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DIRAC-COULOMB PROBLEM
IN THE SECOND-ORDER DIRAC EQUATION APPROACH

N.L. Manakov, S.A. Zapriagaev

Voronezh State University

The detailed analysis of the relativistic Coulomb problem is presented on the basis of the second-order
Dirac equation. For an electron in the Coutomb potential of a pointlike nucleous, the different sets of
fundamental solutions are investigated both for linear and squared Dirac eguations. A number of
representations are discussed for the relativistic Coulomb Green's function and wavefunctions of bound
and continuum states. The explicit form of the reduced Coulomb Green’s function is presented for an arbitrary
bound state of the relativistic efectron. The Sturmian expansions of Green’s function for linear and squared
Dirac equations are especially analysed. The advantages of the second-order Dirac equation approach are
demonstrated to connect all known analytical results for both, relativistic and nonrelativistic Coulomb
Green functions and wavefunctions. It is shown that all results for the linear Coulomb-Dirac equation follow
from the simple algebra by the second-order Dirac equation solution.

1. Introduction

An impressive progress, achieved in the last
decade in quantum electrodynamics calculations of
muylticharged ion energy levels (sec Mohr ef af 1998
and references cited hercin), was caused mostly by
developing the Furry representation methods (Furry
1951, Schweber 1961). In this approach the
perturbation theory on both, electron-electron and
electron-vacuum interactions is developed on the
basis of the complete set of electron states in an
atomic potential V. In many cases the Coulomb
potential of a pointlike nucleus with the atomic
number Z is a good approximation. An analysis of
various expressions for the Coulomb wavefunctions,
and especially for the Coulomb Green function, is
theimportant problem, because these objects are the
basis of the quantum electrodynamics calculations
in the relativistic theory of multicharged ions and
heavy atoms (see, ¢. g., Zapriagacv ef al 1985,
Labzowsky et al 1993, Borovskii et al 1995).

In contrast to the free clectron case, the
momentum representation for the electron’s
propagator in an external field depends upon the
momentumn p and p” separately, but does not only
from the momentum transfer p— p”, In this reason,
the momentum representation is  inefficient in
quantum electrodynamics of the bound states, and
the coordinate representation for propagators is
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more convenient. At present time the closed form
of the relativistic Coulomb Green function Gz is
unknown, therefore the partial expansions of G,
r’yinterms of the states with definite total angular
momentum j, its projection my and parity p=% 1
are used,

Apparently, the Dirac-Coulomb Green
function Gg(r, r') in quantum electrodynamics
calculations  was used first by Wichmann and
Kroll (1956). In this work the regular method to
construct the fundamental set of solutions for Dirac-
Coulomb cquation was used. The kind of these
solutions was similar to the standard one offered by
Gordon (1927). The complicated dependence of
Gp(r, r’) on the radial variables r and r* by means of
Whittaker functions of variables ry, and r< [rs (<)
is larger (smalier) of » and 7] didn’t enable to apply
it widely in analytical calculations. Martin and
Glauber (1958) suggested the other approach to take
into account the Coulomb ficld in virtual states of a
relativistic electron - the method of the Green
function for the sccond-order (or squared) Dirac
equation, G g(E; r.x") (sec (27) below). In this
approach the Dirac-Coulomb Green function
GE(r.1”) is obtained from G g r,r’) as a result of the
action of a linear differential operator K (so-called
«squared operator») on G rr”). Hostler  (1964)
has performed a gencral analysis of the Coulomb
Green function  theory and employed a special
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integral representation for the product of Whittaker
functions to receive the explicit expression for the
radial part of G g{ r.,r"), symmetric in r and ", The
function G(rr’) was used successfully by Brown
et al (1974) to study somc problems of the vacuum
polarization by a strong Coulomb field. At the
same time, Mohr {1974) has carried out first the
nonperturbative in {(aZ) [a is the finc structure
constant] numerical calculation of the selfenergy
correction ~a for hydrogenlike (H-) ions using the
Coulomb Green function Ggr, r’). This function
was studied in details performing the exact
calculations of vacuum polarization cffects in a
strong Coulomb field (Manakov et «/ 1989,
Fainshtein e a/ 1990). Swainson and Drake (1991)
obtained another form of Gg{r, r’} using a special
lincar transformation for the sclutions of Dirac
equation. This form of G was used particularly
tor the recalculation of Mohr (1974) result with
higher accuracy (Pachucki, 1993).

Besides the quantum clectrodynamics
applications, the formalism of relativistic Coulomb
Green functions has an important role in the
relativistic quantum mechanics of atomic systems.
To make the analytical calculation of atomic
parameters it is preferable to write Green functions
in a symmetric form with respect to variables
and r”. The well-known expansion of nonrelativistic
Coulomb Green function in terms of the so-called
Sturmian functions (Hostler, 1970) is an example
of such a symmetric form for the Green function.
The radial part of Sturmian functions is cxpressed
in terms of the Lagucrre polynomials. The
complete sets of these polynomials, both for the
relativistic and nonrelativistic cases, were
introduced by Fock (1932), who pointed out the
usefulness of these set of functions for the Coulomb
problem. The symmetric form of Gy r.r’) similar
Lo the nonrelativistic Hostler result was derived for
the first time by Zon ef al (1972) on the basis of
bilincar gencrating function for the Laguerre
polynomials (see also Granovski and Nechet 1974).
This method was used also by Swainson and Drake
(1991). The relativistic Sturmian functions were
introduced first by Manakov et ef (1973) together
with the Sturmian expansion of G g( r.r’) obtained
by the direct solution of the differential equation
for Gg{ r,r’). Later, the expansions of Gg(r,r)in
terms of scrics involved the products of Laguerre
polynomials were obtained both for regular form
of Gg involving Whittaker functions (Zapriagacv
and Manakov 198]) and by direct acting of the
squared operator K on Gg(rr") (Zapriagaev and
Manakov 1976). Recently, slightly modified
comparing with dissused above, expansions of

Gg{ r,r") in terms of Sturmian functions for the
squared Dirac equation (Manakov e a/ 1973) wer
published (Szymanowski et al 1997a, Szmytkowski
1997, 1998, Manakov and Zapriagacv 1997),

The Sturmian-like expansions of Gg and G;
have allowed to receive a number of particular,
analytical results for the jons with high Z (see, e
g., Zapriagacv ef al 1985). The DC clectric and
magnetic field atomic susceptibilities and shiclding
factors of H-likc ions (Manakov al 1974), the
lowest order correlation correction to the atomic
parameters of He-like ions (Zapriagacv et dl
1979,1982) e.f.c. were among them. Besides
analytical calculations, Sturmian expansions of Gy
are effective also in numerical calculations of
relativistic two-photon transitions with the cxact
account of retardation cffects (see, c. g., Manakov
et al 1987, Szymanovski ef al 1997b).

In the present work the complete analysis is
given for the Dirac-Coulomb problem based only
on the second-order Dirac equation. In other words
the direct solution of the linear Dirac equation is
not used at all. Particularly, in the developed
approach the results have the most close form to
the nonrelativistic one. Namely, the regular and
irregular solutions of the Dirac equation arc the
linear combinations of two Whittaker functions, as
i the traditional form (Gordon, 1927; Wichman and
Kroli, 1956), but in this case they have other
parameters. As a result, for the bound-state
wavefunction, a combination of two Laguerre
polynomials ariscs, one of which vanishes in the
nonrelativistic limit and the other one gives the
nonrelativistic wavefunction. The continuum-state
wavcfunctions have also an obvious advantage in
this approach, e. g., well-known {rce-clectron
wavefunctions are obtained naturally in the limit
Z=0. In the second-order Dirac cquation approach
such a structure of Dirac-Coulomb equation solution
is evident, becausce the nonrelativistic limit follows
from the second-order Dirac equation in the most
clegant way (Schweber 1963). The mentioned form
of the Dirac-Coulomb cquation solution may be
especially useful for its @ power scries expansions,
The similar structurc of Dirac-Coulomb
wavcfunctions was received earlier by a number of
authors (see Wong and Hisn-Yang Ych 1982,
Zapriagaev 1987, Swainson and Drake 1991}
Nevertheless, o detailed analysis of the Coulomb
problem (including the sets of fundamental solutions,
Green functions, e.f.c.) on the basis of the squared
Dirac equation was not performed and that is the
major goal of the present paper. A brief description
of key results of this analysis was published recently
(Manakov and Zapriagaev 1997),
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The paper is organized as follows: In Sec. 2 a
bricf review of the second-order Dirac equation
problem is presented. The regular and irregular
solutions of Dirac-Coulomb equation are presented
in Sec. 3 in terms of the squared Dirac equation
solutions. In Sec. 4 various representations of the
Dirac-Coulomb Green function are derived. The
relativistic wavefunctions of bound and continuum
states together with their nonrelativistic limits are
discussed in Scc. 5. The expressions for the reduced
Dirac-Coulomb Green fanction are presented in
Sec. 6.

2. Review of the second-order Dirac-Coulomb
equation

2.1 Regular und irregular solutions. Sturmian
Sunctions

The Dirac equation for the stalionary states of
electron in the Coulomb field of the point charge
Ze is '

DENW(E: {c('y P)+mc +y°(—i—EJ:|‘I’(E;r)=0‘
n

_ 0 I o
Here 9, yarc the Dirac matrices: ¥ = B = 0 -1

Y=BOL=[_O

and the unit matrix, respectively, E is the electron
cnergy, m, is the electron mass. The operator D(E r)
is connceted with the Dirac-Coulomp Hamiltonian
H by the rc]dtlon of D(F r)=pla - E), where
A=ct P+ Bt —Ze i r

In the second-order DleC equation approach
ancw function, ®(E;r), is introduced, instead of W,
by the relation

c
J, where 6 and / denote 2 by 2 Pauli,

Y(E:r)=KD(E,r). 2

Here K is the dimensionless, so-called «bqudred
operator», which differs from the operator D(E:r)
by opposite sign of the electron mass m,:

. 1 o Ze?
K=—2mec2 {c(v-p)ﬂmc2 +v"[—7—Eﬂ. 3)
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JEik)y =Kk -12,1=ik) =

The substitution of (2) into (1), after the standard
transformations with y-matrices, leads to the
second-order Dirac equation, which may be written
in the form suggested by Martin and Glauber (1958)

2 Ay 2 _ 2ol
{ [18 i"£+]|]+gﬁ_£+E nic }}(E; o

ror? r? romet 2l B
4)

Here /= ﬁ_,az(a n)} is the spin-angular operator
(so-called «Johnson's operator»), which inctudes
the well- known Dirac operator £ = —{o-1)h-1.

n=r/r, 1= [rxp] is the orbital momentum
operator, o=e¢’/he is the fine structure constant.
Note, that £ is non-Hermitian operator, but 8 £
is a Hermitian one. It is important that operator

A=A@+1)=A=1/n>—ioz(a-n)-(z ¥
involves all matrix structure of the second-order
Dirac equation (4). After the substitution A — 17/#2
the equation (4) ceincides with the Schradinger
cquation for the nontelativistic Kepler problem. So,
the second-order Dirac equa.tion approach is-the most
straightforward way to receive the nonrclallvmtlc limit
in the Dirac-Coulomb problem.

We shall discuss below bricfly the solution of
(4) with definitc values of total angular momentum
j and its projection j, =m# . The general structure of
this solution was discussed in a number of works (see,
¢. g., Martin and Glauber 1958, Bicdenharn 1962,
Hostler 1964, Brown ef al 1971, Zon et al 1972).

Let k=% 1, + 2 .. be the cigenvalues of operator
A . Ttis more convenient to prescnt & as k=s k, wherc
Kk =| k| and s = sign(k)=% 1. The total angular
momentum j=1+Ac/2 and the orbital momentum
operators are connected with the Dirac operator £
by the relations j2 =h2(/€’2 -1/4) 17 :h%é'(/9+1).
Thus, for fixed &, the quantum numbers j and [ are
i+ (s - 1)2. Due to the
anticommutation between & and (o-n), there is no
commutation of & with £ . On the other hand, due
to the anticommutation between (x-n) and
operators & and B, the operator K=-pf¢
commutes with 2. Moreover, it is clcar f:om the
above definitions thdt[] (c-n) ] i L’J 0.

Thus, the Jhonson’s operator £ commutes with

K, 7 ’-’z and the eigenfunctions ® of these
operators can be constructed using the well-known
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complete set of cigenfunctions for Dirac operator

Bt =hih o), 750)= T I 2, Vi
&)

where u,, is an cigenfunction of the electron spin
operator ho/2, Y, is the spherical harmonic and

im
Cy g .y is the Clebsch-Gordon cocfficient.
Martin and Glauber (1958) and Biedenharn
(1962) derived the spin-angular part, © (m), Qf the
function ®(E;r) in (4) with fixed j and m in an
operator form. In our notations their result is

©4m)= 515 ().
§ = cosh(®/2)~ i -n)sinh (9/2), (®

where ﬁ:[anh"(qz//e), eimd X’f,{" Aarc the
cigenfunctions of operators & (see (5)), J, and of
the matrix 8 simultaneously:

k 0
! =(X”‘} y { . } 0
0 X

Obviously, the cigenvalues of f-matrix on a class of
functions (7) are q=%1. Because functions (7) are
the cigenfunctions of the operator £ with
eigenvalues & = sx, the substitution £ = k in the
operator 5 in (6) leads to the cquivalent form of
@ﬁ’jn):

0t (n)= Sk m)-

a K+A , o
5(k)=w’—21—[l—zs K+)L(a-n):l, (8)

where 5([;) is an operator in the subspace of
functions with the definite k. The parameter A in (8)
is: A=y —(@Z)f .

The functions ®(n) arc the cigenfunctions
of operator £ with two different eigenvalues
£, =sh and each of them is twofeld degenerate in
the sign(g)=* 1. The orthonormalization condition
of these functions is

<5§:’Zl®£‘{}n’ >= q Sq,q' Sk,k' Sm,m’ k3 (9)

where ®@=0"#. The functions o) form th
complete set in the spin-angular space

$ 3 T g0 meY,m)=5n-n),

k=—om=—Kg=1}

The additional factor ¢ in these expressions appeas
as the consequence of identities following from (8)

BE G =S5). OF) =0¥) B =) Sk). (0

The same identity as for S can be oblained for
the operator [, namely ﬁﬁ =[B- )

Obviously, the functions 8(n) can be derived
also as the solution of the eigenvalue problem for
non-Hermitian operator £ :

re=re. an
Choosing(r 9 as the eifenfunctions of operator

K =—B#lsince|Z, £ |=0), we present the equation
(11) in the following matrix form

a(k)xii]
g=
bk )
R —ioz(om)) W |_ X
-iazlo-n) & by} bk |

The last equation yields the sccular equation
for the coefficients a(k), b(k) and eigenvalues £:

alk—L)+iaZb=0
ioZa—(k+LB=0.

s

(12)

Two different cigenvalucs of operator £ can be
found from (12): £, =pA, wherc p=:1. So, four
different eigenfunctions of £ exist at fixed k and m,
and we may write the most general form for these
functions:

NPEYY 0 Je iyt
O =c 3hem = €3 ,
o NI Y —ivk—-Ayxt
iNk-1xt —ivk-Axt
Oz hm =C2 i Gosm =64 R
i+ xk Vi+A gy,

(13)
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where ¢, are normalization constants. The
orthogonality between these functions follows from
(11). It is casy to verify by direct calculations that
the functions 6, (n) are orthogonal only with matrix
B, and the orthonormalization condition is {see (9))

<8 ) = (—1)”‘3 S

T v &K’(Sm.m' 5

Tk ' [Tt km
where the cocfficients ¢ in (13) are equal to /% /[2) ,
and Ima, =0. Note, that the factor (-1)7+! in the
orthonormalization condition for 6; does no problem
in our case because we deal with eigenfunctions of
non-Hermitian operator {see (10)). If we usc the
sign (k) and the additional index p = * 1 to label the
four functions (13) with the fixed phase factors po-,
they may be written in compact form. If ¢, = 0 these
functions are

(S p—
ol __1 (is)2 yfic+ pray

kan I+ ,
P o e

and they are identical to (8) as follows immediately
from (8) using the trivial relation
(wnh” (m)=~x " (n). We will usc below the
cigenfunctions of £ in more convenicnt way for the
applications form

4 kp
ot VB | [,
"2k ips\/E— ok 2k ”EH AT |

(14

These functions coincide with (8) by the relation
6 =™ PV g (") Note, that in our notations the
functions 9,5’;;" are the eigenfunctions of operator K
with cigenvalues K =spx =kp, but not X =sx as
for the ®{") - functions,

For the operators 7 and A = [’([’ +1) we have
Dolr) = 520%), Aelr)=i(i+s)6{r). Thus, the
general solution of equation (4) with definite value
of p, K =kp and m may be written as:

, 1
O (Eir)=—_0u(e:x)8f)m). (15)

where the radial functions ¢, (g,x) satisfy the
standard Whittaker equation
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' 4 x x?

2 g
4 i ““”]gok(e;x)ﬂ. (16)

Here and below, we use the dimensionless units, which
are natural for relativistic Coulomb problem
e=Etmc’, v=aiJi-£? . N=€VZ, x=2riva,,
ay=h*/m? is the Bohr radius.

As a fundamental system of solutions for the
equation (16) we choose the following Whittaker
functions (Erdelyi ez af 1953a)

(P; (g;x):Mn,k-wlz(x); (Pz(ﬁ;x)=WmM‘\,2(x),

which lead to the regular ( @7 ) or irregular ( ®ir) at
origin solutions of cquation (4) in the gap region
—m,e” <E<m,”  Thepoint x = 0is the branch point
for the Whittaker functions, so they are determined
as the single-valued analytical functions of x in a
complex x-plane with the cut along the interval
(~o0,0] of real x-axis, i. c. at |argxj<m. Since
x=2rJ1-¢’/aa, » for a finite r our solutions
oy (e:x) and ¢} (£ x) are analytical functions of the
cnergy E=m,c’¢ in the complex E-plane with the
branch cuts along the intcrvals {-Joo,m‘ﬁ] and
mec?‘,oo) of the real axis. We define the squarc root
J1—¢? as positive in the interval - m,c* < E <m,c?
of the real £-axis. Out this interval we fix the sign of
the squarc root by the condition Re(} 1-¢” liZO,
which determines the «physical sheeth of the/two-
sheeted Ricmann surface for this squarc root (see,
Landau and Lifshitz (1977)). So, going over the branch
cut E >mec2 from the interval —mc,c2 <E< m(,c2 in
t per lex half-plane E we have

1-8% — —i\}ez —1,and therefore the parameters v,
N, x for the positive continuum are

. m
VIO T g, x s —i2prih, (17)

where p=m ce? -1, E=aZe/Ve? —1. Instead of
functions M and W, the other form of the radial
part of (15) is more preferable for the continuum

solutions ¢, ", namely

1, 1 p
Ex)=—Mg, .l —2 =
x(Pk( X) S {mﬂ[ thr]

I'(2h+28,) . . ).
=mexp(— EE—lAk )I.k (E;r)’ (18)
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l‘P;:(ﬁx):lW.ngfz ~2 L7 =iex Eg"'iﬁx- }}ﬁ)(ﬁ;r):
x x A 2
= iexp[gg +iA, J[G,E*)(e;r)+ iF (er)

hi2
Here A (e)—argl“(k+8 +L'?::7 +""(;\,+8S_1);
5, =(s+1)/2; F,(gr) and G¥(g,r) are the regular
and irregular continuum wavefunctions with the
following asymptotic behaviour at r— e

pr hi h
4 h P 7,
GIS )(E;r)zz—mexp{ilgr-kgln(lhIJ Ak}, (19

S0, the choice of the signs (17) gencrates the irregular
solutions with the asympiotic form of divergent
sphema] waves at r — . Evidently, the opposilc
signs Icad to the convergent-wave solution. These
functions are similar completely to the well-known
nontelativistic regular and irregular Coulomb
solutions F,(p;r) and G#)g;r) with an orbital

momentum {and p=/2m E . The above discussion
will be useful also below to investigate the analytical
structure of Green functions and fundamental
solutions for the linear Dirac equation.

Obviously, the bound-state energies, F, =m ¢,
are the same both for second-order and linear Dirac
equations and they are determined by the condition

[0 ¥4
2+8, -nle,)= k+(s+1)/2~7_82 = a0

=012,

In this case the Whittaker functions arc the bound
solutions of equation (16) in accordance with the
followmg identitics for the Whittaker functions
M, Wog (Gradshtein and Ryzhik 1967)

(=1y W ()= r'(n, +2}»+25_,.)

L Wo x)= 3 (x)=
nl A2 nIT(2A+25,) ™72

_ 8, cxp(—x/Z)Lf:‘”(x). 21)

Here T(x) is the Gamma-function, 7%(x) is tht
Laguerrc polynomial, f, =n, +A+8,, n,=0,12,...
If the radial quantum number, n, is defined by the
following relation

0,1.2,.., at k=-x,

anni+6:=”i+(“‘+i)/2:{]’273,“‘, at k=rc *

the equation (20) gives the well-known cxpression for
the Dirac-Coulomb cnergy cigenvalues

<t ¥ e
enk=/ 1+~(;"+7/1)2 =N r=n -I-/l=\/N2—(lZz»
N= n.2——2n,,(K—)»)- (22)

Here n=n, +x is the prmc1pal quantum number.

n=1,23.... So, the cnergy is two-fold dcgencrated
in the sign ofk cxception the case of n, =0 which s
achieved only at s=~1, 1. €. at ‘k=-n. The
corresponding radial bound-state wavef uncllons are
cxpressed in the terms of Laguerre polynomials as it
is evident from (21).

Besides the above-mentioned solutions of the
second-order Dirac cquation (4), the so-called
Sturmian functions of this equation are uscﬁg.l fqr
different applications too. The Sturmian function is
the solution of cquation (4) where the repfaccment
7 o7 is made, with o the eigenvalue of the
cquation. Thesc functions have the spin-angular
structure of equation (15):

S0 Eor)- ~¢,,{ x ]e&;,. o, -

but the radial functions ¢, arc the solutions of the
Sturm-Liouville problem for the following equation

(cf. with (16)) )
2

{dz NN (“f)}»nk()
dx 4 X x

The bound solutions of this
7| < mc*(g|<1) have the form

n!
_ M axpl == 2“‘(,\)
P T(n+20+25, g i ( }‘

o,=n+h+d -1, n=0,1,.. (24)

cquation al
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The Sturmian functions (24) are orthonormalized
by the condition

J:%k (x % G (X)d" =8,

and they form a complete set of functions with a
discrete spectrum only.

We mention that the similar functions both for
the relativistic and thc nonrelativistic Coulomb
problem were introduced by Fock (1932). But only
after Rotenberg (1962) the nonrelativistic Sturmian
funcitons are widely used as the convenient basis set
in the calculations of different atomic problems (see,
c.g., (Manakov er a/ 1986) and the recent review by
Magquet ez o/ (1998)). The Sturmian set for the second-
order Dirac equation was introduced by Manakov
etal (1973).

2.2 The Green function of the second-order Dirac
equation

The Dirac-Coulomb Green function Gg(r,r") is
defined as the solution of the differential equation
(see eq.(1))

DEX)G, (. r)=5(@-1). (25)
Similarty to (2) we shall express Gg( r,r) in terms

of the sccond-order Dirac equation Green function
Gg(r.r’y by the relation

Gr,r')= KQ(E,'r,r'). (26)

The Green function Gz{ r.r”) satisfics the following
equation

182 f“![’ﬂl Zet E
r()r 2

r rm('

224
+———~E mtzc }Q(E;r,r’):—ﬁ(r-r’),

2m.¢

The partial-wave cxpansion of G{E; rr") is

GErr)= ng(L WAL )54("’2(“—) @7

mp

where the radial part gk satisfies the equation
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19> Alh+s)) 2 E
= B
2’”« ror? r? romc’

2 4
I —mﬂlcr

N
. g (E,'r,r )= _M.
.C

s
rr

Here we use the notations which were introduced in
the previous Section. The solution of this equation
may be written in a standard form as a product of
the regular and irregular solutions of (16) divided on
the Wronskian of these solutions

N Am, ThA-n+d
8 (E,‘r,r ) aUV ?(%225 )’)‘X?Mn,m.\u(-’Q WI],MS/Z("Q)

(28)
The variables x. and x. arc: x, = max(x,x’),
x,=minx,x"), x=2r/va,. Note that the rcsult (28)
was obtained also by Hostler (1964) by the dircct
calculation of the integral over the continuum in the
spectral cxpansion of g; in terms of the bound- and
continuum-state solutions of radial equation (16).
We suppose, that the energy E in equation (28)
lics in the interval —m,c’ < E <m,c* . For the encrgies
outside this region we should fix the boundary
conditions for g, (E;r,r'). The choice of signs (17)
gencrates from (28) the Greep function with the
divergent wave asymptotic behavior (cf. (18))

gl B, )=~ ’;ph(&'z)ﬁf )=

4mg P

[\ e 6 e o i s Y )] 29)

Since G,E )(g;r)=G£*)*(g;;~), the Green function
e E ) s complex-conjugate to (29) in
conformity with opposite signs in (17). So it is clear,
that a simple relation between g )(Iz r,r Jexists

gi')(E;r,r')— g,f”(E; rr)=i

2 L,
<= F & P er).30)
Finally note, that

SIAR | e N e /
8 e )= e e g )]

is the Green function with the standing-wave
asymptotic form which is used, e. g., in the R-matrix
approach of the collision theory (Newton 1967).
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The expressions (28), (29) for g, with variables
Xs , X< are quite standard. Hostler (1964) has
presented them in the form symmetric by x and x’
with the use of a special integral representation for
the product of Whittaker functions with different
arguments:

4nr,

AEr p )= ==
gx( ) hzaov\/;;

Lym-liz x+x 1+1 2xer )
exp| — 2h4s P

x — idt
il—t 2 -1 = /‘ 3D

Here 1,,(2) is the modified Bessel function of the
first kind. The integral (31) exists if
Ren<A+{s—1)2 and in opposite case it may be
transformed to the contour integral by the
substitution

1 1 (0+)

-m — — b dz.
gdrf 1) P —— f,lﬁz /@)

The symmetric expansion of g, (E;r,7’) in terms
of the Laguerre polynomial series was derived by Zon
et al (1972) using the bilinear generating function for
the Lagucrte polynomials (so-called Hille-Hardy
formula (Erdelyi et af 1953b):

o Am, o e x+x
g (E;rr )=EE;0;(«‘X)H ICXP[" "2**}‘

y i n!Lf,;‘” (X)LVZBM.\' (X’)

ST +20+28, Yn—q+r+5,)"

(32)

The simplest method to derive the result (32) is an
cxpansion of G r.r’) in a serics of Sturmian
functions (23). This approach used by Manakov et
al (1973) gives:

P E s PN ET
4mz' )i‘ﬂ(E’r)Snkm(E’r ) V (33)

Ey )=
Glerr) R=M+A+5,

2
A agV sk

Note that the expansions (32), (33) are less general
then the symmetric representation (31}, because the
scries in n of these expansions converge only if
|El< m,c?. But they also may be used in analytical
calculations for arbitrary energics E if the resulting
formulae may be analytically continued. The
generalization of (32) for the numerical calculations
at |E|>m,c” was derived by Manakov ef al (1984)
on the basis of a special re-expansion of 12 (x)

into the series of Laguerre polynomials 72+ (z
with an arbitrary (complex) parameter z.

So, the results of this Section yield all necessan
information on the Coulomb problem in the second
order Dirac equation approach. For small ¢Z w
have A+ (s—1)/2=h—r+i=~I—(@Z )/ 2k+.., ané
after the substitution of A+(s—1)/2=1 the radid
equation (16) coincides with the radial Schrédinga
equation for the Coulomb problem. Therefore in th
case all the above-discussed results are transformed
immediately to the corresponding nonrelativisti
cxpressions. Particularly, the well-known Sturmiar
expansion of the nonrelativistic Coulomb Gree
function (Hostler 1970) follows from (33).

3. Regular and irregular solutions of linear Dirac
equation

Accordingly to the general theory of motion in
the central field, the solution of cquation (1) with the
fixed total angular momentum j=k-1/2, its
projection m on the z-axis and the parity (=1)""/2 has
the following general form

- (. ko
qfk.m(E;r)=l[ Sl ) (34

r ":f—l(EQV)X}nk

where radial parts f,, of large aund small components
of a wavefunction in the Coulomb field sutisfy the
lincar system of differential equations:

daf, k oz
——+p—f,-pletpt— =0, p==I
dp Pp I P( r P ]./Ap 4 , (3%

where p=rm,c/h, g= E/ml,(:z , k 13 an cigenvalue of
Dirac operator £ . '

Gordon (1928) and Darvin (1928) suggested
to solve the system (35) for the bound and
continuum wavefunctions by the substitution
fu~ \fri g(u1 + ”z)' As a result, the new functions,
u, and u,, are expressed in terms oS Whittaker
functions, and a regular (¥ | and an
irregular (W) ,:5 in origin solutions of Dirac equation
are presented as combinations of two Whittaker
functions, namely

VLEPE [

fp"(E;x):,_ X]/z

+ ['(ZV‘“ k)MnH/z,x(X)L
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fr(Ex)= Y2

2 [(ZV tk )Vn—-t/z,h (x)+ PWiaan (X)]

(36)

The notations introduced in Sec. 2 are used here,

7\=\jK2—((XZ)2 s v=o/Vl—g? , N=VZE, x=2r/va,.
A solution of the Dirac equation (1) in the form
(34), (36) we call below as the standard form of a
Dirac equation solution. Certainly, the sign choice
(17) should be used in (36) for the continuum states
with the divergent wave asymptotic behavior.

Now wc shell consider the connection of
solutions (34), (36) with the solutions of the second-
order Dirac cquation. As {4) is the second-order
equation, it has the number of sohutions twice the
number of solutions of the (linear) Dirac equation
(1), at the same E, j, m and parity. So the solutions
of (4) have an additional index p. On the other hand,
each solution of the second-order Dirac cquation
gencrates the appropriate solution of linear
equation in the accordance with the relation (2).
Thus, one can expect t(h?t (i) the linear combinations
of pairs of solution ®,7, with fixed 4’ and different
por with fixed p but different s’ =sign(k’) give the
sapg solution W, ., or (ii) few different solutions
@, with diffcrent p, k' lead to the same solution
¥, , - Evidently, in the last casc different forms
can represent the same solution of eq. (1). We will
show that just the case (ii) is realized.

Expressing the squared operatoer K in
dimensionlcss units with separate radial and
angular variables

Koo itynd 18 L], 1+Be
1-¢ {1(7 “{xax,w-x +——2 — | 37

it is easy to calculate the action of operator K. on
the arbitrary solution of the second-order Dirac
equation in form (15) of any type (regular or irregular
one). After some algebra this result may be written
as follows

- I |k+pd
KIIJ(”,Z Eyr)=— [ETP%
nlEsr) eV 24

Ji-g? - !
x {& +ERD + 507 Kpfx Dik:x) |, (e:x)1 (n)

A38)

) A+e -
L|iSO’Z P +’f +1 —EZD(k;x)}qb,‘ (&), ()
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where [)(k:x) is the linear differential operator

[A)(k;x)=2l[i+si—sl]
dx x 21 )

and & is the radial part of an arbitrary solution of
equation (16) similar to (15).

_ The expression (38) may be written in a more
simple matrix form

X . _ bledyr)
K(DEP’L(E’I‘)ZAZ& S(ﬁ)(k : \/I_Ez b(k —kp,
1A+€l?) "x)lpk(&’x)xm (ﬂ)
(39)

introducing the matrix operator

§P)= \/K—_;I_ﬁ[l +is @afl (y-n)]

This operator is Hermitian and has some simplc
properties, e. g.:

5(”)(k)§(”)(—k)=p, .§("’)(k)=ipﬁ(")(kXym).

Note also that the cquation (38) can be re-written
in the form similar to standard one:

Rol) (B.r)= |[SFPL A+ e (e )y
24 2 {ieg(exhyt )

where

[274

(uﬂ (z;x)]: 1 s@+i m ) [ (E;x)
———D

u_{e;x) . 1 Py (k; x)ep. (5 x)

g+ A

R (40
' The action of D{k;x) on a regular and alz
irregular solution of (16) may be presented in the
simplest form, if we choosc the radial parts @, as
follows (8, =(s+1)2):

¢'Z (&X)E ‘PZ (£§ x): Wisssr2 (x) »
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T —n+8,)
r(2n+28,)

0i(e;x)=

a2 () 1)

These functions have the unit Wronskian, and so
are more suitable, e. g., for the representing the
Green function. In particular, ¢ (g;.x) has a simplest
form for the continuum solution case (cf. with (18))

éd’l{(&x) exv(—EE—’A }T( %),

The operators Blk;x) have a remarkable property
to transform one type of radial functions into another

DA(": x»k (53 x): ad.y (5; x)’ (42)

where a =h—sm- af =—A-sm- Two useful
propertics for these coefficients play an important
role:

ay=-a"y, aga_ =N -1 =-ajay -

The identities (42) may be derived using the
following recurrence relations between Whittaker
functions with s==1

s
2knwnk o/ 2\X

(),

k-3
AZ _-r-ll
(zm)[zmﬂ)] )
which are easy verified with the use of well-known
recurrence relations for the confluent hypergeometric
function (Gradshtein and Ryzhik 1967).

Two fundamental identitics may be derived
from the equations (38), (42)

J1-g?

Kol (E:r)=
e

RO (Er), (43)

Ko (E:x) —[(Mtrp)‘l) HED)+spgd1-e20 1) (E; )1
(44)

These identities hold for cach of four regular and
irrcgular solutions () (E:r)of the second-order
Dirac equation, and mc]ude all the information
about the relations between the linear and second:
order Dirac cquation solutions. The expression (34
for fixed j contains two different solutions, with
k=1K. As is clcar from the definition (15),

(Dﬁ"m (E:r) has six pairs of functions with differen!
eigenvalues of operator K, K =#k and p=+1.Ir
particular, d)(’)stbg’.’_jm(E;r), and
®@ == )(E;r) may be treated as two of such
pairs. The term «pair» for cach of these functions
mcans that, c. g., in the function @ the index
is fixed, k'=k, and p takes two values, p==zI,
e t c The identity (43) shows that two other pairs,
o8 <I>(”) wnmlEsT) and ¢(4)'¢(";,'l)(E'r)
generate the Sdm(. solution of lincar Dirac equation
as the pairs ") and ®, cxcept for an inessential
numerical factor. Thus, any of four functions @'
with i = 1,2,3,4 may be used to construct the
solution of linear Dirac equation in terms of the
solutions of squared equation (4). Obviously, that
for all these cases the linear Dirac equation solution
should have different functional ['orma Note, that
two additional pairs, @) and ©®, differed from
30 may be composed as the pairs w1th p=s=+l,
p=s=-l, p=—s=+1, p=—s=-1]. Nevertheless,
these pairs don’t generate a new functional form
of the linear Dirac equation solution, because both
functions in each of these pairs are cigen{unctions
of the operator K with the same value X =« for
& and K =—« for . Finally, the identity (44)
demonstrates that although the squarcd operator
K acts only on one pair of the second-order Dirac
equation solutions, the result involves all four
solutions of (15) with fixed k. Namely, the solution
of (1) with fixed s is a combination of two sccond-
order Dirac equation solutions with different
k =+x. This fact is evident, because the squared
operator doesn’t commute with K . Finally, the
matrix structure of the right hand side of the
q(uatlon (44) cxplains the orlgm of the operator
») (k) in the general matrix structure (39) of the
hnedr Dirac equation solution (see also the
operators S(k) and S'(k) in cqgs. (453 nd (47)
bellow). Indeed, each of the bispinors ®2(E;r) in
(44) may be written in terms of operators 5(+ k)
(8) acting on the eigenbispinors of B with opposite
signs p=121 and k =2k To present the sum of two
terms in the right-hand side of eq. (44) in the
compact operator form (39), one operator, st (),
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was introduced jnstead of a linear combination of
two operators S(x k).

As was discussed above, the resulting
expressions  of linear Dirac equation solutions my
be presented in different forms. First of them
follows from (39) or (40) at s = +1 with the
subsequent substitution pk—k and p—s
determining the quantum number k. The result in
this casc is
YU (Er)= Ko U=)(E;r)=

]

¢ (e x )k (n)
RUALLES DO e

2hx ia, ——-(lL g He) |- (43)

where

s +sk oZ
Stk 1+i——1y-
() 2 {“kHL(vn

of this solution in the form similar Lo (40} (i. ¢, similar
to the standard once) is

):| The prescntation

I3
W) (poy)e [KHSh Arek( v, (B, ,
”'( ) 2h tv_l(S;x)X;,}‘ g (46)
where
1CES ) T \/_e %)
v.i(ex) G| )|

k4

Another form of W,  (E:r) follows from (39),
(40) at p = 1. In this case the parameter & in (39), (40)
isidentical with the quantum number & of the linear
Dirac equation, and onc can find
i (Fir)= R (E;r)=

9. (e (n)
fa ¢ BEEY #aCHIS

L+EK 4
= Sk
o3

+A oZ
he Sk —| 1+ ‘n)l. i
where )= zx { i {y n)} The

presentation of this solution in the form similar to
(34), (40) gives an equivalent formula
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W) (E:r)= (48)

K+A k+ax[ g (Ex )kt J

2% 2 g, (e x)x;f

where

galex))_| ! Sf;‘z" : ¢, (e:x)
[g,|(E;x)J_ 5 o ' mm(}),k(s;x) .

-] o vex
K+A -

The functions ), @ gencrate (wo additional
expressions for W, , (E:r);

Wi (Eir)= Kd»_'::;*)(rs-.r)=%_i:]£ ;;)\
[]-H

¢,K(8:x)x.,‘;(n)
( ‘n } J-e

s (49)
A2 ek )
W (Bir)= K= (g;r)= A28 Kb
.Lm( ) kon ( r) 27\)’ 2)" X

¢ (&:x0)s,(n)
az
x[]-HK-)L(Y'“)] Kl/l—:;-%(f;x))(]nk(n) > 50

The radial functions ¢(g;x) and the coefficients a in
all above expressions are determined by equations
(41}, (42) for both, regular and irregular solutions.
As s clear from eqgs. (45) (50), the form of
radial parts in four solutions W{) (E:r) differs from

the standard one, because thesc solutions involve
the Whittaker functions with quite different
parameters comparing with the standard solution
(36). One can usc the relations between adjacent
Whittaker functions to find a4 connection of radial
parts in eqs. (45) - (50) with functions f, {(E:r) in
(36). As an example, for the regular and ir regular
solution such relations are

Mo (x)= (2M1)[MM N (x)—M“‘Ml (x)}

wlemt L ()=Oo-npe G ()
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W ()=w | ()+mE)W
n.hzi n,M—z hA—

1(x)‘

2

The direct calculation demonstrates the coincidence
of all the above-discussed solutions W) (£;r) with
the standard solution W, (£;r) in equation (36)
and gives the appropriate r-independent
proportionality coefficients. More precisely, for the
solution ‘Ifk(f,)n (E;r) in form (46) the coefficients C

in the following ecxpression

)

for regular and irregular solutions arc
cr = r2x)
T -n)

Vi+elk+r+n-2v),
crr =zix\ﬁ_+_e(k+k—n+2v)

Here ' functions appear according to our definition
of the regular solution in the form (41). These
coefficients can be also derived by the comparison
of an asymptotic behaviour for the appropriate
solutions at » =0 or r —3 .

Despite different forms, the radial functions in
all w) involve the same Whittaker functions. For
an example, the functions g,, and v,, in equations
(46), (48) are identical at k=k. At k=-k they
differ from each other by the r-independent
coefficient:

(1=sy2
,__O'Z ]—82 (S‘X)
HCETY ] B

vy (g x)= |:a

In the case of oZ =0, functions &% and €4 involve
only one Whittaker function, which is a regular and
an irregular solution of radial Schrédinger equation
for the Coulomb problem. Different forms, (45) -
(50), of linear Dirac equation solutions may be
useful in the concrete relativistic calculations.
Obviously, the above-mentioned fundamental
systems of solutions for the linear Dirac cquation
at arbitrary energy E are sufficient for deriving of
all the information on the problem, i. e.,
cigenfunctions of bound and continuum states,
Green function, e.t.c. Nevertheless, in the next

Section we shall derive the Dirac-Coulomb Grea
function by a simpler method, namely, as a resul
of the direct action of the squared operator on th
Green function of the second-order Dirac equation

4. Green function of the linear Dirac equation

We dcfine the Dirac-Coulomb Green functio
as the solution of the following equation (see (25))

[A ()~ E1G, (r,r')= 5 (r-r').

The solution of this equation in terms of standari
Dirac equation solutions (36) is well-known, and wa
derived first by Wichmann and Kroll (1956). Th
result can be presented in the following form (with
the precceding notations):

2m rii-n) P S
Gelrt')=—— 5 =Ly (B Wi (E;r
E(’ ) hzaovg'nl"(Z}»+l) I(.l( k,m( )
r<r’s 1)
Inthecase r > r’ onehastoreplace W], (Br )" (F:r')-
- (Er)] (Er). Itis important to note that
in all formulas for the Green function of this Section,
the sign of Dirac-conjugation is related only to
matrix structurc of corresponding functions and do
not suppose a complex conjugation of their radiil
parts (which are complex outside the interval
~m,c* <E<m,e?), i. e., we assume the following
convention: fir B = f(r)g. Actually, the result (51
is the partial wave expansion of Gg{ r,;r"), which may
be written also in the matrix form:

Gelrr)= X656 )=
km

’

= -k okt 2 kK% ]

Gl Wonitn GG en 2
k., m iG;f.'m(’Z"’)Z_ o _Gk.m (rvr’)Xm X (52)
The significant difficulty of using the expression
(52) occur, when it is necessary to integrate Gy
r,r") over radial variables calculating the matrix
elements, because this presentation of Gg has no
symmetric form in variables r and '. Some
symmetric expressions for radial parts of G,me) in
(52) were discussed by Zon et al (1972) (see also
Borovskii et al (1995)).

We derive below a number of representations
for Gg( r,r") on the basis of the second-order Dirac
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equation approach, i. e., in the accordance with (26),
by the direct action of the squared operator K on
the Green function Gg(E; r,r’) in forms (27) -
{32) or (33). We note here that, using the functions
#ide;x) and 9f (e; x) introduced in (41), the function
G {E) may be presented in the form equivalent to
(27, 28)

_ 4m,

gE(E;r,r')—

-2 = X ply (Bl (Eir)
oV kmp

’

rer (53)

We derive first Gi{ r,r’) from the Sturmian
expansion of G g(E; r,r’). Similarly to (37), (38) the
action of K on the Sturmian function (23) may be
presented as follows

5720 e (-390 6 g (X )

%6 n).

kst -

Here the simple identity. (o-n)8{)(n)=~isp652 (@),
was used. The action of D(k;x) on the radial part of
the Sturmian function ¢, (x) (see (24)), similarly to
(42), 1s

Dt W ()= 50T, =1 () 53 = 220 (),

where #, =n+A4+8,. As a result, the action of K
on the Green function of the sccond-order Dirac
equation in the form {32) or (33) may bc presented
as follows

Gelrir)= TG, (54)

k.m
AR N eoll) ,
Geltr)= S 0 venploe (Bir.r gl (B Yorme
P
xp0)0) o) (')

where gk(E;r,r') is given by (32), and where the
function gg)(E;r,r') is

g (E;r, )= %ﬂ{ﬁ&_ o (H’)\(il Jsu §

(832 (i )
iy Tl+2h+s,)M@m,-m) |° O

X betx'y2
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The sum over p==1 in (54) may be calculated
explicitly. For this purpose it is convenient to usc
the functions @) instead of @) in (54). It is
possible to do that, because the phasc factors

gtimlmiye (sce (14)) cancel in the product of two
angular functions. Thus, the following identity is
valid for £=0 and 1:

T 0l )=
i

= S(k:n x,]f,(n)xfnf(n’) 0 $ s’
_5<k’{ 0 (—If“x,f.(n)ﬁ(“')}f )

Thus, Gg( r;r’) may be presented in a matrix form
involving the operator S(k;n) (8). Nevertheless, wc
consider the cxpression for G r,r") in the form (54)
as convcenient for applications too, because it has
the form of a direct product of two bispinors. Such
form is very useful especially to separate radial and
spin-angular variables in matrix clements of the
interelectron interaction in the many-body
perturbation theory on the basis of Coulomb
solutions. .

The action of operator K on the Green function
(53) (or, cquivalent, on the (27), (28)) generates
other representations for Gp( r,r), in terms of
rcgular and irregular solutions (45) - (50). We shall
demonstrate some details of galculations for the
case, when only functions (45) are used.
Considering this case, before the action of operator
K, it is convenicnt to separatc explicitly the sum
over k in the expression (53) into two terms, with
k=x and k =—x . After them, substituting p ——p
in the term with & =« , we obtain:

1=RY pol) (Erpf) (B:r)= 3 pkol) (£ )

kmp wonp

o) (Ex')- 3 pk@Er) (Ex L) (E:r)

-,
ranp

Using the identity (43), it is possible to cleulate the
action of operator K in the second term on the right
hand side of above rclation. Then the expression
for I is reduced as follows:

=% pln(tll',({’,lf (E;r{tb,({(',),,ir(E;r’)—

onp

K

Vi—e T
N o) (E;,o]
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The above-mentioned refation ¢’ =—g”, and the
identity (44) lead finally to the fact that the
cxpression in the square brackets is the irregular
solution k)" of the Dirac equation. Therefore,
the fotlowiné result is obtained for the Green

function

ey 20 gl (Erkel) (E)

G lr,r )= ——
:0r) Fagv A+ EKp
or, in the accordance with (45),

4m, 2As
)
hagv

vy Erwl) (E:r) (s6)

GE(IJI): o €k + A

1t is clear that above manipulations .dq not depe_:nq
on a rclation between r and r’. In a similar way, it is
casy to derive the expressions for Gg{ r,r) in terms

of other functions ‘l’éf,?(E;r) discussed in Sec. 3:

4m 24 @ (. @F (o
= 3 g Er o E;r)=
Gsler) RPagV tm ek +A Gt (Bsr)

(57)
4 2 y . _—-»’ /
= kZ-——FJfA vl Eowl Er)= (s
oV km
As v jr ;
s 2B @ EoplY (B). (o)

Rragy ek — A

Obviously, the expressions (56) -(59) are similar to
(51), and they may by derived also as 4 dircqt product
of appropriated fundamental solutions divided by
their Wronskian. In our approach the calculations
of these Wronskians were not necessary. For the
brevity, we shall analuse below only the result for
Gg(r.x") in the form (56). The corresponding results
for other forms may be obtained by a similar way.

Using eq. (45) for ‘P,f,',,)r (E;r) and simple
auxiliary identities:

(-2 fa2-n?)=22 k%>, S)B=sB5" (k).

a K+35A , aZ
$6)= 221012 Z )]

we obtain (cf. with (52)):

G (I‘,l")= ZGEW?(I‘,I")=
k.m

() de et o 12y kT Y

& 8y AmXm 8y XmXm -1
=3 8k o e BT (60
) ({igf”xm‘x,’; —gﬁzz)x,fxm“]s (60)

Herc the diagonal radial parts, ¢@(E;r,r), are the
samc as radial parts of G (£, r.r). The off-diagonal
radial parts of the Green function, gé'z)(E;r.r’) and
gEZI)(E;r,r'), can be received by the action of the
operator D on the radial parts of G(E;rr’). Asthe
result, we have:

ke+A

() iﬂ’i‘;ke‘f& ,i"(g;x>)=——27gk(E;r,r,)

~ 0 (&%,
8 Wy 2000 A

(22) _ 4mL, 1- 87
8 Ty 2k + A

Dic; x)D(e; X' )x

ke—A

X¢[({;‘;X< I?I(E;x,\)z A 8 I:(E;ryr')

1) 4m, V-’

T ey 20xx’

A

D(K; x’)}),f (E:x< }p;’ (£:x> )=

3 D{ic; x)g, (E;r,r’) (61)
J 2
6=V D)y, (Eirr)=
24
= e (B (©2)
2A

Equations (61) and (62) demonstrate explicitly the
symmetry relation:

P Eirr)= o Eir ).

which is cvident also from a more gencral identity
for Gg{rr):

Gi(rr)=BG(rr)B -

The ‘above expressions present the simplest
representation of Dirac-Coulomb Green function

in terms of the radial part of G (&, rx’). Each of
the expressions (28) - (32) for g (Eirr) may be
used here in concrete applications. In particular,
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the action of D(ic;x) on g, (E:r.r’) in the form (32)
gives the result similar to (55):

2miell €2 , )
e YCTOTTYO) R

where 8, and S, are serics of Lagucrre
polynomials:

o] XY e X & e+ 1) 23 (2 (x)
Sl—exp[ 2 J(xxf J:Eo(n+k+1—n)ﬂ(2?x+n+1)
(64)

x+x S ,I!L?ﬂ.-il(x 24+ (x/) 1
5y =exp| =X Jur 35 LR T
: ex{ 2 ]( P> Moezen) a0 )

(65)

The availability of the delta-like term (65) in
(63) (see also (55))is a purely formal circumstance.
Indeed, as it follows from the general arguments, the
terms on the principal diagonal of the Green function
(52) should be continuos at r =", and only the off-
diagonal terms contain the finite discontinuity. Thus,
the sum (64) should be divergent at r=, to
compensate the singularity of the term (65). This fact
verifies casy with the use of asymptotic expansions
for Laguerre polynomials at high n. To demonstrate
this cancellation more precisely, we used the
recurrence relations for Laguerre polynomials to
obtain the following relation:

48, =20, — @+ A)S,,

where S, and S, are

2 o ZA 2A+1( s
s, =exp[— x+x ](xx’)H 5 n!L, (x)L,, (x)

2 it ten{nrd+1-7)

e 5 Yoy )

2 SQ@A+ 240N+ A+1-7)

The simple analysis of the asymptotic expansions
of [(x) shows, that §, and §, are finitc ones at
r=r", Therefore, the sum S, + S, doesn’t contains
a singularity in the accordance with a general
theory of Green functions. Thus, the remark of
Swainson and Drake (1991) on the absence of 8-
functions in the off-diagonal terms of the Dirac-
Coulomb Green function obtained by Zapriagaev
and Manakov (1976) is wrong.
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All symmetric in terms of radial variables
expressions for the Dirac-Coulomb Green function
were tested by the direct analytical calculation of the
left hand side of the following identity

{nk|G(E Jnk)=1/(E, - E).

5. Bound and continuum wavefunctions of the
Dirac-Coulomb problem

To derive the Coutomb wavefunctions of bound
and continuum states we shall use the Green
functions, One of goals of these calculations is to
demonstrate the validity of results obtained for the
Green function. Besides, in such method the
normalization of wavefunctions is determined
automatically.

(i) Bound-state wavefunctions

The Green function Gi{ r,r") as a function of a
complex energy E has poles at the energics of bound
states E=FE, , where E,, is determincd by the
cquation (22). As is well-known, the normalized
wavefunctions of bound states, ¥, (r), may be
derived as the residues of Gg( rr’) at E=E,,
according to the relation

ResGpg (i',l'l)’ E=E, = k—iz W, i ol ) (66)

Because the pole terms in partial-wave expansions
(56) - (59) for G are Gamma-functions
T(A+8,-n)  entered the reqular solution
‘l‘,c(,‘")'r (E;r), the residues (66) are calculated casily
using the identity

0
Res 7&+85——ﬂ :mgcz(—l)“ (@zf
Jomc -a2 (5N .
E<E,;

The explicit form of the corresponding bound-state
wavefunction may be derived now for each of Green
functions (56) - (59) taking into account the
definition of WEI" (E;r) and the identitics (20).

We present below two forms of wavefunctions
derived as residues of Gp-in the forms (56) and (57).
In the first case the wavefunction has the form
similar to (45), (46):
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v 0-c.stenf O | )

where the operator §(k;n) was defined in equation
(45), and the coefficient C,, is

2
Cop =~ [ £ ]
Na,

The «large», v,, and «small», v,, components of the
wavefunction in (67) are

wie)= e =3 0),

() O 10 2) o exp( }_ﬂ 1),

£K + 54 (n, —1)!
4N T(n, +24+1)

N ex+si

2Zr

Nay '

Another form of wavefunctions follows from the
expression (57) for the Green function. In this casc
the calculation of the residue (66) gives

vt 00 .

Here §(k;n) was introduced in (47), and radial parts
g, and g, are:

32
27 K+ A n! A+S-1
—d 2L S A S— x
sil) S(Nao) \/4N/'L TRA+25+7,)
xaxp(-_}uf,fﬂ(y)
p[ ]L%,,ﬁ:u)

Hece §=(1+s)/2, n, =n —&. These functions
were obtained prevmusly by Zapriagaev (1987).
In the nonrelativistic limit, a7 — 0, we have

S(k,l’l)—")la gg(r)_)o, g!(r) SRnl(r) where

{n +S

4NA r(2k+1+n)

R,,(r) is the normalized nonrelativistic Coulon
wavefupction, =k + (s-1y2.

The above cxpressions arc simplified for
states with n, =0. For these states s = -1 and o
component of bispinors in (67), (68) is zero. Sw
bispinors are eigenfunctions of matrix B. As a rest
both forms lead to the same expression fi
1I'”:Kvk:,,m(r)—‘IJ,‘,:O( r) involving the matrix
instead of y

¥, )= Sl ) )00

_ S0 e+ A @)
Ve | —ivk—axsm) )

PR 28 R W 2 R 3
na, ,[2111"(2&) na, P nay |

Here S(k;n) is the operator introduced in (8) for t
squared Dirac equation solutions, and this functions
simultaneously the sotution of the second-order Dire
equation (see (15)). Note, that the case n, =0 is
unique case, when the solution of the lincar Dira
equation coincides with one of the squared equatis
solutions and therefore its spin-angular structures
determined by the opcrator S(ksn) in eq. (8).

(i1) Wavefunctions of continuum states

The normalized wavefunction of a continuug
state, W, (r), may be derived on the basis &
followmg arg)uments The part of the spectr#
expansion G4 (r.r') for real E > m,c? involving tit
integration over the positive continuum is (seuw
Berestetskii, et al (1982))

A Wy W )

E'-E-i0

—ZP "J'i dE' ‘I’Lkm )LIJF"km( )+mz Tq'mm("%(ﬂ

ot kit gy 2
myc? me

el )% J

(69
Here P denotes the principal part of an integral
An infinitesimal addition i 0 in the denominator
of (69) ( and the similar addition, +i, 0, in the
integral over the ncgative continuum) fix the
analytical structure of G in the plane of a complex
energy E. Namcly, Gg is the analytical function
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Here Gﬁ;ﬁ"“)(r,r') with k’=% is the same as in
(60) or (54)4if we put E=E,  in these equations.
So, the explicit form of this tcrm is evident and we
do not discuss it below,

Further, ﬁ(Ew)(r r'} is the «regular part» of
GE), i e., there is G(E) at E=E,  with extracted
smgular lerm. Finally, according to (72), (73) the

ferms ff,; in (75) should be derived by the
differentiation in v of «pole parts». For example,
these parts arc the same for diagonal terms in (54)

and {60), and they arc equal to the quantities (74)
multiplied by the factor

y ektAJ(N/ZvY -1]
U fi—(@ivF +yin

Note that in differentiating in v of x, x'- dependent
funct_lons which are in fact the radial Sturmian
functions (24) the following simple identity is useful

y= 2£); y= 2Zr’
Na,’ Na,

~[f GG -

lv=N/z

-2 Ldytrye )]

Y

We present below separately the final expressions for
the partial-wave terms

G, )= Gl (ee )+ FEm (rr)

of the reduced Green function G (r,r
(54) and (60).

") in the forms
(i) The direct - products form of G‘gf,.m)(r’ r)

According to equation (54) the function
G,ff,“)(r, r’) has the following spin-angular structure

G(,i"‘)r r)=-Te 22 X
& (’ ) hlao mz

xT{ v+ )5, 03+ 190,y

P
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+is@z J5 (v, )+ £,y e m) Jp0l) (B @)

(76)

We introduce here a special index, k' = pi , instead
of p, which is useful for the bclow prescnted
considerations. So, k' =1k for p=+1.

The functions 3, and " are the «regular
parts» of functions g, and g, ! introduced in (54)

£ y)=0y o exv(— y—;l ]x

© n'L““( )L2}_+\(y)
=0 F(n+2l+26 Y- n, +8 ) 77

g (y y)_ (y_.;y) y A-8, rA+é,-1 _y+y/
J y exp) = >

(n+8, )12 (Y24 (y)
n=i=sy2T(n+24 +8, Xn n,+8, )

Here the prime in the sums over n denotes that
n#n,—9d,.

The functions Fur £ are the «pole parts» and
they are calculated according to the above-discussed
algorithm. The results are

-

Gy )=Vt ’vy[ P Al
¥ V2 P e |y

Xy, 15.-1-k (}’)l)n, -8, ()’l) .

5..d, .d  Kezf |1
0= Dy gy d  KZ)
N2 ay T yley v an))

Xy -5,k O }I)n, 5,k )

Here ¢n,{( ) is the Sturmian function (24) of
argument y=2Zr/Na,. The explicit diffcrentiation
with the use of recurrence relations for Laguerre
polynomials leads to the expressions for fk

containing only the Laguerre polynomials with the

same upper indices which are convenient in
applications

N -3, /
f(k) y)= Y J(", s PP Lty
.y) 2”21“(11,+27\+8s)(yy)\ exf >
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——res S S5, )
XHI V(k’VHN)}"’*( b
FE GRS 0+ 122 00RO

n! UNCE exp[— Ity JX

N L
L= TG, +21)°
Bz s (O L RO+

+ P s 001
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Here the following abbreviation is used

F, (x): ["; - (5' - ])/ 2 i,ﬁ-*(j.‘\-—llfz(x)#
=, + 224+ (=1 2K oy ().

(ii) The matrix form of G&=)(e,r')
The matrix structure of GE=)(r,r’) is the same
as (60)

, m, 2Z g,
GE ()= P Ws(k,n)x

(i

B gy iz ()4 g ;x;“}(
i(xZ(

-+ g et

78

H vl

%8 (k')

Here the «regular terms», ;{j).(y, y'), are expressed
in terms of functions §,.3, introduced in (76):
w3, y")= ey + AN (v, Y)-

W2y, )=y — AN (v y')s

Wy, y)=200.5) BP0y )= y)-

By the similar way the «pole terms», q,(("j)/(y, V),
involve only the functions f, (y,y’) and £¥(y,y")
with k'==+k:

a0,y )= ey + AV (3y),

a@(y.y )=y = N )0y
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d?0,y)= 1. 0.7)s a2 0.5)=a. ).

After the linear transformations of series of
Lagucrre polynomials similar to egs. (63) - (69),
the expression (78) coincides with the result
obtained by Swainson and Drake (1991b).

(iii) Gmr,r') for the states with n, = 0

In this case only the term with &'=—« in (75
should be reduced because the states with n, = 0 are
nondegenerate in the sign of k and have fixed & = —«.
For these states we have Y=A, N=n=x and the
above results are simplified. We’ll present here

G’EE,,,m)(r,r’) only for the direct-produpts form.

" Atn, = 0 the term with k = in (76) has no
peculiarities and can be found directly from the
general result (54) at E = E,,’?(,. The term with k =«
after the simplest manipulations may be presented
as

E. N Am,Z
GIS:":;(,?n(r’r )= Wagn x

o

o e DL 152 WP

»

The function g¥(r.r') arises from the term
gV (y,y'}in (77) at . = 0 and has the form

-y - +y
g(l)(r,r/)= 80y ’y)+y’1y} lexp(— y . Jx
VY

o= G (1)
p=l (p+24)

Note that the function f,__, (v,y") in (76) vanishes
for the states with n, =0 because the sum in (55) does
not contain the term withn=0at k=« .

The term g(r,r"), containing the «regular» and
«pole» parts of radial Green function &;.(E;r,r
at E— E,,'=() s is

glr.r)=(w )" exp(— Y ;1 )x
A —_ — v
"{”z’nz’m[lﬂl—(azm)z y y]+
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p=l T(Zl + p)

In the nonrclativistic limit (oZ =0) we have
g(])(r,r’), and g(r,7’) coincides with the
nonrelativistic reduced Green function g{)(y ) for
the states with / = k-1 (Zapriagacv et al 1985).

The above-presented results show, that in the
second-order Dirac equation approach the radial parts
of reduced (nonreduced) Green function contain only
the reduced- (nonreduced) functions g, (E;r,r') and
8V(E:r,")=V1 - > D{k; x)g, (B;r,r") inherent the
radial second-order Dirac equation.

7. Conclusion

The Dirac-Coulomb problem was solved first
by the direct solution of the system of linear
differential cquations. The radial part of the
standard solution (36) is the superposition of two
Whittaker functions. Using the known recurrence
relations for these functions, there are many ways
to present the radial functions in terms of Whittaker
functions with other indices. Actually, the second-
order Dirac equation approach leads to such new
forms of the Dirac-Coulomb solutions. Being based
on the direct solution of the Dirac equation, these
results may be derived if the «trial» function (34)
to be chosed in a form similar to (45)-(50). For an
example, the choice of a solution in the form

kavm(E;r)z_[ms oz (y_n)]( g (Esr Yk ]

1
R IRPTVR G P

leads (after solving the Dirac equation for u,, (E;r))
lo the results obtained by Zapriagaev (1987) and
Swainson and Drake (1991a). Apparently, in the
present work all representations for the relativistic
Coulomb Green function and wavefunctions are
obtained which are most close to the nonrelativistic
case, since the second-order Dirac equation
approach is the natural way to generalize the
nonrelativistic results on the relativistic case.
Obviously, a brief review of the Coulomb
Green function history outlined in the Introduction
is not complete. In particular, we did not mention
the works which deal with Gg in the momentum
representation. In this approach instead of the
partial expansion of G (p,p’) its expansion in aZ -
powcrs is suitable, and the analytical calculations
for small aZ are possible. This techniques was
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developed by Gorshkov (1964) (see also Gorshkov
et al 1974). Moreover, for some problems, the
operator representation of Gy (Le Anh Thu er o/
1996) may be efficient. The last method is based on
the connection between the problems of the fout-
dimensional oscillator and the hydrogen-like atom
in electromagnetic fields and is an additional
approach to the Coulomb problem. A certain
potential for the analytical and numerical
calculations of higher order matrix elements with
Coulomb Green functions has a gencralized
Sturmian expansion (Manakov et «/ 1998). Here
the radial part of Green function is presented in the
form of a double series in Laguerrc polinomials with
two frec (arbitrary) paramecters & and «’. For a
concrete problem, an appropriate choise of a and
@’ leads to a cardinal simplification in calculations
of matrix clements. The results are valid both in the
nonrelativistic and in the relativistic case of the
squared Dirac equation.

We did not discuss in detail the nonrelativistic
limits fot the stated above results as they are well-
known and widely used in atomic physics beginning
with the pioncering work by Gavrila (1967) on the
elastic scattering of photons in hydrogen atom. In
the nonrelativistic case the other representations of
the Coulomb Green function exist which are
suitable for the concrete problems. Particularly,
therc are the closed form of 2" in the coordinate
representation (Hostler and Rratt 1963), the
momentum forms (Schwinger 1964), the integral
form and the Sturmian expansion of G (r,r'}) in
the parabolic coordinates (Manakov and Rapoport
1972). The recent review by Maquet e/ al (1998)
involves a description of last results on the
application of Coulomb Green functions to the
conctrete problems.

This work was supported by grant Ne 97-0-
5.051 Russia Ministry of Education,
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