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1. Introduction: nonlinear approximation

It is known that many real fluids are
characterized by a nonlinear relation between
the shearing stress and shear speed. The
phenomenological description of the flow of
such fluids has been the object of consideration
of mechanicians during the last sixty years. The
survey of suggested models and of their
rheological properties can be found, for
example, in the known monograph G. Astarita
and G. Marrucci [3] and in the fundamental work
C. Truesdell and W. Noll [15].

The mathematical investigation of Reiner—
Rivlin models was apparently for the first time
carried out by W. G. Litvinov [11]. Here, as well
as for Navier-Stokes equations, the problem
of proving the solvability of the Cauchy
problem on an arbitrary time interval arises in
a strong form. To overcome the difficulties
arising here various &-approximations of
appropriate equations were suggested which
goes back to the known paper R. Temam [14].

For the mathematical investigation of models
of nonlinear-viscous fluids from [11] a D_-ap-
proximation was used for inertia terms
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suggested by P. E. Sobolevskii in [12] was applied,
where it was proved that the equations of the
motion of nonlinear-viscous fluid, regularized
in such way, have for € > 0 unique strong
solution on any finite time segment, both in the
cases of two and three space variables. The last
in turn, means that we have reason to study
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the minimal global attractor of the given sys-
tem, ie. set 2/is equal intersection the sets V (X),
t=0, where X is a phase space and V, is some
semigroup with operators for the evolutionary
problem. We will call minimal global B-attractor
for a semigroup a minimal nonempty closed set
in X, that attracting any bounded subset B in X.
But, in our sense attractor is some subset in
phase space on that a semigroup V, expand to a
group V, t UR. The estimates proved in what
follows show that the quantity & which we will
call later on the inertia parameter, plays for
the attractor the same role as the viscosity of
the fluid. In other words the fact that the fluid
“forgets” its initial data is stipulated not only
by dissipation of energy but also by relaxation
of the inertia forces. We explain it more in detail:
Dgv) can be represented in the form:

1 2 v Xrotv
D, (v) = —grad[Inl +&p|)] ————, /1
therefore (D(v), v), =0 (£20) for the

boundary conditions of “adhesion” v|aQ = 0 and
consequently D (v) does not contribute to the
dissipation of energy.

The authors realize that the estimates
obtained in what follows are only unilateral
(upper ones). Therefore our analysis of the
influence of the physical parameters of the
system on the geometric characteristics of its
attractor has a nature of plausible reasoning.
We do not know yet the way of obtaining
analogous lower bounds.

Later on we follow the terminology of the
attractor theory for Navier-Stokes and close
evolutionary equations, which was developed
by O. A. Ladyzhenskaya (see, for instance, [9]).
Problems of the attractor theory for nonregula-



Investigations of properties of attractors for a regularized model of the motion of a nonlinear-viscous fluid 51

rized (£=0) equations of nonlinear visco-elastic
fluid with an exponential kernel were studied by
A. P. Oskolkov and his collaborators in the case of
two space variables [4] and also for Kelvin-Voigt
fluid in the case of three space variables [5].

Let Q be a bounded domain in R?® with a
smooth boundary 0Q O C2 By H(Q) we denote
the closure in the L (Q)-norm of the space of
compactly supported and solenoindal in Q vec-
tor-functions; D(Q) is the Sobolev space W,(Q)
with Dirichlet norm; A is the Friedrichs exten-
sion of Stokes operator corresponding to the
stationary problem for the Navier-Stokes
equations with the boundary conditions of
“adhesion”; P, is the orthoprojector on the sub-
space of H(Q) which corresponds to the first N
eigenfunctions of operator A4; @, =I—P; A, is
the N-th eigenvalue of operator A. We recall
that A, = O(N*?) in the case of three space
variables.

It will be convenient for us to write the
Laplace operator acting on the vector field u
defined on Q, in the following form

Au =Div Grad u = grad divu — rot rot u,

here Grad u denotes the covariant derivative
(or the local affinor) of vector u, the symbol
Div denotes the covariant derivative of a tensor,
in our case of the tensor Grad u. In other words
we accept the usual, in mechanics, definitions
the Laplacian as a second order defferential
scalar invariant (see, for instance, [6], 16.10-7).

Consider the following autonomous system
of equations

% + D,(v) +vrotrotv +B(v) +gradp =f(x), dive =0

(t21,2@Q ), v= const> 0, & 0, = {v,v,,v,}.

(2)
with the boundary condition of “adhesion”:
v(t,e) =0 (t =1, x [0Q ; with the initial condition:
v(T,x) =vi(x) (x0Q, Q = QIDQ ); with the
condition of the fluid, as a whole, does not
produce any mechanical work with the environ-

ment: (p,1); o = [p(t,x)de =0
Here we denote by B(v) = —Div [2l(I,)&],

1w, ov. 0
e +—JE is the tensor of deformation
ox;

51.]. =
2 x;

3
velocities or the Cauchy tensor; I =& : €= Z 6’;
7,7=1

is the second invariant of tensor &£ The symbol
“:” denotes the convolution of second rank tensors
over two indices, what corresponds to the scalar
product of matrices A : B=(A,B) =sp(B'A).

Let T be an arbitrary fixed number, T > T,
Q =[1, T] x Q. Under a strong solution of prob-
lem (2) we mean a pair {v(t,x), p(t,x)} O
{(WA(Q), W(Q)} satisfying all conditions and
equations (2), with all addends of the equations
belonging to L,(Q).

The following conditions are necessary for
the existence of strong solutions of problem (2):

F@OLQ v'(xd & B ). ()

It was proved in [12] that the sufficient conditions
of the unique solvability, in the sense indicated
above, for problem (2) are the following:

(2) 0 < u(s) < M, < oo L(s)is a continuously
differentiable function and if u'(s) <0,
then —su'(s) < u(s); (4)
(1) s|H'(s)| < M, < oo,

Later on we will assume conditions (3) and
(4) fulfilled.
As the phase space of the system we will consi-

der the space X = D(Q) n H(Q) with L,(Q)-norm.

2. An absorbing set

By V., we denote the semigroup of nonlinear
operators solving the problem (2) with respect
to the first component: Vt,r[vr(x)] = v(t,x), more-
over f(x) is assumed to be an arbitrary fixed
function from L,(Q) (without loss of generality
we may assume, that f(x) O H(Q)).

We will call the subset F of the phase space
X absorbing for the family V, if all trajectories
of the initial boundary value problem (2) get
into and remain in F in finite time intervals
(see, for example [9]).

Theorem 1. Any ball O, = {u(x): u(x) 0X,

o e
AWV +C,)

C, = 2r£1>ion|/,l(s)| , is an absorbing set for the
family V.,

Proor. We fix an arbitrary function v"(a) U X
and consider the corresponding trajectory v(t,x)
for t 2 1. Multiplying scalarly in L,(Q) the first
equation of (2) by v(t,x), we get for almost all
t 2 T the following equality

||u||L2(Q) <R} of radius R >R, =
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1d
5 g PG o) +V e O g, + (B@), )1 o) = 5
)

= (f’ U)L2(Q)'

From condition (4) (i) we obtain the following
lower bound of the nonlinear term on the left-
hand side of (5):

(B(v), V)1, 0) = —21[D1V{H[12(v)]5(v)}vdx =
= 2?[ UL, (v)]E(v) : Grad vdx =

= 41: UL, (v)]E(v) : E(v)dx = (6)

2 2min 4(s) [o(t, B, = C, ot O
Here we made use the Corn identity:

%”v(t, [I"E(Q) = ||5(t, E"Z(Q)‘ By applying the Cauchy

inequality we get from (5), taking into account
(6), the following inequality for almost all t > T:

1 _d
5 Bt Ol )+ 4 C et B g, <

s ”f”Lz(Q) ["’U(t, |1"L2(Q) :
whence, with regard to the properties of the
Stokes operator, we obtain the inequality:

1d
2dt

(6)

o6, 01 g, + A+ Co)fote, B, <
s ||f||L2(Q) [ﬂv(t, II"LZ(Q) :

Solving this inequality on the segment [1,t] we
get the estimate

"v(t’ D"LZ(Q) <

Mo
AWV +GC,)

z)T

)exp{—/\l(v +C,)(t -T)} +

Ly(Q
[ —exp{-A,(V +C,)(t -T)}), for all t >T.

(7)

We denote |[v" = R, and rewrite (7) in the

form
Jo(t, [i"LZ(Q) < R, exp{-A, (v +C,)(t -T)} +
R, —exp{-AW +C)(E —D)). D)

2

From (8) it follows immediately that for any
R 20 the following inequality holds

||v(t, ﬂ]|L2(Q) <R, +R, forallt=T1. 9)

Moreover, any trajectory which begins in the

ball O , gets in a finite time into the ball O,,

where R > R and R — R is an arbitrarily small
positive number. Since v'(x) was fixed arbitrarily
every trajectory will be found in the ball O,
R> R, in a finite time. That means that every
ball O,, with radius which is arbitrarily close to
R, but greater than R, is an absorbing set in X
for the semigroup V, . This completes the proof
of Theorem 1. [J

3. Energy and coercive estimates

In addition it follows from here that the
semigroup V, is bounded and has a bounded
global attractor. Integrating (6') with respect to
t and taking into account estimate (9) we get

the inequality:

t
2o O, g + @+ Co)f[ots, U g, ds <
' (10)

' ’
L,(Q)

< | fll, ) Be + Ro)(t =T) +5

)

whence it follows that for any solution v(t,x),
which begins in the ball O (v(1,x) U O,), an ener-
gy estimate of the form

t
max ||v(s, [i"iz(g) +2(v + CZ)I”v(s, E]]]QS(Q) ds <

T<sst
2 a1
SR+ 2||f||L2(Q) (R+R,)(t —1).

is valid. We made use of the fact that for a
function v(t,x) 0 W2*Q) the norm [v(t,)|, @ isa
continuous function of t (see, for instance, [8],
Lemma 3.3).

The following lemma contains a coercive
estimate of solutions of problem (2) in a form
is necessary in what follows.

Lemma 1. For solutions of problem (2) the
following inequality holds:

t Uov
+‘|’§g

T

max (s, 0, +

T<s<t

2

[l
+[os, 0 ) * 00, ﬂni@(mgds <

L,(Q)

2
j)(Q)+ ||f||L2(Q) (t - T) +

2
SK@UT

K, 2 il
E(V + Cg) B? +2||f||L2(Q) (R +R0)(t _T)H%

(12)

+
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The proof immediately arises from the results
of [12] and from the energy estimate (11).
Theorem 2. The family V, is a semigroup of
compact operators t.e. V, is a completely conti-
nuous operator for all t > T.
Proor. From Lemma 1 we get the inequality

2
sy Mo =D +

T<sst

max ||v [I";Q) <K @vr

5 +2 (R +R,)t - (19)
WB" 1], I T)HD

which is valid for the solution v(t,x) of problem
(2) for any t =2 7. Now we integrate inequality
(13) with respect to 7 along the trajectory of
solution v(t,x) taking into account the semigroup
property of V, . We note beforehand that the
function

max [[v(s, [i"

T<s<t

Y() =

is a nonincreasing nonnegative function of T.
Therefore we have the following lower bound

_[Ll/(s1 )ds, =Ir2‘£{ (s, E]]Z(Q) ds, =)t -1) =
T : 2 (14)
= ”’U(t, DNB(Q) (t-1), L= 1.

On the right-hand side of (13) we have to

UT

integrate the function ZQ) with respect to T.

To do this we use inequality (10). Since the right-
hand side of inequality (10) does not depend on
t and ||v(t,')||L o is continuous with respect to t
we can rewrite (10) in the form

Q} +(V +C )I||v(s @ S

(R +Ry)(t

o2

v

fmax s, 08, -

T<s<t
<| f|| -1), O 1,

(15)
where it is taken into account that v'(x) UO,.
From (15), by virtue of the nonnegativity of
the first term on the left-hand side, we obtain

the estimate
Mo R+

! 2
Jlots i s s

In other words we have the following

R,)

t-1), O 1,(16)

12

estimate for the integral of function .

v

along the solution trajectory
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p s > ds, < ”f”Lz(Q) (R + Ro)

Iv b Lt
) (Q) V+C2

Integrating now inequality (13) with respect to
T along the trajectory of solution of problem
(2) and taking into account (14) and (17), we
obtain the following inequality

(t-1), U= 1,

(17)

” (t, [i" Euf”Iﬂ(Q) (R+R) ”f"i(g) (t -T) ,
ba = E v+C, 5
ki Kllo®*R) g o
E(V+C) =30 +C) (t _T)él 0= 1.

The estimate (18) shows that the operator V,
for any fixed t > T maps any bounded set of
initial data from the ball O, Ul X into a bounded
set in D(Q) which is precompact in X by virtue
of the embedding theorems. Thus, operators
V, . are completely continuous for any ¢ > 7, and
Theorem 2 is proved. [

From Theorems 1, 2 and the results by
O. A. Ladyzhenskaya ([10], Theorem 2.1) we
obtain immediately

Corollary 1. For system (2) there exists a
minimal global attractor 9 O X. Here M is
nonempty compactum which is equal to the
intersection of a centered directedness of
compacta, i.e.

M = (] V,.(0z) (R >Ry),

Oe 1

(19)

where the over-line denotes the closure in topology
of the phase space X, i.e. in the L,(Q)-norm.

4. Extension of the semigroup Vm
to a group Vm

Now we proceed to the analysis of the
problem of extension of the semigroup V,  to a
group V, forany t UR, TOR

We choose initial data v™ and f(x) so that the
solution v(t,x) of system (2) were smooth

2

enough: v(t,x), % 0w

Ox; 66
nuous with respect to t. JThlS is always possible
by virtue of the Lemma on smoothness raising
[1] and of the embedding theorems for spaces
wir. We denote by B the collection of such
sufficiently regular initial data from the ball
(0]

(¢,7 =1,3) are conti-

R

Ne 2
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We say that system (2) is well-defined in
the sense of S. G. Krein [7] if Cauchy problems
for the system are uniquely solvable on any
segment [T,T] for initial data »(7,x) = v'(x) and
v(T,x) = v¥(x).

Lemma 2. Let v'(x) 0 B. Then system (2) is
well-defined in the sense of S. G. Krein.

Proor. Projecting (2) on H(Q) we get

av g

0
+NE—2 dv -
—MN Div[(v + 2u[I,(v)]))I Grad v] = Mf,
tO[r,T]; v, xF v (x).

Here II is an orthoprojector, II: L,(Q) —» H(Q).
In (2) u = u(t,x) is already known solution of
problem (20) which has the regularity indicated
above by virtue of the definition of B.

The quadratic form ((v+ 2UL(w)I&,&) = W &)
is positive definite by virtue of condition (4) (ii),
item 3: for an equation with a selfadjoint second
order operator with coefficients having conti-
nuous partial derivatives with respect to t the
problem
ou

-t Z (ai]’(t’ x)

1,7=1

(20)

G_u) =0, ul,u=0, u0,x) =u’(x)
ox;

is well-posed in the class of solutions which are
uniformly with respect to ¢t bouded in L,(Q), if
for all (t,x) O[1,T] x Q the quadratic form Z%{-Ej
is of constant signs, and of O. A. Ladyzhenskaya
([9], § 2), where results from [9] are extended
to the case of a not selfajoint operator connected
with Navier-Stokes equations and general
quasilinear equations of parabolic type, we
obtain that the remainder of two solutions of
problem (20) v!(t,x) — v*(t,x) has the following
estimate

”U (t,0- v(t II"L(Q)
< [v'(@, m- v, Lip“”’tn (T, - v(T,EHa(t)

L,(Q)
for all t 0 [1,T] and some function a(t) : 0 < a(t) < 1.
Thus, Lemma 2 is proved. [J

Corollary 2. The attractor I, n +(B)

Oer
consists only of whole trajectories v(t,x) of system
(2). The semigroup V, (t 2 1) on 90, extends to a
group of nonlinear operators V,, forall t, TUR.

The proof immediately arises from Corolla-
ry 1, Lemma 2 and the results of O. A. Lady-

zhenskaya ([10], Theorem 2.5, remark 2). Thus,
the group V, assigns some dynamic system on
m,.

We remarc that the attractor 9, obtained
above consist only of those trajectories of sys-
tem (2) on which the considered evolutionary
problem (¢t =71) can be uniquely extended to a
dynamical system (¢ UR) with the phase set
9. In this sense we obtain an attractor which
is analogous to the minimal global attractor for

two-dimensional Navier-Stokes equations.

Lemma 3. The set M, = ﬂ V..(B) 1is boun-
Oe 1
ded in the D(Q) -norm.

Proor. By virtue of the definition of B,
M OO0, (R > R). We fix an arbitrary whole
trajectory vo(x,x) (t0OR, x X from 9. For
v(t,x) we can take as v(T,x) any point of the
trajectory, in particular, for an arbitrarily large
negative T(T — —»). Therefore we derive from
inequality (18)

R
[t 0 < w0 BT Mo ().,
DEIEH v +C, 2
KR’ Kz||sz (R+R,) _n%_
8(V+C) & +C) @_

R 2
=K%f||m)( *R) KR O g oOR

& v +C, (V+C)@

(21)

As we see from (21) the quantity 8 = B(%) does

not depend on the choice of the trajectory
v(t,x) O 9M,. But by virtue of Corollary 2 9, con-
sists only of whole trajectories. Thus, the
derived estimate is valid for all points of 9.
This completes the proof of Lemma 3. [

5. Dynamics finite dimensionality
of V. group on I,

We remind that dynamics finite dimensio-
nality of V, t R on attractors [10] means that
there exists a positive integer N such that any
whole trajectory on 9 is uniquely determined
by its orthoprojection on some N-dimensional
subspace of the phase space X.

Theorem 3. The group V, . possesses the
property of dynamics finite dimensionality on N .
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Proor. Let {u,q} and {v,p} be two solutions
of problem (2). Denote z(t,x) = u(t,x) — v(t,x).
Then we obtain for z(t,x) the following relations

%, D, (u)

o —D,(v) +vrotrotz +B(u) —B(v) +
+grad(q —p) =0, divz =0, (t 27,2 [Q );
z=0(t=21,200Q )

_ 22
-u(T,x) x[Q; (22)

(@=p, 1), =0; € >0.

2(1,x) = u(r, x)

Multiplying the first equation of (22) by z(t,x)
scalarly in L,(Q) we arrive to equality

e O g, +V ot U, (B0 B0, 2 0, =
= _(Dg(u) Ds(v)’Z)Iﬂ(Q)'

(23)
Lagrange's mean value theorem (d0[0,1],
9, is a fixed value J) and condition (4) (i) allow

us to prove the monotonicity of operator B(u)
([1], pp-113—114)

(B(u) — B(v), Z)L2(

o = 2 DIVIHLWIEW ~HLw]E0)

From (23) in virtue of the proved inequality
(24) we obtain

1d

_a” Ij"LZ(Q) +(V +C ”Z E"D(Q) <
(25)

<|(D,(w) = D, (v), 2) 0|

We estimate now from above the right-hand
side of inequality (25). As z(t,x) is solenoidal we
get the following chain of inequalities:

(D, (w) = D, (v), 2);, )| <

Du><1“otu v Xrotwv
§(1+£|u| (1 +£|v|

El(uf rotu — |v|2 rotwv
€

1+elul)1 +elo])

, U —v

,U XDV

0

@L +
2(Q)

E’.

u+v)><rot U —v)

@1+8|u| )1 +£|v| )

O
uvﬁ

Yzdx =

= 21[{/,1[12(u)]5(u) = U[I,(v)]E(v)} : Grad zdx =

=4 ?[{u[g(u)]&u)

— U[I,(v)]E(v)} : E(R)dx =

= 41[—{,111 (Vv +0,2))E[v +9,2] : E(z)dx =

= 4!2{/1[12(1) +0,2)1€(2) +j—5 UL,(v+8,2))€v + 2]} : E(z)dx =

= 4?[{u[12(v +0,2)IE(2) : E(2) + ;—5 H((Ev +0,2]: Elv +d21) 1€l

v +9z2]: E(z)}dx = (24)

_ 4 ) Elv +9,2] : E(2) UL (v + d,2)] . 0 _
= DULE 0 ) s e ey ar, oA ER de
0 1 ML, (v + 502)] D
=4[ UL+ 8RR @)+ o e 487 £ da
§4mmu<s @ o, 2 2C. 26,0 it 4> o
AR oty 02G
T Bu )+ngEﬂ5(z)||Lz( 2 2C, ||=(t, Eﬂ s 0E

C, = 2min{C,,C,}.
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D(v +u)(v —u)rotu

0
, U Xv +
@1+£|u| )1+£|v| ) ﬁq(m

0
|u| rot(u ’U) 1L X
@1(9)

ﬁ1+e|u| L+ efof)”
< et D, B, o, *

<

D(v+u,) (v —u)rotu

+& 2 9(
1+£|u| JL+e])

+&

IN

a
|u|2 rot(u —v) i

1+l +£|v|2)

2 2
s ﬁ "Z(t’ m'|5(Q) ["Z(t’ DNLZ(Q) + 5 ||u(t, D"Z)(Q) "Z(t’ D"L,(Q) :

(26)

From (25) taking into account (26) we obtain:
1d 2 2
55”2("” |1"1,2(9) +(v +C3)||Z(t’ Dﬂf)(Q) =

3
+ §||u(t’ E"f)((z) ”Z(t’ [i";(s)) :

(27)
Let now wu(t,x) and v(t,x) be whole trajectories

2
< ﬁ "Z(t’ u"f)(s)) Enz(t’ [I"Lz(Q)

from 9. From Lemma 3 arises that Jut, [I","D(Q) <P
for all t UR. Thus, inequality (27) takes the form

L0 o)+ + COJR Oy <

< E||,z(t, D;";D(Q) e, [I"LZ(Q)

Using the well-known inequalities of Young
and Ladyzhenskaya we get from (28):

3 2 28
+ 5 B ”Z(t’ a"lq(o) (26)

2 dt LR, 0+ +Cett, 0,
v +C,) 2 8” lj"L 2= i, @)
" II"b(Q) (V +C )
+J— 2B let, 0 ett, 0, <
< S e o,
0 8 818 O
+E€(V+C) (V+C 3 ” tli"L(Q)'

Hence we obtain the required differential
inequality

(V+C3) 2
g U Jo(t, 0, <
1 B 81ﬁ 0 (29)
S TEYeR1: e || (t, 0l o

Let now the equality P,u = P,v be valid for
some positive integer N. Taking into account the
permutability of operators P, and A'/?, and also

the equivalence of the norm ||[m;(9) and

||A1/2(5"L2(Q), we get from (29):

Lt C3) la e, [IN;Q, <

81 H
5 jé e DL R

L, (Q)

C EB
VG

1d 2
2 |Quz(t,0l

Hence it follows that

(V +C)
2 dt HQN A : L@ =
C EB 818* O
(30)
Now we choose a number N, so large that
+ t
A v+C) C EB 813* =M >0,
' 2 v +C, [f: (V +C,)°'0O

then from (30) we deduce the inequality

2 dt ||QN1 m";(Q)

by solving it on the segment [7,t] we obtain
<e

”QNIZ(t’E‘LZ(Q) - QNIZ(T’[I‘
Oz td@d R

+M "QNl 2(t, [I"Z(Q) <0

-M(t-T)

L)’

(31)

In virtue of Theorem 2 both trajectories u(t,x)
and v(t,x) belong wholly to the ball O,. Therefore
we get from (31) the inequality

-M(t-T)
@y, 22, Dj|L2(Q) < 2 (R,
which holds for all t =2 7 for any T R. Letting T
=(0 for all

tend to —o we obtain HQN 2( L@

tOR, ie @, u = Qy v and thus Theorem 3 is
proved. [
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6. Hausdorff dimension of sml

Theorem 4. The set MM has a finite Hausdorff
dimension.

Proor. We denote again by u(t,x) and v(t,x)
two arbitrary whole trajectories from 9,
z(t,x) = u(t,x) — v(t,x). To simplify the notation
we will consider the problem on the segment
[0,T]. From inequality (29) we deduce

<ex % T B, 81B*
P B vy
=F ["lZ(O, D"Lz(o) : (32)

From (29) taking into account (32) we obtain
the following differential inequality

(LA Jl0,

v +C,)
|| (800 ) + 5 2t D
1 (B 81ﬁ O e 2 _
S + =
v +C,) % v +C,) 2D 1 " D;F|L2<o> (33)
= F2 EHZ(O’ IINLZ(Q)
We integrate (33) from 0 to t and derive
Sl 0 + 5 s, s <
(34)

<C @ + thH”Z(O’ Iiwiz(Q)

In virtue of the permutability of the ortho-
projectors P,, @, and the operator A"* we have

[z, , =4 @ +Quat 1, , =

L, (Q)
= |Py A 2(t, M+ QA 28, 011 L =

Q)
2

= ||PNA1/2Z(t, [i"Lz

= |a"/*pzt, LINi(

l@ua e b,
Q) +||A1/2QN (t, E"
2 ||A1/2QNZ(t’ g"2L2(Q)

L,(Q
2

Ly(Q)

Moreover, it is evident that ||Z(t,[1"1q(9)2

> |Qyz(t, [Iﬂlq(m, therefore we obtain from (34)

the inequality
(v +C, )

: J.||A1/2
<C BZ + FJH”Z(O’ ENi(ﬂ)

ds <
L,(Q)

—IIQN (&0l o
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from which we derive an integral inequality of
the form

vC)

1 2
2 1@zt o) + A J’HQN 205, 00,

!
<C E + thBHZ(O’ m‘iz(Q)

(35)
which is valid for any tU[0,T]. From (35) we
get immediately the estimate

0
”QNZ(t, E"iz(g) < Eexp[_/\Nﬂ(V +Cyt] +

N 2F,(1 —exp[-Ay, (v +C,)t) 0
Aya +Cy)

= 5°(t, N) (0, O

B 0,01,

(36)

Ly(Q)’

which shows that there exists a so large N =N,
that for some ¢, J[0,T] the condition &t ,N,) <1
is fulfilled besides simultaneously for all arbitrary
couples of whole trajectories u(t,x) and v(t,x)
from 9M,. Thus, we find ourselves in conditions
of applicability of the abstract theorem of
O. A. Ladyzhenskaya ([10], Theorem 2.8), from
which we immediately obtain the required
assertion. Theorem 4 is proved. [

7. Conclusions

At the beginning of this article we have
already noted that obtained inequalities are only
upper estimates. Now we can say some more.
Really, from definition of an attractor 91 it is
clear that this set contains all solutions of the
stationary problem. In [12] for this problem upper
estimates which depend only on |Lf||L « and do not
depend on € were obtained. Consequently, for an
attractor as a whole there do not exist lower
bounds which depend on & It is clear that all
trajectories of periodic solutions which existence
was proved [13] form a subset of 2. However,

in [13] the estimate max Jo(t, [I"Z(Q) s M(‘S)"f"i(m

was obtained, where M(€) is a singular function
of & Thus, we can presuppose that stationary
solutions form a very “little” subset of 91, while
to an attractor as a whole basic qualities of the
collection of periodic solutions of the problem
are intrinsic.
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