o) - [ FOR(A, A (25)
2m1 ’

defines the bounded operator from algebra
End X, where 6 =1 or 6 =0 depending on
whether A = is inside y or outside of 7.
Moreover, it belongs to commutative subalgebra

A, introduced before theorem 2.2. This fact
allows us to obtain the following statement:
Theorem 2.5. For Ae LR(X) the equality

o(f(A) = f(0(A) = {f(1)| L e o(A)} takes place.

§ 3. Compactness conditions of the linear
relation spectrum

In the remaining part of the paper it is
supposed that the following condition of
nonsingularity of linear relations is fulfilled.

Assumption 3.1. Resolvent set p(.A) of linear
relation A € LR(X) is not empty.

Immediately from the definition of the
inverse relation and from the properties of
linear relations formulated in § 2 (see also the
properties of relations, enumerated in § 6)
follows

Lemma 3.1. Let A e LR(X). Independent of
the choice A, € p(A) equalities

Ker (R(4,, A))" = A*0,
Im(R(4,, A))" = D(A*), ke N

are valid.

This lemma ensures the correctness of
notations KerR* and ImR*, ke N for the
degrees of the resolvent of relation A e LR(X).

Definition 3.1. Relation A e LR(X). is said
to possess the property of degrees stability in
infinity, if the number m € N exists such that

Am—l 0 c Am O — Am+1 0,

D(Am—l) ) D(Am) — D(Am+1), (31)

where inclusions are strict. The number m is
called the order of the stability.

Note that for m =1 it is assumed that
{0y = A0 =A4%0, X o D(A) = D(A®).

Assumption 3.2. Relation A € LR(X). posses-
ses the property of degrees stability in infinity
of the order m.

Theorem 3.1. Let m = 2 be a natural number.
For relation A e LR(X)\ LO(X) the following
conditions are equivalent:

1) point o 1is the pole of function R(.,A) of
the order m —2 for m =3, « is the removable
singularity of function R(.,A) for m =2;

2) Banach space X is represented in the form
of the direct sum X = X, @ X_ of invariant with
respect to A closed subspaces X, = D(A™),
X_=A"0, and also the restriction A, of relation
A on X belongs to End X, 0(A,)) = G(.A) and
besides, 0(A.)={w}, Al'e EndX_, (A"
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for the restriction A_ of relation A on X_ and
(AZH)™ # 0;

3) conditions of assumption 3.2 are fulfilled.

Results from [18, ch. 6] and [19, theorem 2.2]
are used in the proof.

Let us introduce into consideration eigen-
vectors and adjoint vectors of linear relations,
corresponding to point . Here the results of
theorems 2.4 and 3.1 will be taken into account.

Definition 3.2. An arbitrary nonzero vector
x, from A0 c X is called the eigenvector of
relation A € LR(X), corresponding to point eo.
Vector x, € X is called the root vector of relation
A, corresponding to point e, if the number
ke N exists such that x, € A*0. The number
k from N is called the height of the root vector
x if x e AC0N A0

Immediately from definition 3.2 it follows that
the closed subspace A*0=Ker(A™")" consists
of root vectors of relation A, corresponding to
point e, with the height not exceeding k.

Definition 3.3. The relation A € LR(X) is said
to have the finite Jordan chain x,,x,,...,x,
of the height k, corresponding to point oo, if
x, is the eigenvector for A, corresponding to
point e, and x,,2<7<k-1 are root vectors,
corresponding to the same point, for which the
following correlations

x, € A0, x, € Ax, ,1<i<k-Lx, , ¢ A0

take place (and, consequently, every vector
x;,0<i<k-1 has the height 7). Vectors
x,,..,x,_ are called adjoint to eigenvector x

Lemma 3.2. The relation A € LR(X) has the
finite Jordan chain x,...,x,_, of the height k,
corresponding to point o, iff for certain
A € p(A) (and hence for all A, € p(A)) equalities

R(A,, A)x, =0, x, € A0, R(4,, A)x;, = x, |,

0<i<k-1
are valid, and vector x is absent such that
R(A, A)x = x,_,.

Definition 3.4. The relation A € LR(X) is cal-
led Fredholm in infinity, if D(A) is a closed
subspace in X, and, besides, A0, X/D(A) are
finitedimensional linear spaces. The number
ind A =dimA0—-dim(X/D(A) is called the
index of Fredholm relation A, corresponding
to point oo.

Directly from definition 3.4 it follows that
relation A is Fredholm in infinity iff operator
R(A,, A), 4, € p(A) is Fredholm, and their indi-
ces coincide.

The following statement arises from theo-
rem 3.1, definitions 3.2—3.4 and lemma 3.2, and
it deciphers the notions contained in them. Let
us take into account that if the relation index
is equal to zero, then indices of all its degrees
are the same.

Theorem 3.2. Let m e N. For Fredholm in
infinity relation A e LR(X)\ LO(X) of zero
index the following conditions are equivalent:

1) all Jordan chains of relation A, corres-
ponding to point o, have the height which does
not exceed number m e N, moreover, Jordan
chain exists with height m;

2) A0 c A" 0= A" 0;

3) D(A™") > D(A™) = D(A™");

4) point o 1is the pole of resolvent R(A,A),
Ae p(A)of relation A of the order m -2, if
m < 3, and point o 1is the removable singularity,
if m=2.

Corollary 3.1. If Ae LR(X)\ LO(X), X is a
finite-dimensional space, then 8(./4) consists of
a finite set of points, the number of which does
not exceed n =dim X, and also for relation A
the following spectral resolution

A=YAP +Q+A ,m+1<n
i=1

takes place, where P, e EndX are Riesz pro-
jectors, constructed on singletons {4;},1<i<m,
o(A)={4,..4,}, 0(A)={=}, Q, A" are nilpo-
tent operators from algebra End X, which are
commutative between themselves and with
projectors P,1<i<m.

§ 4. On certain analogs of conditions Hille—
Phillips—Yosida—Feller—Miyadera for
linear relations

Let A be a relation from LR(X). Let us
consider Cauchy problem for the generalized
differential equation

x(t)e Ax(t), te R, =[0;+e0), (4.1)
x(0) = x, € D(A). (4.2)

Differentiable function x:R, — X, for
which x(0) = x,, x(t)e D(A)Vt =0, is called the
solution to Cauchy problem (4.1)—(4.2), if it
satisfies inclusion (4.1).

Definition 4.1. The closure in X of initial
conditions set of the form (4.2), for which the
solution to problem (4.1)—(4.2) exists, is called
the phase space of the generalized differential
equation (4.1), and it is denoted by symbol ®(A).
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In this paragraph the relations are conside-
red, for which < is not necessarily an isolated
point in the extended spectrum. With the help
of ergodic theorems the subspaces are formed,
containing the phase space for the generalized
differential equations, and thereupon with the
help of certain analogs of Hille—Phillips—
Yosida—Feller—Miyadera (HPYFM) theorem
conditions degenerate semigroups of linear
bounded operators are constructed for linear
relations.

It is provided, as before, that assumption 3.1
holds.

Definition 4.2. Let m € N. The degree m of
resolvent of relation A e LR(X) is said to pos-
sess the property of the minimal growth in
infinity, if sequence {A } c p(A) exists such
that

D lim | A, |=oo;

2 sup |47 - [R(A,, A" [h <o (35)

Assumption 4.1. The resolvent of relation
A e LR(X) satisfies conditions (4.3) from
definition 4.2.

Theorem 4.1. If for relation A e LR(X) as-
sumption 3.2 is fulfilled, then for it assump-
tion 4.1 is fulfilled too.

Lemma 4.1. If assumption 4.1 is fulfilled, then
lengths of all Jordan chains of relation A € LR(X),
corresponding to point oo, do mot exceed m, and
all chains lie in X_ = A™0.

Under the conditions of assumption 4.1 let
us introduce into consideration the bounded
sequence of operators from algebra End X of
the form

A, =I-(-1L,R(A,,A)",ne N
and the closed subspace

X ={xe X :3lim A x}.

(4.4)

For the construction of the phase space
®(A) of the generalized differential equa-
tion (4.1) let us use ergodic theorems from paper
[20], applied to the consequence A,. At first
let us formulate certain notions and results from
[20], used here (not in the most general form).

Let 21 be the least closed subalgebra from
Banach algebra End X, containing all operators
R(A;A), L€ p(A) and the identity operator I
Then 2 is a commutative Banach algebra with
the unity and sequence (4,) belongs to 2. Let

m e N. Let us consider the least closed ideal
J =J, from algebra 2, containing operators
(R(A;A)™, Ae p(A).

Definition 4.3. The bounded sequence of
linear operators (4,) from algebra A is called
J -sequence, if the following two conditions are
fulfilled:

Dlim|AF|=0 VFe J;

2Ax-xe Jr={Fr;Fe J} VxeX.

Let (A,) be J -sequence. By symbol
Erg(X,(4,)) we denote (closed) subspace

Erg(X,(4,)) ={re X :Ilim A, x},

and it is called the ergodic subspace, corres-
ponding to J -sequence (4,).

Lemma 4.2. Under the conditions of assump-
tion 4.1 sequence (A,) is J -sequence, and, hence,
X=Erg(X.(4,). _

Since subspace X is invariant with respect
to all operators R(A,.A), A € p(A), then it is inva-
riant with respect to relation A, and so one
may consider the restriction A of relation A
on X (see definition 2.4).

The following statement arises from [20,
lemma 1] and is the concrete realization of the
properties, formulated there.

Theorem 4.2. Under the conditions of assump-
tion 4.1 subspace X admits the expansion into
the direct sum

X=X ®X. (4.5)

of two closed invariant with_respect to A sub-
spaces X,, X, and also X, = D(A™), X_=A"0,
and the corresponding expansion of relation
A e LR(X)

A=A ® A, (4.6)

possesses properties: G(A.)={e}, (AJ)" =
=0, A4, : D(A,) € X, = X, is a linear closed ope-
rator with the spectrum o(A)) =0(A)=0c(A)
and with the dense in X domain D(A") of
operator A"

ReEmaARK 4.1. The projector F,, which realizes
the expansion (4.5) of space X, is defined by
correlations

Pz = li_r)n([ -A)z = 11_1)11(—7LHR(;L,L, A"z,

ze X, ImP, =X, Ker P, = X_,

and it does not depend on the choice of sequence
(4,) from p(A), satisfying conditions of as-

n
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sumption 4.1 (see [20, lemma 2]). Besides, D(A,)
is dense in X for every ke N (see [20]).

Corollary 4.1. Under the conditions of
assumption 4.1 relation A€ LR(X) is a linear
operator, if domain D(A™) of relation A" is
dense in X.

The following statement arises from [20,
theorem 1]

Theorem 4.3. Let assumption 4.1 be fulfilled.
In order that X =X, it is necessary and
sufficient that the vectors from subspace A™ 0
should separate functionals from subspace
(A")"0 of the dual to X Banach space X’
(A" c X" x X" is the conjugate to A linear rela-
tion; see § 1, p. 2).

In particular, X = X, if one of the following
conditions is fulfilled:

1) X is a reflexive Banach space;

2) R(A,A)e End X is a weakly compact
operator for certain A, € p(A);

3) dim A" 0 =dim(A")" 0 < .

Note that the statement of theorem 4.2 for
a reflexive Banach space and for m =1 is given
in [2, p. 1.3] and in [13].

Corollary 4.2. If relation A € LR(X) has a com-
pact resolvent under the conditions of assump-
tion4.1, then X =X, ® X_=A4"0® D(A™).

Assumption 4.2. There exist such numbers
M>0,we R, me N, that for all Ae C with
Reld > and for all ne N estimates

M

R A’A mn ,
( ( )) (Re ﬂ/ _ w)”[’"

ne N (4.7)

take place.

Let us carry out the construction of the phase
space ®(A) and degenerate semigroups of linear
operators, with the help of which the solutions
to problem (4.1)—(4.2) are defined. The construc-
tions are realized under the conditions of assump-
tion4.2 and for dim A0 >1, ie. Ae LR(X)\ LO(X).
Assumption 4.2 implies assumption 4.1, so accor-
ding to lemma 4.1 one may consider an ergodic
subspace X = Erg(X,(A,)), constructed with the
help of the bounded sequence (A )e End X. It is
defined by formula (4.4), where (4,) is an
arbitrary sequence from R, N p(A) with the pro-

perty lim A, = co. Thus, the statement of theorem
4.2 about the decomposition of subspace X is
valid. Besides, subspaces X_ =.A4"0, X, = D(A™)
are invariant for relation .A. For the restriction
A, =Al X, e LO(X,) of relation A on X,

assumption 4.2 remains fulfilled. It allows us to
construct on y semigroup {7, (t);t 2 0} of class
C, with the generator A,, having, according
to theorem 4.2, the dense domain D(A,) in X|.
For the construction of such a semigroup let us
use the analog of Yosida approximation (see
[4, theorem 12.3.1]) of the form:

AI(L) = (_;Ln/m)(l - (_A’HR(A‘H’AO))W) € End XO’ n 2 1

Lemma 4.3. Under the conditions of
assumption 4.1 for every pe p(A) the estimate

(A7 = (A, R, A))" A)) (R, Ay))

n=>1

m" < const - |)’n|_1 ,

(4.8)

1s valid.
Theorem 4.4. Let for relation Ae LR(X)
assumption 4.2 be fulfilled and dim A0 >1. Then

®UA) X =D(A") = X,,

and the unique degenerate semigroup of operators
{T(t);t >0} c End X exists, the generator of
which is relation A € LR(X), defined by equalities
A=A on X, D(A)=X, "D(A), A0 = X_. Se-
migroup {T(t); t > 0} possesses the following pro-
perties:

1) its restriction {T,(1);0} c End X, on X is a
semigroup of class C,, and any solution
z:R, > X to problem (4.1)—(4.2) with
z, € D(A,)) c X, is written as x(t) = T (t)z,, t = 0;

2) T(0)e End X is a projector on subspace
X, parallel to X_.

If vectors from subspace X_ = A"0 c X sepa-
rate functionals from subspace X_ =(A")"0c X*
(for example, if one of three conditions of theo-
rem 4.3 is fulfilled), then X = X, and ®(A) = X,.

ReEmark 4.2. Statements of theorem 4.4 for
m =1 are contained in monograph [2, ch. II]. If
A is a linear relation on finite-dimensional space
X, and also A*0# A0, then results from [2]
are inapplicable even in this case. The expansion
X =D(A)® A0 was obtained in [2] only for a
reflexive Banach space. For m >1 generalized
differential equations of the form (4.1) are con-
sidered in [13] by the n-integrated semigroups
method. However, principal results are announ-
ced in [13] under a priori assumption about the
existence of the expansion X = D(A")® A" 0
its presence was marked for a reflexive Banach
space X under the condition of m =1.

Corollary 4.3. Let for relation A€ LR(X), sa-
tisfying assumption 4.1, numbers M >0, we R
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exist such that for all ze€ X,,Ae C with
ReA >m and all ne N estimates

M|z ]

H(R(/LA))%HSW

take place. Then all statements of theorem 4.4
are valid.

Directly from theorem 4.4 follows

Theorem 4.5. If for linear operator A € LO(X)
with D(A) = X conditions of assumptions 4.2 are
fulfilled, then A is a generator of a semigroup
of class C,.

From theorems 3.1 (condition 2)), 4.1 and
4.4 arises

Theorem 4.6. If relation A e LR(X) satisfies
one of the condition of theorem 3.1, then
®d(A) =X,, and every solution x:R, - X to
problem (4.1)—(4.2) with x, € X, is defined with
the help of the analytic group of operators
{exp At, t€ R} and it is written in the form
x(t) = (exp Ajt)xy), te R.

Note that semigroup {T(t); t > 0}, constructed
in theorem 4.4 according to expansion (3.2) of
space X, has the form T(t) = exp At ©0. It may
be written as T, (t) = (exp At)F,t=0. Every
solution x to inclusion (4.1) for all t > 0 is repre-
sented in the form x(t) = T (t)x,, x, € X, = P(A).

RemARK 4.3. Subspace X under the conditions
of assumption 4.2 is the phase space ®(A)
(subspace of initial data) for mild solutions [14].

REMARK 4.4. Subspace X , appearing under
the conditions of assumption 4.1, according to
theorem 4.1 does not contribute to the phase
space @®(A) by virtue of the nilpotency of
operator A_'. However, if o(A)={w}, i e.
A7l e End X is a quasinilpotent operator, then
it may appier that ®(A4)=X. An arbitrary
operator A e LO(X), which is a generator of a
semigroup of class C, with o(A) = {«}, may be
such an example. In particular, the generator
of a nilpotent semigroup of class C, (see [14]).

§ 5. Sectorial linear relations and analytic
degenerate semigroups of operators

In this paragraph sectorial linear relations
are defined and the construction of degenerate
analytic semigroups of linear operators for them
is carried out. In obtaining principal results the
ergodic theorems are also used essentially.

Definition 5.1. The relation A€ LR(X) is
called sectorial with angle 0 e (w/2,r), if for a
certain a € R the sector

Q=Q,,={1eC||arg(l-a)<6, 2 #a}

is contained in the resolvent set p(A) of relation
A, and for every 6 € (0,0 —/2) the numbers
me N and My 21 exist such that

sup [((@ = VR, A" | =My <. (5.1)

Further in this paragraph it is assumed that
holds

Assumption 5.1. Relation Ae LR(X) is
sectorial.

To construct the analytic semigroup of
operators, whose generator is a sectorial relation
A, we need

Lemma 5.1. For the resolvent of a sectorial
relation A e LR(X) the constant C >0 exists
such that for all 6 € (0,6 —mw/2) the estimate

|[RA, A< CA+A)" 2 2e Qs  (5.2)

is valid.
Definition 5.2. Let A be a sectorial relation
from LR(X) with the angle 6.
Let us assume for ze € ,;, where
0 € (0,0 —m2), that
T(z) = b e”R(A, A)dA.

- (5.3)
211 y

The union of three curves y,(r,€), k=123
of the form y,(r,&) = {(-pe ™" | —e0 < —p <1},
Yy(r,€)={re” |- (0@ —-e)<a <0 -¢}, Y,(r,€) =
={pe"?|r<p<e}, where &=(5,—-95)2,
6,=0-m2 and r= 1/|2 , can be used as the
curve Y =7Y(r,€) in definition 5.2.

The convergence of the integral from (5.3)
in the uniform operator topology for all ze Q s,
0€(0,6,) follows from lemma 5.1.

Further it is assumed that §, =6 —w/2.

Theorem 5.1. Let Ae LR(X) be a sectorial
relation (condition (5.1) from assumption 5.1 is
fulfilled). Then equality (5.4) assigns the analytic
in the sector Q, ; < p(A) and bounded for t >0
semigroup of operators from algebra End X.

The investigation of the semigroup
{T(t); t >0} is conducted with the help of two
operator-valued functions

A(A) =1 —((-AR(A, A)™), A >0,
B(t)=1-T(t),t>0.

Further two arbitrary sequences (4,),
(t,) Vn =1 from R, with the properties

A, € Qc p(A),imA, =eo, limt, =0

n—oo

(5.4)
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and the corresponding bounded sequences of
operators A, = .A(4,), B, = B(t,), n€ R from Ba-
nach algebra End X are considered.

Lemma 5.2. Under the conditions of assump-
tion 5.1 for any fixed A, e Q , < p(A) the
following properties are valid:

1) Im(I = A,) < Im (R(%,,A))",
Im(I - B,) < Im (R(%, A))";

2) lim A,(R(%,, A)" =
1}_{2 Bn (R(;LU’ A))m =

Thus, according to the terminology from § 4
(definition 4.3) both sequences (4,) and (B,)
are J -sequences for the ideal J c 2 consi-
dered in § 4.

Theorem 5.2. Under the conditions of
assumption 5.1 the equalities

Erg(X,(A,)) =Erg(X,(B,)) =X =X, ®X_ (55)

are valid, and all subspaces from the right parts
in (5.5) are closed. The equalities
Px=limAx=1limBx xe X

n—eo n—reo

define the bounded projector P_ e End X with
the following properties:

n—)oo

2)ImP. =X_, KerP. = XO.

All statements of theorem 5.2 arise from [20],
provided lemma 5.2 is used for its application.
Let us denote F, =1 - P_ and note that

Px = lim(—A, R(4,, A))"x = lim T(t,)x, x € X.

The indicated limits exist and are equal inde-
pendent of the concrete form of the sequences
(4,),(t,),ne N with the properties determined
earlier. By the same token the representation
of the subspaces X, and X_ from X is provided
in the form

={re X| lim T(t)a = o}, X_ = () Ker T(t).(5.6)

t>0
From this representation it follows that the
restriction {T,(t);t >0} of the semigroup T(t)
on the subspace X is a semigroup strongly
continuous in zero and analytic in the sector
Q,5- The restriction {T(z);z€ Q,;} of the
function T:€Q,; — End X on the subspace X

is analytic on the subspace X, too.

Let us denote by O_ =0_'
to zero operator on X .

Theorem 5.3. Let Ae LR(X)\ LO(X) be a
sectorial relation. Then {T(t);t >0} c End X is a
semigroup of the operators analytic in sector
Q,;, and it is a_degenerate semigroup with
the gemerator A= A, @O, € LR(X), where
O.e LR(X_), D(O.)={0}, 0. 0=X_, the opera-
tor A, =E[XO e LO(X,) is a generator of the
semigroup of operators {T(t);t =0} strongly
continuous and analytic in the sector €, , and
d(A) N X = X,. An arbitrary solution to problem
(4.1)—(4.2) with x,€ D(A,) has the form
x(t) = T,(t)x,, t = 0.

If the vectors from the subspace A™0c X
separate functionals from the subspace
(A" 0c X" (in particular, if one of three
conditions of theorem 4.3 is fulfilled), then
X =X, and then ®(A) =

the inverse relation

§ 6. On the spectral theory of ordered
pairs of linear operators

In this paragraph applications of the spectral
theory of linear relations to the spectral theory
of ordered pairs (G,F) of linear closed
operators F:D(F)c X > Y,G:D(G)cX —>Y,
mapping from complex Banach space X to
complex Banach space Y, are obtained.

Domains D(F), D(G) will be considered to
satisfy one of the following conditions:

(i) D(F) = X, D(G) # X;
(i) D(F)# X, D(G) = X
(iii) D(F) = X, D(G) =

The subspace D(F) N D(G) is denoted by
D =D(G,F) and is called the domain of the
ordered pair of operators (G,F).

Definition 6.1. To the resolvent set p(G,F)
of the ordered pair of operators (G,F) we
refer all numbers A 20 from C, for which
G- AF:Dc X > Y is a continuously reversible
operator and, besides, point A =0, if G: D >Y
is a continuously reversible operator and D(F) =
The set 6(G,F)=C\ p(G,F) is called the spect-
rum of this pair.

The operator-valued function

R(.;G,F): p(G,F)c C - Hom (Y, X),
R(A;G,F)=(G-AF)", A€ p(G,F)
is called the resolvent of the ordered pair (G,F).
It is defined on the open set p(G,F) and it is
analytic there.

Remark 6.1. If the condition 0e p(G,F) is
understood only formally as the continuous
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reversibility of the operator G, then point 0 is
isolated in p(G,F) in case (ii), and so the set
p(G,F) is not open. Also a variety of other
problems arises.

Here the introduction of the notion of the

extended spectrum of the ordered pair provides
an especially useful guide as well as in the case
of linear relations.
_ Definition 6.2. The subspace E(G,F) from
C, coinciding with o(G,F), when the func-
tion R(.;G,F) admits the analytic extension
at point e provided ‘h‘m R(A4;G,F)=0, and
0(G,F) = 0(G,F) U {x} in the opposite case is cal-
led the extended spectrum of the ordered pair
(G,F). The set p(G,F)=C \ 0(G,F) is called the
extended resolvent set of the pair (G,F).

When the reducing of problem (1.3)—(1.2)
to problem (4.1)—(4.2) takes place, two relations
A=F'GcXxX, A =GF"' cYXY arise na-
turally and are called the left and the right
relation for the ordered pair (G, F), respectively.

From the definitions it follows that for the
left A and the right A relation, constructed
on the ordered pair (G, F), the following repre-
sentations are valid:

D(A4) =G '(ImF), ImA, =F*(ImG), (6.1)
D(A,) = F(D(G)), Im A, = G(D(F)),  (6.2)
R(AL,A)=(G-AF)'F, Le p(G.F), (6.3)
RA,A)=FG-AF)", e p(G,F). (64)

Formula (6.3) is true only if D(G), D(F) obey
one of the conditions (i) or (iii).

If condition (ii) is fulfilled, then formula (6.3)
is incorrect, since D(F) # X. In this case one may
apply formula (24) to G'F for 0# A€ p(G,F),
as a result we obtain the correlation

RAA)=-A"T-2A" =AD" =
= AT-A3G'F-A"D)7" =
=-2"I-(G-AF)"'G).

From representations (6.3)—(6.5) it follows
that if e p(G,F), then «¢ G(Ai)UO' A ), and
so A € EndX, A, € EndY. Thus, we obtain the
following

Lemma 6.1. The inclusions

p(G,F) < p(A) N p(A),
0(G,F) > o(A4)Uc(A)

(6.5)

(6.6)

take place.

The resolvents of relations .4 and A are
called the left and the right resolvent of the ordered
pair of operators (G, F) and they are denoted by
symbols R,(.;G,F) and R (.;G,F), respectively.
The values of these functions, by definition, are
in algebras End X and EndY, respectively.

Further it is supposed that the following
condition of nonsingularity of the pair (G,F))
is fulfilled.

Assumption 6.1. For the ordered pair (G, F)
the set p(G,F) is not empty.

REMARK 6.2. In monograph [2] the conditions
D(F) c D(G) c X =Y are fulfilled. In papers[11,
12] operators F,G with the properties
Fe Hom(X,Y), D(G) = X were considered. The
most general case is studied in [23], where
D(F),D(G) cannot coincide with X, simul-
taneously. However, the investigation was
carried out under the assumption that
D =D(F)ND(G) # {0} and, moreover, under
our assumption 6.1. It allows us to introduce the
norm |x|, = (G- AF)x|, xe D, where 4, is a
certain number from p(G,F), on D. With
respect to this norm D is a Banach space
isomorphic to Y. Considering D instead of X,
one may regard that condition (iii) is fulfilled
and take one of the subspaces D(F),D(G) with
the corresponding graph norm as a Banach
space containing D.

Let us select, along with conditions (i)—(iii),
the following conditions:

(iv) D(F) c D(G) # X;

(v) D(G) c D(F) # X.

Then, if condition (iv) is fulfilled, then on

x € D(G) is introduced, and considering D(G)
instead of X, one may regard that condition
(ii) is fulfilled. If condition (v) is fulfilled, then
on D(F) a graph norm of operator F is intro-
duced, and we have the conditions, when (i) is
fulfilled.

Theorem 6.1. For the ordered pair of operators
(G,F). the following properties take place:

1)G(G,F) = 0(A);

2) 6(G, F) \ {0,} = a(A,) \ {0,};

3)0(G,F) = o(A)=0(A)if D=X,

4)0e p(A) = G 'Fe End X;

5)0e p(A ) FG '€ EndY;

6) 0 p(A) N p(A) <= 0e p(G,F);

Neoe p(Ad)= A = F‘lGe End X,

8)eoc p(A) = A =GF' € EndY;

9) oo € p(A) N P(A) & e p(G,F).
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Corollary 6.1. If points 0,o0 are contained in
E(G,F), simultaneously, then D = X and opera-
tors G,F € Hom (X,Y) are continuously reversible.

Corollary 6.2. The ordered pair (G,F)
possesses the following properties:

a) 0(G,F)={0} < operator F:D —>Y s
continuously reversible, D(G) = X and operators
A=F'GeEndX, A =GF'e EndY are qua-
sinilpotent;

b) 0(G,F)={~} < operator G:D —>Y is
continuously reversible, D(F) = X and operators
A'=G'Fe EndX, A~ =FG™" € End Y are qua-
sinilpotent.

Let us denote S;(6) ={0# Ae C: |l| <9,0 >0}

REmARK 6.3. The following two conditions are
equivalent:

a) DF)=X and G: D(G)c X —> Y isa con-
tinuously reversible operator;

b) 6 > 0 exists such that S,(6) € p(G,F) and

sup (G- AF)"| <.
2€5,(8)

Note that the sets 6(G,F) = 6(A) and 6(A,)
can be distinguished.

Example 6.1. Let H be a complex Hilbert space
and let T:H — 'H be an irreversible isometry.
Then operator T° has a nonzero kernel, more-
over, TT" #1, T"T =1. Let us consider at first
the ordered pair (G,F), where G =T" € End H,
F=T"':ImTcH—H. Then 0e o(G,F). At
thesametime A =TT  #Iand A, =TT =1, con-
sequently, 0 € o(A), but 0¢ o(A,) = {1}. Further,
let us consider the ordered pair (F,G). Since the
left and the right relation coincides with 4™ and
A, respectively, then according to theorems 2.4
and 6.1 we obtain «e o(F,G)=0(A"), but
g o(A™"). At last, both the cases are united
by the consideration of a suitable pair of
operators in H X H.

Theorem 6.2. The extended spectrums of the
ordered pairs (G,F) and (F,G) are connected by
the correlation

o(F,G)={l/A| Le o(G,F)). (6.7)
Definition 6.3. The ordered pair of subspaces
(X,,Y)), where X, c X,Y, CY, is called inva-
riant for the pair (G,F), if GX, cY, and
FX cY,.
Definition 6.4. Let
X=X,0X,Y=Y,@Y, (6.8)

be direct sums of closed subspaces provided
(X,,Y,), (X,,Y]) are invariant pairs of subspaces

for (G,F). Let G,F :DGF)nX, =D, >Y,
1 =0,1 be restrictions of operators G,F on X,
1 =0,1. Then we shall use the notation

(G, F)=(Gy, |y) @ (G, F)

and we shall say that the ordered pair of
operators (G,F) assumes the representation
(6.12) according to expansions (6.11) of spaces,
and it is a direct sum of pairs (G, F,) and (G,, F}).

Theorem 6.3. Let the extended spectrum
8‘(G,F ) of the ordered pair (G, F) be represented
in the form

(6.9)

(6.10)

where set o, is compact, set o, is closed and
0,0, =. Then the pairs of subspaces
(X,,Y,), (X,,Y)) invariant for (G,F) exist such
that expansions (6.8), (6.9) take place and, besides,

1) projectors P,e EndX, @, € EndY,i=0,1,
realizing expansions (6.8) (i. e. ImP, =X,
Im@Q, =Y,7=0,1), are defined by the formulae

0(G,F)=0, U0,

1
P =——|R(A, dAa,
0 Zni;[( 4)

Q, = ——— [R(L, A )dA, (6.11)

211 7

P=1-P,Q =1-Q,i=0,1, (6.12)

where Y, is a closed Jordan circle (or a finite
number of such circles), placed in p(A) so that
o, liesjnside it, and o, lies ouzside of it;

2) 0(G,,F,)=0(G,,F) =0, 0(G,F)=0;

3) DG, =X,,F,:D(F))=DF)nX, c X, =
— Y, is a continuous reversible operator, and
A" =F'G,e End X,, A" =G,F," € End Y,;

4) the left R(.;G,,F,))=R(.,A"”) and the
right R.(.;G,,F,)=R(., A") resolvents of pair
(G, F,) are similar, and o(A") = c(A") =
= G(A’:O)) = G(-AT(O)) =0(Gy, F);

5) D(F)=X,,G,:D(G,))=DG)nX cX —
— Y, is a continuous reversible operator, if
0¢ 0,, and then R/(0;G,,F)=G,'F, € EndX,,
R.(0;G,,F,) =FG;" € EndY,, and R,(.;G,,F) =0,
R (.;G,F)=0, if X, =A0.

RemaARk 6.4. If subspace D(F) or D(G) with
the corresponding graph norm is chosen as space
X according to remark 6.2, then in theorem 6.3
instead of (6.11) the expansion of subspace D(F)
or D(G) is realized.

Theorem 6.3 was unknown to us in such a
general formulation. Many of its statements
were obtained earlier under specific conditions
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on the domain D(G,F) of pair (G,F). Thus, in
paper [24] A.G. Rutkas formulated without
proof a portion of statements 1)—3) of theo-
rem 6.3 in the case, when D(G,F) = X. The case
o, =1{0}, D(G,F) = D(F) was explicitly conside-
red in [25] and further in [26]. In paper [27] the
result was obtained by V. V. Ditkin, which is
contained in statements 1)—3) of theorem 6.3
provided D(F)c D(G)c X and X =Y (see
remarks 6.2, 6.4). The most general result for
the pair (G,F) of the closed operators was
considered by N. I. Radbel in [23] (see remark 6.4).
However, in formulae of the form (6.15) the
resolvent of relation A was replaced by the
right part of formula (6.3), but it is possible
only in the case D(F) = X.

In the papers, mentioned above, possibilities

and advantages, connected with the invoking
of a extended spectrum of the pair, were not
properly used.
_ In example 6.1 it was noted, that the sets
0(G,F) and o(A,) can be distinguished by the
presence or absence of points 0,o. Their
distinction is characterized more exactly by

Theorem 6.4. The following two statements
take place:

1) 0e 0(G,F)\ 0(4,) < KerG = {0},

Y = ImG, D(F) = D(F) and X = Ker G @ D(F);

2) o 0(G,F)\ 0(A ) & KerF = {0},

Y =ImF, D(G)=D(G) and X = Ker F @ D(G).

Theorem 6.5. Let B, € Hom(X,Y),
B, e Hom(Y,X), and also KerB,={0}. Then
o(B,B,) \ {0} = 0(B,B,) \ {0}. Moreover,
0e€ o(B,B))\ 6(B,B,) < KerB, #{0}, ImB, =Y,

ImB, =ImB, and X = Ker B, ® Im B,.

Note that the statement of theorem 6.5 for
the elements of Banach algebras is contained
in many monographs (see, for example, [16,
ch. 1, § 1]). The detailed analysis of the spectral
properties, corresponding to the second part of
theorem 6.5, was not carried out there.

Let us formulate the results, which are
closely connected with the results from § 3 and
are their direct corollary.

With the help of the left 4 and the right
A, relation of pair (G,F) let us introduce into
consideration sequences of linear subspaces

X, =AF0, X" =D(A"), ) = AF0,
VP =D(A"), ke N.

(6.13)

From properties 1)—3) of the relations, gi-
ven at the beginning of this paragraph, we ob-
tain the representation of subspaces in terms of
images and preimages of operators F and G:

X, ={0}, X, =KerF,...,
X =F'GX,,),...,ne N,
X0 =x, XY =G'(ImF),...,
xX"™ =GHFX"Y),...,ne N,
), ={0}, )] = G(Ker F),...,
Y =GEF'Y.,)...,neN,
YO =y, Y =FDG))...,
Y™ =FG'Y"),...,neN.

It is clear that the pairs of subspaces
(X, ), (X™, V™) are invariant for the pair of
operators (G,F).

Under the conditions of the following theo-
rem me N, m =2, and inclusions are strict.

Theorem 6.6. If KerF # {0}, then for the
ordered pair (G,F) the following conditions are
equivalent:

1) point « is a pole of the resolvent of the
left relation A, of pair (G,F) of the order m —1
for m =2, 1is its removable singularity for
m =1,

2) invariant pairs of subspaces
(X,,Y,),(X,,Y,) exist, for which representations
(6.11), (6.12) are valid, and

a) 6(Gy.F,) = 6(G,F), 6(G,.F,) = {eo};

b) D(G,) = X,, F;' € Hom (Y, X,),

D(F) =X,, G,' € Hom (Y, X,);

c) (G/'F)" #0,(G'F)" =0

3) the stability of subspaces takes place:
X ,cXx, =X ,X" " o>xm=xm,

To obtain the analogs of theorems 4.3, 44,
5.3 in terms of operator pairs one may take
subspaces (X)), =(A4)"0c X", which are
described by analogy with (6.13), as

X ={0}, X' =G'(Ker F'),...
X =G((F)'X.),..,ne N.
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