УДК 517.982.27

ОБ ИНТЕРПОЛЯЦИИ В ПРОСТРАНСТВАХ ВЕКТОРНОЗНАЧНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В.И. Овчинников

Воронежский государственный университет

В работе рассматривается задача об описании интерполяционных пространств в терминах векторнозначных последовательностей в случае пар функциональных решеток. Оказывается, что никакие другие пространства E, кроме пространств, полученных конструкцией Кальдерона-Лозановского $E = \varphi(E_0, E_1)$, не порождают интерполяционных пространств вида $l_p(E)$ между $l_p(E_0)$ и $l_p(E_1)$ сразу для всех p из некоторого интервала.

Если некоторое пространство E интерполяционно между банаховыми пространствами E_0 и E_1 , то совсем необязательно пространство $l_p(E)$ будет интерполяционным между $l_p(E_0)$ и $l_p(E_1)$ при каком-либо $1 \le p \le \infty$ или при всех таких p. Я.Петре еще в работе [1] поставил задачу об описании интерполяционных пространств E, которые порождают интерполяционные пространства $l_p(E)$. До сих пор не решена задача о построении интерполяционной конструкции (функтора) F с произвольной характеристической функцией, которая удовлетворяла бы условию

$$F(l_{p}(E_{0}), l_{p}(E_{1})) = l_{p}(F(E_{0}, E_{1}))$$
(1)

для любой пары банаховых пространств $\{E_0, E_1\}$ и любого $1 \le p \le \infty$. Заметим, что второй комплексный метод Кальдерона удовлетворяет условиям (1) при всех $1 \le p \le \infty$, но его характеристическая функция всего лишь степенная.

Напомним, что функция $\varphi(s,t)$ двух положительных переменных *s* и *t* называется интерполяционной функцией, если она возрастает по *s* и *t*, и $\lambda\varphi(s,t) = \varphi(\lambda s, \lambda t)$ для $\lambda > 0$.

В работе [2] были введены интерполяционные конструкции $\varphi_l(E_0, E_1)$ и $\varphi_u(E_0, E_1)$, где φ интерполяционная функция, которые с самого начала предназначались для решения задачи Петре, но решали ее не вполне.

В случае пар функциональных решеток ситуация значительно упрощается, поскольку в этом случае конструкции $\varphi_l(E_0, E_1)$ и $\varphi_u(E_0, E_1)$ сводятся к конструкции Кальдерона-Лозановского

$$\varphi(E_0, E_1) = \{x : |x| = \varphi(|x_0|, |x_1|) \} \text{ ode } x_0 \in E_0, x_1 \in E_1\}$$

при этом $\varphi(l_p(E_0), l_p(E_1)) = l_p(\varphi(E_0, E_1))$ для любого $1 \le p \le \infty$. (Заметим, что мы предполагаем, следуя [3], что функциональная решетка по определению порядково полна.)

Цель настоящей работы — это исследование того, когда пространство вида $E = \varphi(E_0, E_1)$ является единственным интерполяционным пространством между E_0 и E_1 , порождающим интерполяционные пространства $l_p(E)$ между $l_p(E_0)$ и $l_n(E_1)$ для некоторого набора индексов p.

Без дополнительных пояснений мы будем использовать основные факты и стандартные обозначения теории интерполяции линейных операторов (см. [4] и [5]).

В работе [5] для любого промежуточного пространства *E* между банаховыми пространствами E_0 и E_1 было введено понятие верхнего $\overline{\Psi}_E(s,t)$ и нижнего $\underline{\Psi}_E(s,t)$ типа. По определению это функции

$$\overline{\Psi}_{E}(s,t) = \sup_{\|x\|_{E_{0}} \le s, \|x\|_{E^{1}} \le t} \|x\|_{E},$$

$$\underline{\Psi}_{E}(s,t) = \inf_{f \in (E_{0}+E_{1})^{*}} \inf_{\|f\|_{E_{0}^{*}} \le 1/s} \frac{1}{\|f\|_{E^{*}} \le 1/t} \frac{1}{\|f\|_{E^{*}}}.$$

Если пространство *E* интерполяционно между E_0 и E_1 , то $\Psi_E(s,t) \le C \overline{\Psi}_E(s,t)$ для некоторой константы *C*. Для многих пар, которые называются спектрально полными, эти функции эквивалентны для любого интерполяционного пространства *E*.

Лемма 1. Если пространство $l_1(E)$ интерполяционно между $l_1(E_0)$ и $l_1(E_1)$, то $E \subset \varphi_u(E_0, E_1)$, где $\varphi^*(s,t) = \overline{\psi}_E(s,t)$ - верхний тип пространства *E* в паре $\overline{E} = \{E_0, E_1\}$, а $\varphi^*(s,t) = \frac{1}{\varphi(1/s, 1/t)}$. Доказательство. Пусть $\{\sigma_n^0\}$ и $\{\sigma_n^1\}$ произ-

Доказательство. Пусть $\{\sigma_n^0\}$ и $\{\sigma_n^1\}$ произвольные положительные последовательности, которые мы будем называть весами.

Рассмотрим произвольную пару $\left\{ l_1(\sigma^0) l_1(\sigma^1) \right\}$ и оператор с нормой, не превосходящей единицы $T: \overline{E} \to \{l_1(\sigma^0), l_1(\sigma^1)\}$, задаваемый последовательностью функционалов f_n , то есть

$$\sum_{n=-\infty}^{\infty} \sigma_n^0 / f_n(x) / \le \|x\|_{E_0} , \quad \sum_{n=-\infty}^{\infty} \sigma_n^1 / f_n(x) / \le \|x\|_{E_1} .$$

Поставим ему в соответствие отображение U_T из пары $\overline{E} = \{E_0, E_1\}$ в пару $\{l_1(E_0), l_1(E_1)\}$ по формуле $U_T(x) = \{f_n(x)x_n\}_{-\infty}^{\infty}$, где $x_n \in \Delta \overline{E} = E_0 \cap E_1$ и $\|x_n\|_{E_0} \leq \sigma_n^0$, $\|x_n\|_{E_1} \leq \sigma_n^1$. Очевидно, что $\|U_T\|_{E_0 \to l_1(E_0)} \leq 1$ и

Очевидно, что $||U_T||_{E_0 \to l_1(E_0)} \le 1$ и $||U_T||_{E_1 \to l_1(E_1)} \le 1$, поэтому в силу интерполяционности $l_1(E)$ получим $U_T : E \to l_1(E)$, то есть

$$\sum_{n=-\infty}^{\infty} |f_n(x)| \le \|x_n\|_E \le C \|x\|_E$$

при любом выборе х_и. Следовательно,

$$\sum_{n=-\infty}^{\infty} |f_n(x)| \sup_{\|x_n\|_{E_0} \le \sigma_n^0, \|x_n\|_{E_1} \le \sigma_n^1} \|x_n\|_E \le C \|x\|_E$$

то есть

$$\sum_{n=-\infty}^{\infty}/f_n(x)/\overline{\Psi}_E(\sigma_n^0,\sigma_n^1) \leq C \|x\|_E.$$

По определению пространства $\varphi_u(E_0, E_1)$ отсюда следует, что $\|x\|_{\varphi_u(E_0, E_1)} \leq C \|x\|_E$, где $\varphi^*(s, t) = \overline{\psi}_E(s, t)$. Лемма доказана.

Лемма 2. Если пространство $l_{\infty}(E)$ интерполяционно между $l_{\infty}(E_0)$ и $l_{\infty}(E_1)$, то $\varphi_l(E_0, E_1) \subset E$, где $\varphi^*(s, t) = \underline{\Psi}_E(s, t)$ - нижний тип пространства E в паре $\overline{E} = \{E_0, E_1\}$.

Доказательство. Пусть $x \in \varphi_l(E_0, E_1)$, тогда по определению (см. [2]) для некоторых весов ω^0, ω^1 и оператора $T: \{ l_{\omega}(\omega^0), l_{\omega}(\omega^1) \} \rightarrow \overline{E}$ имеем $x = T(\alpha_{\varphi}(\omega^0, \omega^1)),$ где $\alpha_{\varphi}(\omega^0, \omega^1) = \{\varphi(1/\omega_n^0, 1/\omega_n^1)\}.$ По определению нижнего типа пространства *Е* можно подобрать функционалы $f_n \in (E_0 + E_1)^*$ и элементы x_n так, чтобы $\varphi(1/\omega^0, 1/\omega^1) = (1-\varepsilon)f_n(x_n)$, причем $\omega_n^0 ||f_n||_{E_0^*} \le 1$, $\omega_n^1 ||f_n||_{E_1^*} \le 1$, $||x_n||_E \le 1$.

Тогда отображение $V: \{x_n\} \rightarrow \{f_n(x_n)\}$ действует из $l_{\infty}(E_0)$ в $l_{\infty}(\omega^0)$ и из $l_{\infty}(E_1)$ в $l_{\infty}(\omega^1)$.

Поэтому оператор $TV:\{l_{\infty}(E_0), l_{\infty}(E_1)\} \rightarrow \{E_0, E_1\}$ и $TV(\{x_n\}) = (1-\varepsilon)x$. Поскольку $l_{\infty}(E)$ - интерполяционно между $l_{\infty}(E_0)$ и $l_{\infty}(E_1)$, получим $x \in E$. Лемма доказана.

Пусть пара $\overline{E} = \{E_0, E_1\}$ спектрально полна, тогда верхний и нижний типы пространства *E* совпадают с точностью до эквивалентности. Обозначим $\varphi(s,t) = \overline{\psi}_E^*(s,t) \quad \underline{\psi}_E^*(s,t)$, тогда получим следующее следствие Лемм 1 и 2.

Следствие 1. Если для некоторого промежуточного пространства E, пространство $l_1(E)$ интерполяционно между $l_1(E_0)$ и $l_1(E_1)$, а $l_{\infty}(E)$ интерполяционно между $l_{\infty}(E_0)$ и $l_{\infty}(E_1)$, то для некоторой интерполяционной функции φ оказывается, что $\varphi_l(E_0, E_1) \subset E \subset \varphi_u(E_0, E_1)$.

Если пара \overline{E} - ручная, т.е. $\varphi_l(E_0, E_1) = \varphi_u(E_0, E_1)$, в частности, если \overline{E} - пара функциональных решеток, то получается полное описание пространства *E*.

Следствие 2. Если пара \overline{E} - ручная и спектрально полная, то любое пространство E такое, что $l_1(E)$ интерполяционно между $l_1(E_0)$ и $l_1(E_1)$, а $l_{\infty}(E)$ интерполяционно между $l_{\infty}(E_0)$ и $l_{\infty}(E_1)$, имеет вид $E = \varphi_l(E_0, E_1) = \varphi_u(E_0, E_1)$ для некоторой интерполяционной функции φ .

Таким образом, для пары функциональных решеток \overline{E} то, что $l_1(E)$ интерполяционно между $l_1(E_0)$ и $l_1(E_1)$, а $l_{\infty}(E)$ интерполяционно между $l_{\infty}(E_0)$ и $l_{\infty}(E_1)$, эквивалентно тому, что $l_p(E)$ интерполяционно между $l_p(E_0)$ и $l_p(E_1)$ для любого $p \in [1, \infty]$.

Оказывается, что в случае если на пространства E_0 и E_1 наложены дополнительные условия, то отрезок $[1,\infty]$ можно сузить.

Теорема 2. Пусть *E* такое интерполяционное пространство между $L_{p_0}(0,\infty)$ и $L_{p_1}(0,\infty)$, где $1 \le p_0 \le p_1 < \infty$, что $l_{p_0}(E)$ интерполяционно между $l_{p_0}(L_{p_0})$ и $l_{p_0}(L_{p_1})$, а $l_{p_1}(E)$ интерполяционно между $l_{p_1}(L_{p_0})$ и $l_{p_1}(L_{p_1})$, тогда *E* совпадает с пространством Орлича $\varphi^*(L_{p_o}, L_{p_1})$.

ВЕСТНИК ВГУ, Серия физика, математика, 2000, в. 1

Доказательство. В силу интерполяционности *E* мы можем эквивалентно перенормировать его таким образом, что *E* будет симметричным пространством. Обозначим через $\varphi(s,t)$ тип пространства *E* между L_{p_0} и L_{p_1} , который, в силу Леммы 2 из [6], находится из равенства $\varphi_E(t) = \varphi(t^{1/p_o}, t^{1/p_1})$, где $\varphi_E(t)$ - фундаментальная функция симметричного пространства *E*.

Рассмотрим произвольные веса { λ_n }, { μ_n } и положительный оператор *T* с нормой не превосходящей единицы, действующий из { $L_1, L_{p_1/p_0}$ } в { $l_1(\lambda^{p_0}), l_1(\mu^{p_0})$ }. Тогда сублинейный оператор $U(x) = (T(|x|^{p_0}))^{1/p_0}$ с единичной нормой действует из L_{p_1} в $l_{p_0}(\lambda)$ и из L_{p_0} в $l_{p_0}(\mu)$.

Зафиксируем элемент $a \in E$. Тогда по теореме Канторовича-Банаха (см.[7]) найдется линейный оператор S такой, что S(|a|) = U(a) и $|S(x)| \leq U(x)$ для всех $x \in L_{p_0} + L_{p_1}$. Оператор S действует из пары $\{L_{p_0}, L_{p_1}\}$ в пару $\{l_{p_0}(\lambda), l_{p_0}(\mu)\}$ с нормой не превосходящей единицы.

Обозначим f_n линейные функционалы, которые задают этот оператор S, и рассмотрим линейный оператор $W(x) = \{f_n(x)x_n\}_{-\infty}^{\infty}$, где $||x_n||_{L_{p_0}} \leq \mu_n$, $||x_n||_{L_{p_1}} \leq \lambda_n$. Тогда $W: \{L_{p_0}, L_{p_1}\} \rightarrow \{l_{p_0}(L_{p_0}), l_{p_0}(L_{p_1})\}$, и поэтому W ограниченно действует из E в $l_{p_0}(E)$, и

$$\left(\sum_{n=-\infty}^{\infty} \left(f_n(x) / \left\| x_n \right\|_E \right)^{p_0} \right)^{1/p_0} \le C \left\| x \right\|_E$$

независимо от выбора последовательности x_n.

Взяв supremum по всем $\{x_n\}$ с выбранными ограничениями, получим

$$\left(\sum_{n=-\infty}^{\infty} \left(f_n(x) / \varphi(\lambda_n, \mu_n) \right)^{p_0} \right)^{1/p_0} \le C \|x\|_{E}.$$

Поэтому S(|a|) $\in l_{p_0}(\varphi(\lambda,\mu))$, и $U(a) \in l_{p_0}(\varphi(\lambda,\mu))$, и $(T(|a|^{p_0}))^{l/p_0} \in l_{p_0}(\varphi(\lambda,\mu))$. Значит $(T(|a|^{p_0})) \in l_1(\varphi^{p_0}(\lambda,\mu))$ и $\|T(|a|^{p_0})\|_{l_1(\varphi^{p_0}(\lambda,\mu))} \leq \|a\|_E^{p_0}$. Поскольку T - про-

ВЕСТНИК ВГУ, Серия физика, математика, 2000, в. 1

извольный положительный оператор с единичной нормой, действующий из $\{L_1, L_{p_1/p_0}\}$ в пару $\{l_1(\lambda), l_1(\mu)\}$, то так же, как и в Теореме 3 из [4], получим

$$||a|^{p_0}||_{\varphi^{*(p_0)}(L_1,L_{p_1/p_0})} \leq C \sup_T T ||T(|a||^{p_0})||_{l_1(\varphi^{p_0}(\lambda,\mu))},$$

где $\phi^{\{p\}}(s,t)$ обозначает функцию $\phi^{p}(s^{1/p},t^{1/p})$.

По определению конструкции Кальдерона-Лозановского включение $|a|^{p_0} \in \varphi^{*\{p_0\}}(L_1, L_{p_1/p_0})$ эквивалентно включению $|a| \in \varphi^*(L_{p_0}, L_{p_1})$. Таким образом $E \subset \varphi^*(L_{p_0}, L_{p_1})$.

Докажем теперь обратное вложение. Если $p_1 = \infty$, то по Лемме 2 $\varphi^*(L_{p_0}, L_{p_1}) = \varphi^*_i(L_{p_0}, L_{p_1}) \subset E$ и утверждение доказано. Таким образом мы будем считать, что $1 \le p_0 < p_1 < \infty$. Обозначим через q дополнительные показатели: $1/q_0 + 1/p_0 = 1$, $1/q_1 + 1/p_1 = 1$.

Будем предполагать, что пересечение $L_{p_0} \cap L_{p_1}$ плотно в *E*, то есть $E^0 = E$. В противном случае рассмотрим E^0 вместо *E*. Для него, как нетрудно видеть, условия теоремы (при $p_0 < p_1 < \infty$) выполняются.

Для любых весов α и β и любого линейного оператора $T: \{l_{p_1}(\alpha), l_{p_1}(\beta)\} \rightarrow \{L_{p_0}, L_{p_1}\}$ мы будем иметь $T: l_{p_1}(\varphi(\alpha, \beta)) \rightarrow E$. В самом деле, любой такой оператор порождает оператор $V_T: \{l_{p_1}(L_{p_0}), l_{p_1}(L_{p_1})\} \rightarrow \{L_{p_0}, L_{p_1}\}$, который является суперпозицией T и оператора $V: \{x_n\} \rightarrow \{f_n(x_n)\}$, где $\|f_n\|_{(L_{p_0})^*} = \alpha_n$, $\|f_n\|_{(L_{p_1})^*} = \beta_n$. По условию $V_T: l_{p_1}(E) \rightarrow E$, отсюда, если перебрать все операторы V, порожденные функционалами f_n , легко получить, что $T: l_{p_1}(\varphi(\alpha, \beta)) \rightarrow E$.

Для сопряженного оператора $T^*: \{L_{q_0}, L_{q_1}\} \rightarrow \{l_{q_1}(1/\alpha), l_{q_1}(1/\beta)\}$ соответственно получим, что $T^*: E^* \rightarrow l_{q_1}(\varphi^*(1/\alpha, 1/\beta))$. Заметим, что оператор $S: \{L_{q_0}, L_{q_1}\} \rightarrow \{l_{q_1}(1/\alpha), l_{q_1}(1/\beta)\}$ будет сопряженным к некоторому оператору T тогда и только тогда, когда порождающие его функционалы имеют интегральный вид.

Покажем, что $E^* \subset \varphi(L_{q_0}, L_{q_1})$. Пусть $a \in E^*$, рассмотрим произвольный положительный оператор P с нормой не превосходящей единицы, действующий из $\{L_{q_0/q_1}, L_1\}$ в пару весовых про-

странств $\{l_1(1/\alpha^{q_1}), l_1(1/\beta^{q_1})\}$. Дополнительно предположим, что функционалы, определяющие этот оператор, задаются функциями из $L_{\infty} \cap L_{q_0/(q_0-q_1)}$.

Оператор $Q(x) = (P(/x/q_1))^{1/q_1}$ будет сублинейным и отображает $\{L_{q_0}, L_{q_1}\}$ в $\{l_1(1/\alpha^{q_1}), l_1(1/\beta^{q_1})\}$. По теореме Хана-Банаха-Канторовича найдется линейный оператор T такой, что T(a)=Q(a) и $/T(x) \leq Q/(x)/$.

Определяющие его функционалы будут непрерывны относительно полунорм вида

$$p_n(x) = \left(\int_0^\infty y_n(s) | x(s)|^{q_1} ds\right)^{1/q_1}$$

поэтому эти функционалы имеют интегральный вид. Поэтому для такого оператора $T: E^* \to l_{q_1} \left(\varphi^* (1/\alpha, 1/\beta) \right)$. Поскольку $a \in E^*$, то $T(a) \in l_{q_1} \left(\varphi^* (1/\alpha, 1/\beta) \right)$ и, следовательно, $P(|a|^{q_1}) \in l_1(\varphi^{*q_1}(1/\alpha, 1/\beta))$ и

$$\left\|P\left(\ |a|^{q_{1}}\right)\right\|_{l_{1}\left(\phi^{*_{q_{1}}}(1/\alpha,1/\beta)\right)} = \left\|P\left(\ |a|^{q_{1}}\right)\right\|_{l_{1}\left(\phi^{\{q_{1}\}^{*}}(1/\alpha^{q_{1}},1/\beta^{q_{1}})\right)} \le C$$

независимо от выбора оператора Р.

Следовательно, как и в Теореме 3 из [4], получим $|a|^{q_1} \in \varphi^{\{q_1\}}(L_{q_0/q_1}, L_1)$. То есть $|a| \in \varphi(L_{q_0}, L_{q_1})$. Таким образом вложение $E^* \subset \varphi(L_{q_0}, L_{q_1})$ доказано.

Ким образом вложение $\mathcal{L} = (-q_0)^{-q_1}, q_1$ Следовательно, $\phi^*(L_{p_0}, L_{p_1}) \subset E''$. Поскольку $1 \le p_0 < p_1 < \infty$, пространство Орлича $\phi^*(L_{p_0}, L_{p_1})$ совпадает с замыканием $L_1 \cap L_{\infty}$ в $\phi^*(L_{p_0}, L_{p_1})$. Поэтому $\phi^*(L_{p_0}, L_{p_1}) \subset (E'')^0 = E^0$. Таким образом

$$\phi^*(L_{p_0}, L_{p_1}) \subset E^0 \subset \phi^*(L_{p_0}, L_{p_1}).$$

Теорема доказана.

Эта теорема допускает следующее распространение на пространства Орлича.

Следствие 3. Если пространство $l_{p_0}(E)$ интерполяционно между $l_{p_0}(L_{N_0}^*)$ и $l_{p_0}(L_{N_1}^*)$ и $l_{p_1}(E)$ интерполяционно между $l_{p_1}(L_{N_0}^*)$ и $l_{p_1}(L_{N_1}^*)$, где пространства Орлича $L_{N_0}^*$ и $L_{N_1}^*$ p_0 -выпуклы и p_1 -вогнуты, то $E = \varphi(L_{N_0}^*, L_{N_1}^*)$ для некоторой интерполяционной функции φ .

Доказательство. Как показано в [8], условие p_0 -выпуклости и p_1 -вогнутости для пространств Орлича $L_{N_0}^*$ и $L_{N_1}^*$ означает, что найдутся интерполяционные функции ϕ_0 и ϕ_1 такие, что $L_{N_0}^* = \phi_0(L_{p_0}, L_{p_1}), L_{N_1}^* = \phi_1(L_{p_0}, L_{p_1}).$ Поэтому в силу Теоремы 1 $l_{p_0}(E)$ будет интерполяционно между $l_{p_0}(L_{p_0})$ и $l_{p_0}(L_{p_0})$ и $l_{p_1}(E)$ будет интерполяционно между $l_{p_1}(L_{p_0})$ и $l_{p_1}(L_{p_0})$. Тогда по Теореме 2 пространство *E* является пространством Орлича. Но любое интерполяционное пространство Орлича между пространствами Орлича имеет вид $L_N^* = \phi(L_{N_0}^*, L_{N_1}^*)$, что и требовалось доказать.

СПИСОК ЛИТЕРАТУРЫ

1. Peetre J. Sur l'utilisation des suites inconditionellement sommable des espaces d'interpolation // Rend.Semin.mat.Univ.Padova. 1971. V.46. P.173—190.

2. Овчинников В.И. Интерполяционные теоремы, вытекающие из неравенства Гротендика // Функц. анализ и его прил. 1976. Т.10. В.4. С.45-54.

3. Lindenstrauss J., Tsafriri J. Classical Banach Spaces II. Berlin-Heidelberg-New York: Springer-Verlag, 1978.

4. Ovchinnikov V.I. The method of orbits in interpolation theory. Mathematical Reports, V.1, part 2. Chur: Harwood Academic Pbl., 1984.

5. Дмитриев В.И., Крейн С.Г., Овчинников В.И. Основы теории интерполяции линейных операторов // В сб. «Геометрия линейных пространств и теория операторов». Ярославль, 1977. С.31-74.

6. Берколайко М.З., Овчинников В.И. Неравенства для целых функций экспоненциального типа в симметричных пространствах // Тр. Мат. ин-та АН СССР. 1983. Т.161. С.3—17.

7. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: «Наука», 1977.

8. Бухвалов А.В. Теоремы об интерполяции операторов в пространствах со смешанной нормой // Качественные и приближенные методы исследования операторных уравнений. Ярославль: Изд-во Ярослав. гос. ун-та, 1984. С.90-105.