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We construct some stochastic perturbations of the curves on groups of H* (s > %n +1) Sobolev
diffeomorphisms of a flat n-dimensional torus, describing the motion of diffuse matter or perfect
incompressible fluid, such that their expectations describe the dynamics of corresponding viscous
fluids. Existence of classical solutions for initial value problem of Burgers and Navier-Stokes
equations for s> %n +2 is proved (for s> %n +1 — of some sort of generalized solutions).

1. Introduction and preliminaries

In this paper we construct some special stochas-
tic perturbations of the curves on the groups of
diffeomorphisms, describing the motion of perfect
fluids, such that the expectations of obtained pro-
cesses describe the motion of viscous fluids. This
yields existence of solutions of initial value prob-
lem for Burgers and Navier-Stokes equations with
some sort of external forces (in particular, with zero
forces) and clarifies relations with solutions of Hopf
and Euler equations, respectively, with the same
initial data. At the end of the paper we summarize
the results so that the reader can find the exact
formulations there.

This approach to hydrodynamics belongs to the
direction suggested for perfect fluids by Arnold [1]
and developed by Ebin and Marsden [5]. In [6] —
[8] (see also detailed explanation in [9] and [10]) a
certain stochastic analogue of the second Newton’s
law was discovered that expanded this geometrical
approach to viscous fluids. However there was a
problem to find stochastic processes satisfying the
stochastic Newton’s law that was investigated by
various methods (see, e.g., [3]). In [4] we elaborated
the idea to construct such processes via stochas-
tic perturbations of deterministic curves. Here this
idea is seriously modified so that it allows us to
cover the cases mentioned above.

We consider the fluid motion on the flat n-di-
mensional torus 7" (the quotient of R™ with re-
spect to integral lattice where the Riemannian met-
ric is inherited from R™). The natural configuration
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space for fluids, admitting compressibility, is the
Hilbert manifold D*(7™) of Sobolev H*-diffeomor-
phisms, s > 5 + 1. There is also a group structure
on D(T™) with respect to the composition. The
set D;(T") of H°-diffeomorphisms preserving the
volume is a submanifold and subgroup in D*(7").
This is the natural configuration space for incom-
pressible fluids. The details of geometry on those
groups can be found in [5], [9] and [10]. In [4] the
presentation of this material is adapted specially to
the groups of diffeomorphisms of flat torus. Here
we describe the preliminaries rather briefly paying
main attention to some new points absent in [4].

The tangent space T,D*(T") at e = id is the
set of all H*-vector fields on 7™ and T.D;,(T") is
the set of all divergence-free H?*-vector fields. In
T.D*(T") (and so in T, D;,(T™)) one introduces the
Ly scalar product denoted by (-, -).

The right-hand translation Ry : Dj;(T") —
D;(T"), Ry o0 0of, 0,f € D,(T"), is
C*°-smooth and thus one may consider right-inva-
riant vector fields on D}, (7™). Notice that the tan-
gent to right translation takes the form: TR;X =
X o f for X € TD,(T"). For D*(T") we have
analogous properties.

The left-hand translation Ly : D;(T") —
D;(T"), Lyo = fo0, 0,f € D,(T"), is not
smooth but it is continuous and we shall use this
property below.

A right-invariant vector field X on Dj,(7™") gen-
erated by a vector X € T,D;(T") is C*-smooth
iff the vector field X on 7" is H*t*-smooth (for
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D;(T") we have the same property). This fact is a
consequence of the so-called w-lemma (see [5]) and
it is valid also for more complicated fields. For
example, if a tensor (or any other) field on 7"
is C*°-smooth, the corresponding right-invariant
field on D;(7T") (and on D*(T")) is C'*°-smooth
as well.

Also by right-hand translations of (-,-) we de-
termine the scalar products in all tangent spaces
and so obtain the so-called weak Riemannian met-
ric on D*(T") and on D}, (7™). This metric admits
the Levi-Civita connection and covariant derivative
in the following way. Denote by K the connector
of flat connection on 7". For vector fields X, Y on
Ds(T™) and for a vector field X (¢) along a certain
smooth curve g(¢) in D*(7") we define the covari-
ant derivatives VxY and %X (t), respectively, by
formulae

VxY = KoTY(X),

D d

—X(t) = Ko —X(t). 1

Dxw=rodxu )
Denote by H the connection on D*(M) correspond-

ing to V.
The geodesic spray Z of H is the vector field
TD*(T") of the form

Z(X)=Zo0X (2)

for X € TD*(T"), where Z is the geodesic spray
of the flat connection on 7". From (2) one can
easily see that by the construction Z is D*(T")-
right-invariant and by w-lemma it is C°*°-smooth
on TD*(T™) since Z is C*°-smooth on T'7T".
Denote by P, : T.D*(T") — E* @ kerA =
T.D;(T") the (-,-)-orthogonal projection. Con-
sider the map P : TD*(T")ps(rn) — TD,(T")
determined for each € D;,(T") by the formula

Py=TRyoP.oTR,".

It is obvious that P is Dj(7")-right-invariant.
There is an important and rather complicated
result (see [5]) that P is C°-smooth.  Since
by Hodge decomposition the orthogonal comple-
ment to 1¢D; (M) consists of gradients, for every
Y € T.D*(M) we have

Pe(Y) =Y — gradp (3)

where p is a certain H**!-function on 7™ unique
to within the constants (see also [15]).

Since DZ(T”) is a submanifold in D¥(T™),

there is a corresponding standard connection H
on D, (T") whose connector K and the covariant

derivatives V and d% are described by the formulae
K=PoK,

VxY =PoVxY =PoKoTY(X)=KoTY(X)

D D d
—X(t) =Po—X(t) =PoKo—X(t) =
o (t) o 7 (t) oKo 7 (t)

. d
= Ko -X(1) (4)

where X,Y are vector fields on D;,(7™) and X (t)
is a vector field along a certain smooth curve g(t)
in Dy, (T").

The geodesic spray S of H is a vector field on
TD;(T") of the form

S(X)=TP(ZoX), XeTD;(T"). (5)

Since P and Z are Dj(T")-right-invariant and
C*-smooth on TD;(T"), it evidently follows from
(5) that so is S.

Let F'(t,m) be an H*-vector field (a divergence-
free H*-vector field) on 7". Denote by F(t,n)
(F(t,n), respectively) the corresponding right-inva-
riant vector field on D*(7™) (on D, (T™)). Consider

the equations of second Newton’s law

D _

—g(t)=F 6

— (1) (6)
on D% and N

D -

—4(t)=F 7

—5() (7)
onDZ.

Theorem 1. Let the vector field F(t,m) on T"
at any t belong to H**! and be continuous it t with
respect to H® topology.

(i) For any vector vy € TeD*(T™) there exists
a unique solution g(t) of (6) with initial conditions
9(0) = e and §(0) = vy for t € [0,e) where ¢ > 0
depends on vy.

(ii) For any vector ko € TeD;(T") there ex-
ists a unique solution of (7) with initial conditions
7(0) = e and ¥(0) = kg for t € [0,e) where e > 0
depends on K.

The proof (see [5]) is based on the representa-
tion the velocity ¢(t) of solution g(t) of (6) as an
integral curve of the vector field

Z+F (8)
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on TD*(T") and the velocity ¥(t) of solution (%)
of (7) as an integral curve of the vector field

S+ Fl. (9)

on TD;(T"). Those vector fields are at least
C'-smooth since Z and S are C*°-smooth while
F' and F! are C'-smooth in ¢ and continuous
in ¢.

Remark 2. It is well-known that for con-
tinuous vector fields on infinite-dimensional spaces
(manifolds) integral curves may not exist. Never-
theless the above conditions of belonging F' to H**!
for any ¢ (that provides C'-smoothness to F! and
F') can be reduced. We refer the reader to [12]
where the existence of integral curves on groups of
diffeomorphisms was proved for vector fields with
Caratheodory type conditions under some additio-
nal assumptions that the field is condensing (k-set
contraction) with respect to a certain measure of
non-compactness.

Consider the vectors v(t) = TRyy)-19(t) €
T.D*(T") and k(t) = TR,p)-19(t) € TeD,(T")
obtained by right-hand translations of velocity vec-
tors g(t) € Ty»D*(T") to solution g(t) of (6) and
F(t) to solution (t) of (7) at any specified ¢, re-
spectively.

It is shown in [5] (see also [9] and [10]) that
v(t) € T,D*(T™) is a vector field on 7" satisfying
the equation of diffuse matter

0

av(t, m) + Vymv(t,m) = 0; (10)
and k(t) € TeD;(T") is a divergence-free vector
field on 7" satisfying the Euler equation

(11)

Thus the curves g¢(¢t) and ~(t) on D*(T")
and D,,(T"), respectively, are the flows of diffuse
matter and of perfect incompressible fluid, respec-
tively, on 7". For n = 2 the solutions x(t) of (11)
and y(t) of (7) exist for ¢ € [0,+00). This follows
from classical results by Kato.

Introduce the operators:

(i) B : TT"™ — R", the projection onto the
second factor in TT" =T"™ x R";

(ii) A(m) : R — T,,, 7", the converse to B lin-
ear isomorphism from R"™ onto the tangent space
to 7™ at me T™.

&lﬂl(t, m) + V,m)k(t,m) — gradp = 0.

(iii) For ¢ € D®* and m € T" consider the
isomorphism Qg : T, T" — Ty T" of the form
Qg = A(g(m)) o B.

Notice that for the natural orthonormal frame
b in R™ we have an orthonormal frame A,,(b) in
T, T", the field of frames A(b) on TT™ consists
of frames inherited from the constant frame b.
Thus for a fixed vector X € R"™ the vector field
A(X) on T is constant (has constant coordinates
with respect to A(b)) and in particular A(X) is
C*°-smooth and divergence-free since such is the
constant vector field X on R". So, A may be con-
sidered as a map A : R" — T, D, (T") C T.D*(T™).

Consider the map A : D$(T") x R* — TD*(T")
such that A, : R* — T,D*(T") is equal to A,
and for every g € D*(T") the map 4, : R" —
T,D*(T") is obtained from A, by means of the
right-translation:

Ag(X) = Ry o Ac(X) = (Ao g)(X). (12)

Since A is C*°-smooth, it follows from w-lemma
that A is C*-smooth jointly in X € R" and
g € D°(T™). In particular, the restriction A :
D;(T") x R"* — TD,;(T") is C*°-smooth and the
right-invariant vector field A(X) is C°°-smooth on
D;(T") for every X € R".

By the construction, for an arbitrary
f € D*(T") and a vector X € TyD*(T") the
vector Qg X belongs to TyD*(T"). In particu-
lar, Q.X € T.D*(T™). Notice that even for
f € D;,(T") the operator Q. does not send TyD;,
into T.D;,(T") however P.Q(TyD;,) = T.D; (T").

Describe the action of (), on tangent vectors
to D*(T"™) considered as maps and compare it
with the right translation TR,. Recall that X €
T.D*(T™"), i.e., the vector field on 7", sends the
point m € T™ into the vector (m,X(m)) where
the first component denotes the point in 7" where
the second (vector) component is applied. The
right translation TR, on TD*T™ sends the lat-
ter into (g(m), X (g(m))) while Q4(m,X(m)) =
(g(m), X (1m)).

Theorem 3.([11], see also [4]) Q4 : T,,D*(T") —
TyD*(T™) is the parallel translation in D*(T™) with
respect to H.

Indeed, since the connectors on 7" and on
D5(T™) coincide, so do the parallel translations.

BECTHIIEK BI'Y, Cepusa ¢musura, matematura, 2001, Ne 1



86 Yu. E. Gliklikh

2. Mean Derivatives

Consider a stochastic process £(t), t € [0,1], de-
fined on a certain probability space (2, F,P), tak-
ing values in a separable Hilbert space F' and such
that £(t) is an L'-random variable for all £. The fol-
lowing particular case will play an important role
below: F'= R™ and

t
€=+ [ A +ou) (13
where w(t) is a Wiener process and o > 0 is a con-
stant.

Denote by V¢ the ”present” ("now”) o-algebra
of &(t), i.e., the minimal o-subalgebra of F such
that £(t) at the specified ¢ is measurable with re-
spect to it. We shall suppose that ./\/’f is complete
(includes all sets of zero probability). Denote the
conditional expectation with respect to J\/tE by Ef
The following notions were introduced by Nelson
(see, e.g., [16] — [18]).

Definition 4. (i) The forward mean deriva-
tive DE(t) of the process E(t) at the moment t is an
L'-random variable of the form

De(t) = tip 1F (20 =20

)- (14)

(i) The backward mean derivative D,E(t) of
£(t) at t is an L'-random variable

D.g(t) = i 15 (=22

(15)

Here limits are assumed to exist in L' (2, F,P) and
At | 0 means that At tends to zero from above.

Denote by Y (¢,z) and Y,(¢,z) the measurable
vector fields on F such that DE(t) = Y (¢, £(t)) and
D.£(t) = Yi(t,£(t)), respectively. The existence
of those Y (t,z) and Y, (t,z), called regressions of
DE(t) and DLE(t), respectively, with respect to £(t),
follows from routine facts of Probability Theory
(see [19]).

Mean derivatives of Definition 4 are particular
cases of the notions determined as follows. Let ()
and y(t) be L'-stochastic processes in F' defined on
(Q, F,P). Introduce y-forward derivative of z(t) by
the formula

. ot + At) — z(t
DYx(t) :kgﬁ)E’?( ( Ai ®)

) (16)

and y-backward derivative of x(t) by the formula

prate) = fim F(URE=E)

where, of course, the limits are assumed to exist in
LY (Q, F,P).

Remark 5. Let f: F — F; be a smooth map.
Notice that since the value of mean derivative de-
pends on the "now” g-algebra of a process, the tan-
gent map T'f sends the derivatives of a process n(t)
into those of &£(t) = f(n(¢)) only in the following
form: TF(Dy(t) = D(E(t) and TF(Dn(t)) =
DE(t), but generally speaking T'f (Dn(t)) # DE(t).
Similar formulae hold for backward derivative:
TF(D.n(t)) = DIE(®)) and TFDS(E) = D.£(2),
but generally speaking T'f(D.n(t)) # D.&(t).

Lemma 6. (see [9], [10]) For t € (0,1] the
equality Dyw(t) = 9@ holds.

Lemma 7. (see [9], [10]) The integral fot wgg) ds
exists almost surely for all t € [0,1].

Introduce the process wy(t) =
w(t).

Lemma 8. (see [9], [10]) DY w,(t) = 0.

Note that the above equality is not valid if DY
is replaced by D,. For example, it is shown in [13]
that w¥ (¢) is a Wiener process with respect to its
own "past” filtration.

Lemma 9. For the process

w*(t) = Efw.(t). (18)
the relation D,w*(t) =0 holds.

Proof. By the construction the "now” o-
algebra N of w*(t) is a o-subalgebra in M.
Then
D.w*(t) = EY DYw*(t) = EY DYEPw,.(t).
By Lemma 8.21 of [9] (Lemma 20.5 of [10])
DYEPw,(t) = DYw,.(t) while the latter is equal
to zero by Lemma 8. Q.E.D.

Let V(t,7) be a C%-smooth vector field on F,
and £(t) be a stochastic process in F'.

Definition 10. The forward DV (t,£(t)) and
the backward D,V (t,£(t)) mean derivatives of V
along £(-) at t are the L'-limits of the form

DV (t,£(t)) =
. V(t+ At E(t+ At)) — V (¢, £(¢))
= lim B ( N ) (19)

DV (t,£(t) =
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V(t,£(t) — V(t = At, E(t — At))
At

— lim Ef
Am 7 (

) (20)
Consider the regressions of DV(t,&(t)) and
D,V (t,£(t)) with respect to {(t) denoted by DV
and D, V), respectively.
Lemma 11. For the process (13) in R™ the
following formulas hold

0 v o?
DVey = 5V + (V- V)V + 7v?v, (21)
a ~ 0’2 2
DV = 5V + (Ve VIV = V2V, (22)
where V = (8%,8%,...,%), V? is the Lapla-

cian, the dot denotes the scalar product in R"™ and
Y (t,X) and Y.(t,X) are the above-mentioned re-
gressions of DE(t) and D, &(t) with respect to &(t).

Definition of mean derivatives on manifolds re-
quires some additional constructions involving con-
nections in order to get well-posed (covariant) no-
tions. We refer the reader to [18], [9] and [10] for
details. Here we present a variant specially adapted
to the groups of diffeomorphisms, a very simple case
of the general situation.

For the group D*(7") the definitions of mean
derivatives by formulae (14) and (15) are well-posed
and so need no changes since the operations of ad-
dition and subtraction are inherited on this group
from 7" and so from R". In order to distinguish the
mean derivatives on D*(T™) from those on 7" we
denote the mean forward (mean backward) deriva-
tives for the former by D (D, respectively) and
keep the notations D (D, respectively) for 7.

For the process V(t,&(t)) with values in
TD*(T") consider DSV (t,£(t)) that takes values
in TTD*(T™), tangent to TD5(T"); DE(E(¢),
V(t,&(t))) takes values also in TTD*(T™). Now the
forward DV (t,£(t)) and the backward D,V (¢, £(t))
covariant mean derivatives of V along &(-) on
D*(T") at t are defined by the formulae

DV (t,£(t)) = K o DSV (t,£(1)),

D.V(1,£(t) = K o DIV (1,€(1).  (23)

On D, (T") the mean derivatives calculated by
the above formulae may not be tangent to Dy, (7™).
That is why we postulate the following modifica-
tion.

Definition 12. (i) The forward mean deriva-
tive DE(t) of the process &(t) on D;,(T") at the mo-
ment t is an L'-random variable of the form

De() = P lim LI =0 oy

(ii) The backward mean derivative D,&(t) of
£(t) on DL(T™) at t is the L'-random variable

§(t) — £t = At)
A7 ) (25)

D,£(t) = P lim Ef
£(t) i 7 (

In the same manner we modify the definitions
of DYx(t) and DYz(t) (see (16) and (17)).

Consequently, we introduce the mean deriva-
tives DSV (t,&(t) =  TPDSV(t,&(t)) and
DSV (t,£(t)) = TPDEV (¢, £(t)), respectively of the
vector field V' along £(t) on D;(7"). The covari-
ant mean derivatives on D;,(7") are defined by the
formulae

DV (t,£(t) = K o DSV (t,£(t)) = P o DV(t,£(1)),
D.V(t,&(t) =

— Ko DSV(1,£(1) = PoDV(LE®R).  (26)
3. Description of viscous hydrodynamics

For a point m € T" denote by exp,, : T, T" —
T" the map that sends the vector X € T,, 7" into
the point m + X in 7™. The field of maps exp
at all points generates the map ezp : T,D*(T") —
D3(T™) that sends the vector X € T,D*(T") (i.e.,
a vector field on 7") into e + X € D*(T") where
e + X is the diffeomorphism of 7" of the form
(e+ X)(m) =m+ X(m).

Consider the composition ezp o A, R
— DS(T™). By the construction of A, for any
X € R™ we get ezp o A.(X)(m) = m + X, ie,
the same vector X is added to any point m. Thus
obviously eZp o Ac(X) € D5 (T™) and so eZpo A, :
R = Dy(T").

Introduce the process

oW*(t) = exp o Ac(ow*(t)) (27)

in D5(T™) where w*(t) is process (18) and o > 0
is a real constant. By the construction, for any
w € Q the corresponding sample trajectory oW (%)
is the diffeomorphism of the form oW}(t)(m) =
m + ow,(t) so that the same sample trajectory
ow}(t) of ow*(t) is added to each point m € T".
In particular, this means that
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Lemma 13. (i) oW?*(t) takes wvalues in
D;(T™). (i) at any t specified cW*(t) may be
considered as a random map ocW*(t) : T" —
T™ such that its differential doW*(t) : T, T" —
Tyw+ymT" 1s equal to I (identity operator); (iii)
oW*(t) may be considered as a stochastic flow on
T™ governed by a certain stochastic differential
equation with diffusion term of the form ocw(t).

Specify a vector ug € T,D*(T"). Let g(t) be
a solution of (6) with ¢g(0) = e and ¢(0) = ug €
TeD*(T™). By Theorem 1 g(t) is unique and exists
for t € [0,¢) where € > 0 depends on ug and it is a
flow of diffuse matter on 7" (see §1).

Consider the stochastic process

n(t) = oW*(t) o g(t) (28)
on D(T™). Notice that it is well-posed for ¢ € [0, €)
since g(t) exists for such ¢t and oW *(t) exists for all
t € [0, +00) by the construction.

Lemma 14. The "now” o-algebra N} of n(t)
is a o-subalgebra of NV, the "now” o-algebra of
process w*(t).

Proof. By definition at any ¢ the random vari-
able 7(t) = Ry;)cW (t) and so its "now” o-algebra
N[ is the same as for the process oW (t). On the
other hand eZp o A, : R" — D*(T") is a continu-
ous map. Thus (see (27)) M}V is a o-subalgebra
of N*". Q.E.D.

Notice that V" is a o-subalgebra of N by the
construction of w*(t) (see (18)).

Lemma 15. D.n(t) = Q)g(t).

Proof. Indeed, D.n(t) = TRg(t)ngW*(t) +
TLyw-)Dlg(t) = ocTW*(t) 0 g(t) + o DIW*(t) o
g(t). Obviously D!g(t) = g(t) since g(t) is a deter-
ministic process with C'-trajectory. On the other
hand, D!W*(t) = T(ezp o A,) o D]w*(t). From
Lemma 14 it follows that Dlw*(t) = E}DVw*(t)
and D" w*(t) is equal to zero by Lemma 9. The as-
sertion of Lemma follows from Lemma 13 and the
properties of tangent maps. Q.E.D.

Lemma 16.

D.D.y(t) = Z(Don(t) + TQp. e F' (1.4 (1).

Proof. In analogy with the proof of Lemma
15 show that D,D.,n(t) = oTTW*(t) o §(t) +
oDIDIW*(t) o g(t). Since cDIDIW*(t) = 0, we
get D.D.n(t) = oTTW(1) 0 (1) = TQp_ 0y (1)
Taking into account (8) and the fact that on the
flat torus evidently TQx Z(Y) = Z(X) we obtain

the assertion of Lemma. Q.E.D.

Corollary 17. D,D,n(t) = Quy F(t,g(t)).

The Corollary follows from Lemma 16 and for-
mula (23). Notice that the above relation is a
stochastic analogue of the second Newton’s law.

Now introduce the vector  wu(t) =
ETR;é)D*n(t) € T,D*(T"). It is an analogue
of v(t) in §1. Recall that u(t) is an H® vector field
on 7™ that will be denoted by u(t,m).

Theorem 18. If the vector field u(t,m) on T"
is Ct in t and C? in m € T", it satisfies the Burg-
ers equation

2

%u(tm)—l— < u(t,m),V > u(t,m)—%VQU(t,m) =

= EF(t,m — ow*(t))
with initial value uyg.

Proof. One can easily see from the construc-
tion that u(0) = ¢(0) = uyg.

Recall that the vector fields Z and F! are
right-invariant. Taking into account formula (9)
from [11] and the construction of 7(t) we get
TR;(i)Qn(t)F(t,g(t)) = QF(t,g(t) o n(t)™!) =
QcF(t,ocW*(t)~1). From this, from Remark 5 and
Lemma 16 we obtain

o
DITR, ) Dun(t) =

(29)

= Z(TR, 3 Din(t)) + (QeF (t,oW* (1)), (30)

(

Introduce the process n;(s) = R;é)n(s). Obvi-
ously 7;(t) = e and so the conditional expectation
E}" with respect to its "now” c-algebra at ¢ is the
unconditional expectation E. Thus by Remark 5
D.ni(t) = E(TR;(}S)D*n(t)) = u(t). From the con-
struction of vector field Z it obviously follows that
E(Z(TR;(i)D*n(t))) = Z(u(t)). Then from (30)
we get

D*D*T/t(t) =

= Z(u(t)) + (BQF (t,oW*(t) ")) (31)

Consider the right-invariant vector field @(¢) on
D5(T™) generated by u(t) € T, D*(T™). Notice that
%u(t) is a vertical vector at T{, () D*(T") that is
the difference between D, D,n;(t) and its compo-
nent tangent to @(t). In order to find this difference
recall that by usual machinery the vector Z(u(t))
is described as

Z(u() = lim B = a(t7A77tt(t — A1)

)
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: u(t) —ult,m(t — At)))
—(Kolim E
(K o lim E( At )
where the former vector in the right-hand side is
tangent to @(t) and the latter is vertical. Then,
taking into account (31) we obtain
0 u(t) —a(t,m(t — At))

F7(0) = —(K o lim B( N

)+

+H(EQF (t,cW*(t)~ ).

All vectors in the last expression are vertical, i.e.,
tangent to the linear space T,D*(7"). As usual for
the theory of differential equations in linear space
we can consider the vectors, tangent to linear space,
as belonging to it. Then the last expression takes
the form

0 u(t) —a(t,m(t — At))

+EQF(t,oW*(t)™1). (32)

It is easy to see that the process 7;(s) on D*(T")
can be considered as a stochastic flow on 7" whose
backward mean derivative at s = ¢ is u(¢t, m) and
the diffusion term is ocw(t). So we can differenti-
ate u(t, m) along this process by formula (20) and
apply formula (22) to obtain

u(t) — at,n(t — At))
At

—K o lim E(
ALL0

)(m) =

o2
—(< u(t,m),V > u(t,m) — ?V2u(t,m)).

Thus (32) transforms into (29). Q.E.D.

Now let us turn to stochastic perturbations of
solutions of (7). Using analogous scheme of argu-
ments we shall obtain solutions of the Navier-Stokes
equation. The only serious modification involves
the projector P into various formulae in order not
to leave the manifold D;,(7™) and so we describe
this material more briefly.

Specify a vector Uy € TeD;(T"). Let y(t) be
a solution of (7) with v(0) = e and §(0) = Uj €
T.D;(T™"). By Theorem 1 «(¢) is unique and exists
for t € [0,¢) where ¢ > 0 depends on Uj and it is a
flow of perfect incompressible on 7" (see §1).

Consider the stochastic process

§(t) = oW (t) o (1)

on D} (T™) (recall that W*(t) in fact takes values in
D;,(T™), see above). Notice that it is well-posed for

(33)
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t € [0, ¢) since 7(t) exists for such ¢ and cW*(t) ex-
ists for all £ € [0, 4+00) by the construction. Lemma
14 remains true for £(¢). The analogues of Lemmas
15 and 16 and of Corollary 17 take the form:

Lemma 19. D,£(t) = PQ¢)¥(t).

Lemma 20.

D.D.g(t) = S(D:E(1) + (PQp,e(ny F'(t,7(1))"-
Corollary 21. D,D,&(t) = PQey F(t,7(t)).
Corollary 21 means that £(t) satisfies a stochas-

tic analogue of the second Newton’s law on D, (7™)

(cf. Corollary 17).

Now introduce the vector
U(t) = ETRg(i)f)*{(t) € TeD;(T"). 1t is an ana-
logue of k(t) in §1. Recall that U(t) is an H®
divergence-free vector field on 7" that will be de-
noted by U(t,m).

Theorem 22. If the vector field U(t,m) on
T" is C' in t and C? in m € T", it satisfies the
Navier-Stokes equation

gt—U(t,mH— <U(tm),V >

2
> U(t,m) — %—VQU(t,m) — gradp =

= EPF(t,m — ow*(t)) (34)

with initial value Uy.

Proof. The scheme of arguments here is quite
analogous to the proof of Theorem 18 and so we
clarify only the points where the main modifica-
tions arise.

One can easily see from the construction that
U(0) = +(0) = Uo.

The analogue of (30) takes the form

DETR} D.&(1) = S(TRyj D.£(t)+

+(PQCF (t,oW*(t)~ ). (35)

Introduce &i(s) = Rg(i)f(s), the analogue of
7¢(s) having the same properties and in particular

satisfying the following analogue of (31):
D*[?*m(t) =
=S(U(1) + (BPQ.F(t, oW ()™1)".  (36)

As well as above %U (t) is a vertical vector
at Tie,u()D,(T™") that is the difference between
D.D,&(t) and its component tangent to U(t), the
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right-invariant vector field on D;(7") generated
by U(t) € T.D;(T"). Here this difference can be
found from the equality

U(t) = Ut &(t — At))

SU(t) =£$]E( Al )
. U(t) — U(t, & (t — At))
—PoKoiltrﬂ]E( Att )

(recall that P o K = K) where the former vector
in the right-hand side is tangent to U(¢) and the
latter is vertical. Then, we obtain from (36)

o L U) = U,6( - Ab))
EU(t) = _POKOi.ltIﬁ) E( At

)+

+EPF(t,oW*(t)™1). (37)

This is the analogue of (32), i.e., it is written in the
linear space T.D;,(T").

The process &(s) on D;(T™") can be considered
as a stochastic flow on 7" whose backward mean
derivative at s =t is U(¢t,m). In order to differen-
tiate U along &(s) by formula (25) we may differ-
entiate U(¢,m) along this flow by (20) and apply P
to the result obtained by (22). Taking into account
(3) we get

U(t) = U(t,&(t — At))

—Po Ko lim E( At ) =

AtL0

—P(<U(t,m),V >U(t,m) — %QVQU(t?m)) =

2
—(<U(t,m),V > U(t,m)—%VQU(t,m)—gradp).

so that (37) transforms into (34). Q.E.D.

Notice that the processes n(t) and £(t) are con-
structed for s > 5 + 1 from existing solutions of
(6) and (7), respectively, for F(¢,m) belonging to
H*t! at any t and continuous in t with respect to
H* topology. Thus the vector fields u(t,m) and
U(t) from Theorems 18 and 22, respectively, do ex-
ist but may not be smooth enough to satisfy equa-
tions (29) and (34), respectively, in classical sense.

Definition 23. If the vector field u(t,m) or
U(t,m) on T™ is not smooth enough to satisfy (29)
or (34), respectively, in classical sense, we say that
it is a generalized solution of the corresponding
equation.

If s > 5 + 2, the generalized solutions are clas-
sical ones since they have enough classical deriva-
Their flows describe the motion of corre-
sponding viscous fluids on 7™. These flows may
be called ”expectations” of the stochastic processes
n(t) and &(t), respectively, lying under the motion
of viscous fluids. It should be pointed out that
the processes and their "expectations” (flows of the
generalized solutions) do exist for s > § + 1.

tives.

Let us summarize what we can say about (gen-
eralized) solutions of Burgers and Navier-Stokes
equations in the case under consideration. Denote
EF(t,m — ow*(t)) by ®(t,m). Notice that if the
force F' does not depend on m, ®(t) = F(t). In
particular, ® = 0 if F' = 0.

A. Navier-Stokes Equation.

1. Let s > %n + 1, Up be an H?® divergence
free vector field on T™, o > 0 be a real number and
F(t,m) be a divergence-free vector field on T™ be-
longing to H**! at any t and continuous in t with
respect to topology H®. Then there exists a gener-
alized solution U(t) of Navier-Stokes equation with
viscousity %2 and external force P®(t,m), having
initial value Uy and well-posed on the same time
interval [0,e) as the solution k(t), k(0) = Uy of
Euler equation with force F(t,m) where ¢ > 0 de-
pends on Uy.

2. U(t) tends to the solution k(t) as o — 0,
(i.e., the viscousity coefficient tends to zero).

3. Forn = 2 the generalized solution of Navier-
Stokes equation exists for all t € [0,+00) since so-
lutions of Euler equation exist for those t (see §1).

4. For s > %n—i—? the above-mentioned general-
ized solution of Navier-Stokes equation is a classical
solution.

B. Burgers equation.

5. Let s > ]517 + 1, ug be an H?® wvector field on
T", o >0 be a real number and F(t,m) be a vector
field on T™ belonging to H*' at any t and contin-
uous in t with respect to topology H®. Then there
exists a generalized solution u(t) of Burgers equa-
tion with viscousity 923 and external force ®(t,m),
having initial value ug and well posed on the same
time interval [0,€) as the solution v(t), v(0) = g
of diffuse maltter equation (6) with external force
F(t,m), where ¢ > 0 depends on uy.

6. u(t) tends to v(t) as 0 — 0, (i.e., the vis-
cousity coefficient tends to zero).

7. For s > %n + 2 the above-mentioned gen-
eralized solution of Burgers equation is a classical
solution.
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