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BOUNDARY FUNCTIONS METHOD FOR NONLINEAR SINGULARLY
PERTURBED TIME DELAY SYSTEMS

V.V. Strygin

Voronezh State University

The paper deats with singularly perturbed differential equations with time-delay 4. For Cauchy problem
asymptotical expansion of power order € N uniformly bounded with respect to a small parameter € and
t €[~h,T7] is constructed. The aigorithm presented coincides with the known boundary functions method

by A.B.Vasil'eva for ordinary differential equations.

1. Introduction

As it is well known, the singularly perturbed
systems arise in the problems of chemical kinetics,
biology, mechanics et. al. Singular perturbations
legitimize simplifications of dynamic models. One of
them is to neglegt some of “small” time constants,
masses, capacities and similar «parasitics parameters,
which increase the dynamic order of the model. At
the same time such systems often contain a time-delay
that can be caused with measuring and executive
devices.

First results regarding singularly perturbed
equations were obtained by A N, Tikhonov [1], A.B.
Vasil’eva [2], [3], R.E. O'Malley [4]. The important
applications of this theory for the control sysiems
are tdiscussed in the known overview by P.V.
Kokotovic [3].

This paper is essentially based on the boundary
functions method by A.B. Vasil’eva that allows to
get approximative solutions in the form of the finite
scrics of regular and boundary functions.

We consider Cauchy problem for a delay
system

dx
&= fnxt-m.2), (1.1)
%: g(r.x(t—h),2), (1.2)

where € is a small positive parameter. If one start
to construct an expansion of regular solution of
(1.1), (1.2} in the common form

x=x, () +Ex, (1) + €20, () + ...,

z=zo{t)+ €2, (1) + €22, (1) +...,

then z(#)(i=1,2,...) can have jumps in the points
t=h2h,.. . «To stitch up» thesc jumps, it is
necessary to add to z,(s) the new jump boundary
functions (y¥=1,2,...,1),

t—sh t<sh,
(t—sh)/g,t > sh. (1.3)
To ncutralize the jumps caused by I, in the first
equation of (1.1) it is necessary to add to x,(r) the
new boundary functions x, .

Thus we conclude that asymptotical
expansions for time-delay system (1.1), (1.2) should
contain both the regular series and the sertes of
boundary functions located in the right-hand
neighborhoods of the points ¢=A,2A..... The way
to look for the terms for these cxpansions is
developed in Section 3. Further, in Section 4 the
estimates for remainder terms are given. These results
can be applied for studying of rocket motors control
[9], for chemical reactors analysis [11] et al.

Notations and Problem Formulation

Let R” and R™ be n-dimensional and m-
dimensional real spaces respectively, Q, cR",
Q c R~ be open bounded domains. By C*(G,R')
we denote a space of k-times continuously
differentiable functions f:G — R!. Let N be an
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integer positive number, A >0, T> 0 with Nk < T.
At last, let

feCh2(Q, xQyxQ,R")
g eCH(Q, xQ xQ,R™Y,
0 CM([-h0]1,R").

Consider an initial Cauchy problem

fg=fu@xﬂwaanx (2.1)
dt

dz :
EE;=g(xULxU—hLZULt€(OJj), (2.2)
(D =HA(-h<1<0), (2.3)
20 =0 R, (2.4)

where ¢ is a small positive parameter. By solution
x(8), z(t) of the system (2.1), (2.2) we mean
absolutely continuous functions, which satisfy (2.1},
(2.2) for re(0,T],t #h,2h,....

Now we introduce the new fast times
T,(s=01.,N+2) by (L.3). Obviously,
T{E-h=1,, . As usually, by
(T, )5=012,..,N+2) wec denote continuous
boundary functions with

e (T )] < Cexp(-pr,), 1,20, C>0, p>0.

Letn, (t,)=m,(0)=const for 1, <0 and

_ Ty (T.\')! 1< Sk,
T (T) = 0, t> sh,

The function 7, is discontinuous in the point
T, =0. It is a regular part of the boundary layer
Tch v )

By It )s=12,...N+2) we denote
generally speaking a discontinuous boundary
function with

I, (t,)| S Cexp(-pt,), €>0, 1,20, pn>0,
M, (t,)=0, 7, <0.

Let IT,,(t,) be a usual boundary layer of t,.
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An approximate solution of the initial problem
(2.1), (2.2) we will look for in the form

X = X (1) HE[ 2, (1) + 10 (T)] +

XX, (1) + My (Ty) + My (T )+

+ N[y () + T (To) + e+ T (T4 ] +
FEVH [y 60 (Te) + ot Ty o (T4, (2.5)
o =gy () + Mo (1) + e[z (O +TT o (1) + 11 (T )] +
Fon €Y [Zp () +TT 40 (Ty) +.oF T1 (T,)], (2.6)

where x;,z;, eR", z,,IT, eR™.

We w1li see below that functions z,(¢){i=1) can
have j Jumps in the points t=h2h,...,ik . To eliminate
these jumps one must use the discontinuous boundary
functions IT, (t,)(s>1). Thus, the functions

(D + (1) + T () +..+ T, (1) ((=1.2,...,N)

will be all the same an absolutely continuous. Qur
nearest goal is to indicate a simple way to construct
the expansions (2.5), (2.6).

Seeking of Expansions (2.5), (2.6)

For brevity, in the next part of the study we shall
use the notations below:

A=Al 1y) = f, (3 (0), x5 (2 = ), 25 (£) + T 5 (1)),
B=B(t,7) = f,(xo(t) xp(t = h), 25 (1) + M (1)),
L=L{t,%) = [, (o (1), 5y (8 — ), 25(£) + T g (1)),
C=C(1,19)=g ,(x (1), x5t — 1), 2o (1) + T 1, (T4,
D=D{t,7,}= g, (% (). xg (t = ), 20 () + T 35 (T,)),
M =M (1,%9) =g, (xy(£), %, (2 = ), 2 (1) + TT 3 (T4)),

where £, g, are the first FrechVet derivatives of f;
g with respect to x, and f g, are the first Frechét
derivatives with respect to second argument y, and,
finally, £, g are the first FrechVet derivative of £, g
at z. For brevity, we shall omit the arguments ¢z, T
at the functions x,(),z,(nN,x, (t,),I1,(1,). Due to
time-delay A in (2. 1) (2. 2) we need Lo compute these
functions in the points 7—A,r —2h,.... In these cases
the arguments of the functions x;,2;.m, 0, should
be cxactly written.
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Now substituting formally x,, z. $ into
equations (2.1), (2.2) and using Taylor series, we
get below follow formulas from page 8

E.'. _@__{.84.% 82 ﬁ_’_s‘l%.}_aflﬂ +_“:
dt dr dr, dt dr, dr,

= flxp +&(x +10) HE2(x, + Tyg + 7y, )+

+ 3 —R)+EOR (R0 (T (=TT (T)
2o+ +e(z +H, +11 ) +..) =

= f{xg,x(t—=h), 2o + T o) +

+EA(x; + 1y +E(xy + Ty + 7, )+ +

+EB(x ( — )+ T (T, ) +605, (7= B+ Toag(T, ) +T0,, (T, )+
+eL(z, + 1T + T, +e(z, + T, + 11, +T1,) +...+

2
+52_fx,(xo,xo(t—h>,zo + To )%, + My )3y +70,0) +
2
2yt —D 2 Tl G~ T AT

2
+%fzz(~’€)v"b(t_h)»zo W), +To+TT Mz +T1+IT, )+

+E§fxy(x0axo(t_h)szo + o) +10)(x (1 = 1) +1o0(T N+
+&f, (X5, X (F = R), 29 + Moo Yy + 1)z, + 10 +T1 )+
+&f,, 00, % — A, 20 o) 06 (2 ~ A} 4+m0(T)) g, +1T,0+TT, ...

3.1
Similarly,
8('% +g! ér_lﬂ o 8(_d_Z]_ +g-! @& +g-! finJ.) +
dt dt, dt dt, dr,
+e M +edn21 el +.)=
dr dr, T,

g(xg,x(t —h) 2y + 110 ) +

‘+eC(x1 1 +8(xp +Tog + 705 ) +) +

+ED(x (1 — B+ 1o (1)) + 80, (E = 1) + (T, )+ 10, (T, )+ )+
+EM (z) + 11,y + 11 +€(z, + T + 11, + T )+ +

£2
+ngx(xo,xo(t—h),zo + o)X + 1)+

2
%gyym,&,o—h),zo+Hoo)oa<r—h)+mo(q>)eq(r—h>+mo(t.)}+

V.V. Strygin

2
""“5 82 (Kos Xt =), 20 + Mooz, +10 +1T, )z + 10,411, )+

+e2g, (6, 2 (t — 1), 2y +T100) (5 +700) (x5 ( —B)+ 10, (T )+
+e2g, (%o, % (t = h), 2o + oo (X, +7,)(z, + o +T1,) +

+E78,, (8,2 — ) 2o Hog) 06 (=)0, (T )My +TT, o+, ) +-..
(3.2)

Here /., ...
derivatives.

Our distant purpose is to transform the right-
hand parts of (3.1), (3.2) in the sum of regular series
and boundary functions series as (2.5), (2.6).
However, implementing it at once is very difficult.
Therefore we shall do it step-by-step. First, we shall
separate the terms of power order €° and transform
them to form (2.5), (2.6), simultaneously secking x;,
20, HOO and G-

I. Consider f(x,(r),x5(t = h), 2o (£) +TT g0 (%,))
and using the Vasil’eva approach [2] transform it as
follows

» 8y, are the second order Frechét

f(xo(:),xo(t—h),zo(t)+l'[00(t0)):_ J (% (0,3t —h), 75 (1)) +
+ (00,28 — ), 25(8) + Ty (To ) — f (0 (0, 3, ~ B}, 25 (D)=
= f(x{) (t)! x() (f - h)s ZO(I)) +

+ (S (%o (€T )y xy (BTy — R), 2o (€T) + Ty (T, ) —

= f(%p{€%g), X (€15 — h), 2, (€T, ).

Expanding the last term in the Taylor scries of power
£! we obtain

Fx@% (= h).20(1) + T (o) = f (xo(0), 2 — ), 2o (1)) +
+1g f +elly f+e0,, f +..., (3.3)

where I, f,I1,, f, I, f are the boundary functions
and, for example,

Toof = Fl6 00,2 ()2 O+ Te(7 )~ f (300, (=h), 25(0)).
3.4)

In the similar way it is easy to get

g (o) xg (2= h), 20 () + I (1)) =

=g (% (1), x5 (1 — B), 2o (1) + M o8 + €Tl g +€210 08 +...,
3.9

BECTHHK BI'Y, Cepna duzuxa, MaTemarixa, 2000, 5. 1



Boundary functions method for nonlinear singularly perturbed time delay systems

where

Iy =835 ), 29 () + T (30)) — 8 (%, (0), (=), 2, (0))
(3.6)

Therefore, it seems naturally to determine the
regular terms Xy, zg in the following manner;

Exﬂ:f(xo,xa(t—h),ze), 1e(0,T],

dr 3.7
g(xo,xu(t_h),zo)zo, (38)
X, (1) =0(2) (—h<r<0). (3.9)

Assumption 1, For alt x, y € Q, the equation

glxy,z)=0
has z unique solution
2=0(x,y) e CV*2(Qy xQy,R™),

motreover, the matrix

M(x,y)=g,(xy,0(x,y))

is Gurvitzforall x,y e Q. 1.e. for some 1t > 0 and all
eigenvalues A, (x,y) of M the cstimate

max sup Red,(x,y)<—p

i e, (3.10)
hold.
Then the equation (3.8) is equivalent to
2 = Q(x (), % (1~ h)) (0<e<T), (3.11)

and for x, we have the initial Cauchy problem

%=fo<xo,xo(r-h)), reT], G.12)
X, (y=0(1), te[-h0], (3.13)

where

fo (xosxo(t - h)a‘Pxo,xo(t —h))
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Assumption 2. The initial problem (3. 12}, (3.13)
has a unique solution

X (Delly (-h<t<T), (3.14)
moreover, some o - neighborhood of x(1) belong to
Q,cR".

Remark 3.1. The functions Xy(t—h) and z,(r)
can have the jumps at the point ¢ = /.

We define the boundary function Myp as a
solution of Cauchy problem

%Z— = 8(6(0),%, (<h), 25 (0) + 2) — g (3, (0), %, (~h),z, (0D,
0

(3.15)

2(0)= 0 — 2, (0) . (3.16)

Obviously, the equation (3.15) has a trivial steady
state z = Q.

Assumption 3. The solution z of initial problem
(3.15), (3.16) tends to zero as Ty S ™.

Remark 3.2. It is easy to show the function z is
boundary function, i.e. for any Cy>0,u>0wehave

[z(te)] € Cexp(-uy), 1, >0. : (3.17)

That is why we denote 2(ty) by Iy (ty) .
Assumption 4. A curve

w=2o(€T)) + My (1y) (0<1,<T/¢)

and some of its 6 - neighborhood belongto Q@ g,
To end, put

T10(Te) = =1L (X (0), X (=), 20 (0) + Moy (5)) —

= F(x{0), x5 (—R), 2, (0)))ds
J1710{':()) = E,O(O), T, <0

(1, >0), (3.18)

II. As above, transform the matrix coefficients
A4,B,C,D,L M, using the Vasil’eva approach. So,

A= )‘"x()co,xo(r—h),z0 +Hy)= fx(xo,xo(t—h),z0)+
+ (S (e (ET), 20 (€T, — h), 75 (e ) + o (T

~ Fo (% (€7), Xy (€74 — h), 2, (€7,))) =
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= Ag(t) + Moo f, + &My f TE2 Mgy £, + .0, (3.19)

where

Ao(t)z fx(xo’x()(t_h)sZo)y

Tioof'x = L. 0): 1 (), 26(0+ oo (1))~ £, (30,3, (),2 (D)),

Analogously,
B=By()+ Ry f, +eEmf, +E'My 1, +...y

BO(!)z fy (.1’0 ’x()(t'_h)’ zO)s (320)
Toof, =L 00X ().20 @)+ oo (1))~ £, (%O =) 2(0)),

C=Co()+Rpg, +EM g, +ETyg, +.un,
Colt) = g, (x5, 5, (t — B), 2,),

Moo = (o (0% (—,26(0)+ T (%))~ £, (%O (). %00,
D =Dy(1) + o8, +EMg, +EM Mg, +..0y 3.22)
Dy ()= g, (x0.x(t — ), 2),

Toof, =8, (% (0%, 0) Hloo(%)—8, (6O 4 ()20,

............................................................................

L=Ly)+my f +em f, ey, f, +..., (3.23)
LO(I) = fz (x()"x() (I - h)ﬁ ZD )’
Toof, =, Co(0) 2, 2O+ To(3p))- £, (16 (002 (), 2, (0D,

M =.M0(t) + Mg, ERGE, TE L, +.u,
Mo(t) = gz(x()sx(](‘t - h);Zo},
T8, =, G0 % (F0.26O+Too(%)) -8, (o 01 (). 2 (0)),

After substituting (3.19)-(3.24) into (3.1), (3.2)
and collecting the terms of the same power of ¢, it
remains to equate the same order terms to each
other. We obtain six equations

ﬂ = Agx; + Box, (f ~ )+ Lyz) + AT,

at (3.25)
dz, —
oy =Cox +Dyx, (1~ )+ Mz, + Cy R, (3.26)
dll .
2= Mo (O, + Ty (1), 3.27)
0

V.V. Strygin

dH“

=M,(WI,, +11} (1)),
dr,

(3.28)

dry,
=T (T),

i, (3.29)

dn,,
L= n;|(11 )

& (3.30)

where IIj),IT],,m},, 5, are still known boundary
functions.

Assumption 1 (the matrix A is of Gurvitz type)
implies that M ;' exists. Therefore equation (3.26)
may be written in the form

d; — .

7, =M; (%—Cox, ~Dox,t—h)—CeR).  (3.31)
Using (3.31), we write (3.25) as follows
dx] * * Ly
E:A x + B x{t—m)+ f* (1), (3.32)
where
A" = A, —LM;'C,, (3.33)
B"=B,-LM;'D,, (3.34)

’ 1 L 9%
ST = AgTy — LoM GGy + M & (3.35)

Recalling

x(D+m()=0, re[-h0],

we get for xy the initial problem. Hence, x; may be
determined in [-h, 7] uniquely. Note the % can have
a jump at the point ¢ = k, since f" can have jump
at this point. Moreover, the function z; (see (3.31))
can have jumps at t+ = h. Further, the general
solution of equation (3.28) may be written as

T
I, (7)) = eMe®uy, 4 [eMlhXn-91T} (5)ds, T, >0,
. 0

where v, is an arbitrary vector from R™, It is easy
to see Iy, is a boundary function in 1, > 0. Setting
IT),(r,) =0 for 7, <0, we define v, as follows

Vl =Z](h+0)—2|(h_0)-
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In other words, I1; gives a possibitity to stitch up
a jump of function z; in the point 1 = A, so that

z +1I1,, ()

is continuous function at the point ¢ = k. Puiting
{0y = —z, (0), (3.36)
we find T, from (3.27), (3.36) uniqucly by

o
(1)) = —eMo@z (0) + [eMe O (5)ds, T, >0,
0

To end, it is necessary to put

My (Tp) = = [ M5 (s)ds, T5>0,

To

My(T) == [Ty (s)ds, T <0,
0

() =={n} (s)ds, T, >0,
T

Ty, (v) =—fny (s)ds, 1,£0
0

Now suppose that for some integer & the
functions

D SR
2012 pees Zp
s Ty reees Ty Pzl k,
m,,nmn,....II,, r=0l..k,

Toi1,00 Tpp gonens Ty &

are defined. To carry out the following step let us
consider (3.1), (3.2) and separate the terms of power
order 41, Omitting the all boundary functions in
(3.1), (3.2), we get for x,,,,z,., the system

dxk+1
dt
dz,

o Coxa +Doxp (1 =M+ Moz + £4,1(1).(3.38)

=Agx + Boxe -+ Loz + frs (3.37)
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where f,,,,g,..dz, /dr are already defined as
functions of & (y=0.1,....k +1;/ < 5) and hence these
functions can have jumps at the points ¢ =k, 24,....kh.
From (3.38) we have

dz

Ty =My (& —CoXpy — DX 0 — ) — 8,,,(1).(339)

Substituting z,,, into (3.37) we obtain
By

dt
X OF T 0+ +ot Wy, =0, 1€[-4,01,341)

=A% =)+ Loz, + 17,0, (3.40)

where f'(t) can have jumps at the points
t=h,2h,....kk . The function x,,, is defined uniquely
from (3.40), (3.41), and then z,,, will be found from
(3.39). Obviously, z,,, can have jumps in the points
t=h2h,..,(k+1h. Next, selecting in (3.2) the main
boundary functions at power order g4+, we get easy

219 )
%‘-- = Mo(sh)nkﬂ,s + n;+1.x(rx )’ T > 0’
TS'

s=0L..,k+1,

(3.42)

where TI;,, . are the known boundary functions,
General solution of the system (3.42) can be
presented in the form

TJ

Ty (7)) = My 4 [t WIT | (dy, T, >0,
[

s=01,..k+1,

For s=12,..k+] constants v, e R™ should be
determined as follows

V, =2 Gh+0)— 2, (sh-0)

to stitch up the jumps of function z,,, at the points
t=h2h,..(k+1)h . Further, set vy=-z,,(0).
Finally, we should cellect in the right-hand part of

(3.1) all boundary functions of the power order
£k+2

* * *
Tk 42,00 T, 0mes gz k41
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and put

Tck+2..r =- In;ﬂ'Z.x(u‘) dl‘l" t.v > 0’

5

nk+2,.\' == jn:+2u\' (M) dp” T > 0.

t.\

The present approach allows to determine an
approximate solution x.,z. in the form (2.5), (2.6).
Moreover,

d
T"; =[x %t —h),2) +r(1,8), (3.43)
dz.
£~ 0 =800, 1 (1= h).2) +R(tE), (3.44)
and for some C > 0, gj > 0 the estimates
-1-N
max|r(r,e)e™ <C, (3.45)
-1-N &
max |R(r.e)|eN <C, (3.46)

»

where C is independent of £e(0,¢,], can be easy
proved.

4. Estimate of Remainder Terms

Toestimate x — x.,z— 2, let us introduce the new
variables

4.1

U=X—X, V=2~ Z4.
Then for u, v we get a new Cauchy problem

% = f@ +u,x(—h)+ult—h), 2 +V) +7(1,€),(4.2)

£ = gx (1= H) (1= )2 +0) + RO, @

u(®)=0 (-h<rs, v0)=0. 4.4
Qur purpose is to prove existence of such a
constants C > 0, gy > 0, that for all £€(0,g,] an
estimate

H“(I’E)HC[_;.,H + Hu(t’e)"(;[o,]'] = C£N+l (4~5)

V.V. Strygin

holds. By linearization the system (4.2), (4.3) at the
point

x=u(®) € C[-h,T], z=zo(t)+Tgy(T,) € C[O,T]

we obtain a new nonlinear system

% = Al o)+ Bt o)t — )+ L{t, T+

+ G, U{t—h),0,1,1,,8), (4.6)
dv

e:i—t-:co,ro)wb(t,ro)u(t—h)+M(t,ro)v+

+ 4 (u,u(t — h), 0, 8,7, ), 4.7)

g=f(x*+u,x*(t—h)+u(t—h),u+z*)_‘i‘;* -

=S Cgotto =),z + T ot~ £, ot 1y~ F), 2 + Hoo el — ) —
— [ gttt = h), 2o + Tl 0+ (), . (48)

#=glx tu,x.(@—h)+uit—h),v+ Z,)_eﬁdz;t_

— 8, Cugsug(t—h), 2y + T u— (..}, (4.9
where by (...) we denote the terms of the second
order with respect {0 w, v,

It is casy to see the nonlinear functions g, #
possess the two principal properties.

i} There exist such C > 0, g3 > 0 that for all
£€(0,e4]

[60.0.0.2,75,)| 4.7, +#(0.0.0,8, T Y|y, S CEY;

i) for any A > 0 there exist such § > 0, g > 0
that for alt

sl

the incqualities

s | [y [l o, | <8, 0<e<g,

»

|Gty 0, (= 1),0,,1, T, €) — Gotg iy ( — ) 03 1, T5,8))| qor S

< A("ul i, ||C[—h,T] + "vl - U2|IC[0,T])’ (4 10)

[ 2 = 0,1, T )= Attty =R 00,0, T, )
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s A(“"l - u2”c[_i;,r] + ”Ul _UZHC[o,T])’ 4.11)

are valid.
Let A£(t,5,e) be Cauchy matrix for time-delay
system

% = AU, To)u+ B(, T )ult—h), s<t<T,

with

0,r<s,

I, t=s.

K(t,s,8) ={

Denote by G the triangle
Gy ={(t,)0<s<e<T},
and let

K (t,5,€),0,5)€G,,

Kolt.5:8) ={ 0, 5)eG,

Finally, let U (1,s,e) (0<s<t=<T) beafundamental
matrix for singularly perturbed system

di
e—=M(,1,), s<t<T,
7 (t,7)

As it is shown [2], the cstimate

lU,s.e)

| <Cexp(—u(t~5)/€) (C>0, u>0, 0Ss3<s<T)

(4.12)
is true, where C, p are independent of (t.5)€G,,
ee(0,g,].

If

Col-h.T1= e C({~h,T],R") with u=0~h<1<0},
Col0,T]={ueC([0,T1,R™) with (0)=0},

then the Cauchy problem (4.6), (4.7), (4.4) is
equivalent to the integral system of the equations

u=[oKo(t,5,8)L(p, p/EP(p)+
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+Gu(p)u(p~-h),p,pleldp (-h<t<T) (4.13)

1
v=-—
£
+H (u(s),u(s — h),(s),s,5/€))ds
(0<t<T), ueCyl-hT], veC,0,T].

[UG,5,0[C(s, 5/ €)u(s) + Dis,s/ (s — hy+
0

(4.14)

To analyze a problem (4.13), (4.14), first transform
equation (4.14). Taking into account we have

u(s ~h)= 3K (s—h, p,e){L(p, p/ eN(p)+

+G(p).u(p—h),p,p/e)eldp se[0,T].  (4.15)

Therefore, substituting (4.13), (4.15) into (4.14) we
obtain

v= é;{iU(:,s,E){C(s,SIS) + &, (s, p,e)L(p,plE)+
+D(s,5/e)Ky(s—h, p,€)L(p, p/e) Y p)dpds +

+ ézzU(I,S,E)ko(S,p,E)C(s,s/E)x
xG(u(p)u(p-h),v(p), p,p/ e)dpds +

+ %jU(r,s,s) T+ A (s) (s — A8, 5,5/ €) ds.
(0]

Changing the integration order in the first integral,
we have

v= é“U(r,s,E){C(s,s/E)+/L’O(s,p,E)L(p,p/E)+
Op

+D{s,5/ €)Xy (s —h, p,e)L{ p, p/ ) ¥ds W p)dp + Q(u,v,£),
: (4.16)

where Q are nonlinear terms. It is casy to verify
that due to estimate (4.12), the kernel

K, p,e) =éj Utt,5,.eHC(s,s/ )+ Ky (s, p.e)Lip, p/ £) s,
n

is a sufficiently small number,
Hence, equation (4.16) can be rewritten in the
form '

V=14 NP dp+ Q. v.8), @.17)
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and for u from (4.13) we have

U= jA{“ @, p.eY(p)dp + P(u,0,8) |
((34.18)

where

K7 (1, p.€)= Ky (s, p.€)L(p.p/e).

It is extremely important to emphasize that Q and P
arc subjected the properties i), ii).
At last, introduce two nonlincar operators

S{u,v,e) =jk'(r,p,e)u(p)dp+ Q(u,v,8)
4]

W, v,€)=[ £ (1, p.eY(p)dp+ P, v,6)
0
ueCy[-h,T], veC,y[0,T}.

Obviously,

5(0,0,8) = 0(e"*).. W(0,0,8) = (e™*}. 4.19

Therefore the successive approximations

u, = $(0,0,€), v, =W (0,0,8),
u2 = S(ul,’U, ,8), U2 =W(u] yUI 'E)s

uy = 8{(u,,0,,8), vy =W(u,,v,,£),

converge to some u* € Cy[-h,T], v €C,[0,T] and,
in addition,

<CreN4, [

b e, sCleM,

where C* is independent of & (0,g,].
Thus, we prove the following assertion.

Theorem 4.1. Under assumptions 1-4 there
exist such positive numbers €,>0, C,>0 that for
all £€(0,e,] Cauchy problem (2.1})-(2.4) has a
unigue solution

x=x,+u'(t,e), z=z,.+V'(2,8),

V.V. Strygin

moreover, estimates (4.5) are true.

Remark 5.1. The estimates (4.5) will be valid, if
in the expansion {2.5) to omitl the sum

0T+ My (T o Ry 4 (Ty)

5. Conclusions

A singular perturbations theory extends the
sphere of influence the last four decades. A number
of science fields as biology, chemical kinetics, control
theory widcly use this theory. Due to new results on
boundary functions for partial equations the singular
theory has spread among the great number of the the
engineering problems. But one domain remains still
unnoticed. It is the singular perturbed delay- time
systems which plays imporiant role in the control
theory. We try to fill this gap. So, presented paper
deals with singularly perturbed systems with one time-
delay A. The asymptotical expansions of solutions of
Cauchy problem of order N uniformly bounded with
respect to t €[—A,T] and € € (0,e,] arc found. It turns
out these expansions contain the new additional
boundary functions in the neighborhoods of 7= A,
2h, ... , Nh. The approach presented is the
generalization of the well known method proposed
by A.B. Vasileva [2,3] and coinsides with it for
ordinary differential cquations. The submitted
method can be used for a number of problems of
control theory, combustion in rocket motors [9],
chemical reactors {11] et al.

Acknowledgments, The author gratefully acknowledge Prof.
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