АЛЮМОФТОРИДНАЯ И АЛЮМОФОСФАТНАЯ МИНЕРАЛИЗАЦИЯ ЖАРЧИХИНСКОГО МОЛИБДЕНОВОГО МЕСТОРОЖДЕНИЯ (ЗАПАДНОЕ ЗАБАЙКАЛЬЕ)

А. А. Савченко, Г. С. Рипп

Геологический институт СО РАН

Поступила в редакцию 20 ноября 2017 г.

Аннотация: в статье представлена характеристика минеральных парагенезисов, присутствующих в породах и рудах Жарчихинского молибденового месторождения. Особенностью месторождения является наличие в пределах его, кроме молибденитовой, также фтор-бериллиевой, алюмофторидной и алюмофосфатной минеральных ассоциаций. Такие парагенезисы не характерны для молибденовых месторождений и предполагают отсутствие между ними генетической связи. В составе алюмофторидной минерализации присутствуют: прозопит, ральстонит, геарксутит, жарчихит, черчит и фторсодержащий (до 6,23 мас. %) минерал группы плюмбогуммита с промежуточным составом гояцит-горсейксит-флоренсит. Так же здесь обнаружены накрит и каолинит. Пространственно разобщенная от молибденитовой, фтор-бериллиевая минерализация представлена фенакитом и бертрандитом ассоциирующими с флюоритом, кварцем и калиевым полевым шпатом.

Ключевые слова: молибденовое месторождение, алюмофторид, прозопит, ральстонит, алюмофосфат, фтор-бериллиевая минерализация,

MINERAL COMPOSITION OF THE ZHARCHIKHA MOLYBDENUM DEPOSIT (WESTERN TRANSBAIKALIA)

Abstract: the article is devoted to description of mineral parageneses at the Zharkhikha molybdenum deposit. A special feature of the deposit is a presence of fluoro-beryllium, aluminumfluoride and aluminophosphate associations as well as molybdenite. These parageneses are not typical for molybdenum deposits and assume the absence of a genetic connection between them. The aluminofluoride paregenesis includes prozopite, ralstonite, reductuite, zarcinite, scales and F-bearing mineral (up to 6.23 wt %) of the plumgumimite group with an intermediate composition of goyazite-gorceixite-florencite. In addition, there are nakrit and kaolinite. Fluor-beryllium mineralization is spatially separated from molybdenite mineralization and is represented by phenacite and bertrandite with fluorite, quartz and feldspar. **Key words:** molybdenum deposit, aluminumfluoride, prosopite, ralstonite aluminophosphate, fluor-beryllium mineralization

Введение

Одной из особенностей Жарчихинского месторождения является присутствие на его площади флюорит-бертрандит-фенакитовой и алюмофторидной с алюмофосфатами минерализаций. Алюмофторидная минерализация не установлена ни на одном из многих десятков проявлений и месторождений Западного Забайкалья [1, 2]. Она не характерна и для молибденовых месторождений других регионов [3, 4], связанных с гранитами, и в основном встречается в зонах гидротермального изменения [5]. Более типична она для щелочных комплексов пород. На Жарчихинском месторождении присутствуют дайки щелочных сиенитов и кварцевые прожилки, содержащие в своем составе щелочные амфиболы. Необходимым представляется решение проблемы связи алюмофторидной минерализации с этим типом магматических пород. Аналогичная проблема стоит и с фтор-бериллиевой минерализацией. Месторождение расположено в границах бериллиеносной провинции [6, 7] с типичной для нее флюорит-бертрандит-фенакитовой минерализацией. Для решения этих проблем были проведены детальные минералогические исследования.

Методы исследований

Состав минералов определен на модернизированном рентгеновском микроанализаторе MAP-3 (Канакин С. В.). Съемки проводились при 15–20 kV, ускоряющем напряжении тока зонда от 20 до 40 нА, времени измерения 20 сек и диаметре зонда 2–3 мкм. Для учета тормозной составляющей фона минералов, содер-

жащих редкоземельные элементы, применен расчетный способ, при котором интенсивности фона на образце получаются посредством пересчета интенсивности, измеренной на «фоновом стандарте» без отстройки спектрометров с аналитической линии [8]. Он позволяет исключить ошибки, возникающие в тех случаях, когда учет наложений производится до или после расчета поправок на матричные эффекты. Микроструктурные особенности, взаимоотношения и однородность минералов изучались на электронном микроскопе LEO-1430 с энергодисперсионным спектрометром Inca Energy-300 (Ходырева Е. В.) в ГИН СО РАН.

При написании статьи нами были использованы результаты поисково-разведочных работ [9, 10] и материалы из публикаций сотрудников ВИМСа [1, 11, 12].

Рис. 1. Схема геологического строения и разрез Жарчихинского месторождения по [9] : 1 –гранитоиды; 2 – внутреняя зона брекчий (граниты, сиениты), микродиориты, трахиты); 3 – внешняя зона брекчий (граниты, сиениты); 4 – дайки гранитов; 5 – ксенолиты монцонитов и диоритов; 6 –линия тектонического нарушения; 7 – границы распространения брекчий; 8 – поле распространения молибденовой минерализации; 9 – номера скважин; 10 – распространение фтор-бериллиевой минерализации; 11 – распространение алюмофторидной минерализации.

Геологическое строение месторождения

Жарчихинское месторождение молибдена находится в центральном районе Бурятии (40 км от г. Улан-Удэ), вблизи железной дороги и в 5 км от р. Селенги. Оно изучено на стадии предварительной разведки. Помимо Жарчихинского месторождения на прилегающей территории известно еще несколько рудопроявлений молибдена (Колобковское, Куналейское, Хардебанское, Надеинское, Право-Куйтунское и др.), свидетельствующие о специализации района на этот тип полезного ископаемого.

Информация по геологическому строению и вещественному составу руд месторождения приведена в небольшом числе публикаций [1, 2, 9,11-13]. В них представлены, помимо данных о геологическом строении, сведения о последовательности формирования и составе минеральных парагенезисов.

Рудное поле сложено крупно- и среднезернистыми лейкократовыми гранитами, сиенитами и граносиенитами позднепалеозойского (280 млн лет) возраста [10, 11, 13]. Перечисленные породы присутствуют в составе крупного плутона и имеют между собой постепенные переходы. Они содержат ксенолиты монцонитов, диоритов и монцодиоритов. В центральной части рудного поля гранитоиды брекчированы и прорваны дайками трахитовых и трахириолитовых порфиров, граносиенит-порфиров и мелкозернистых гранитов (рис. 1). Гранитоиды относятся к породам умеренно-щелочного ряда с калиево-натриевым типом щелочности [10].

Месторождение представлено почти вертикальным столбообразным телом минерализованных брекчий, представленных гранитами, сиенитами, микродиоритами и трахитами, и практически совпадает с границами их распространения, Штокверк размером 750х250 м в плане разведан на глубину 500-550 м, а двумя скважинами прослежен до глубины 800 м.

На месторождении установлено более 50 минеральных видов, сформировавшихся в несколько стадий. Большая часть из них представлена редкой вкрапленностью. Среди жильных минералов преобладают полевые шпаты и кварц. Относительно часто встречаемые минералы приведены в таблице 1.

Минеральный состав руд						
Рудные	Нерудные	Гипергенные				
молибденит	кварц	ферримолибдит				
пирит	микроклин	повеллит				
сфалерит	кислый плагиоклаз	гётит				
галенит	флюорит	ярозит				
халькопирит	сидерит	англезит				
пирротин	кальцит	смитсонит				
марказит	анкерит	церуссит				
магнетит	мусковит	гидрооксилы марганца				
гематит	барит					
	каолинит					

Таблица 1

Рудная минерализация образует рассеянную вкрапленность, сгустки агрегатных скоплений в интенсивно дробленых породах и прожилки молибденитового, кварц-молибденитового состава, которые являются главными рудными компонентами штокверка. Минерализация продуктивного этапа сформировалась при температурах 275-380°С [1]. Позднее образовались пиритовые, кварц-пирит-флюоритовые и кварцфлюорит-пирит-полиметаллические прожилки. Кроме того, на площади месторождения распространены безрудные существенно кварцевые с арфведсонитом и мусковитом минеральные ассоциации.

Количественные соотношения минералов в рудах по данным технологических исследований представлены в таблице 2.

Таблица 2

Соотношение наиболее распространённых минера-
лов в рудах (об. %)

Рудные	Нерудные
молибденит 0,16	кварц 13,0
пирит 1,5	полевые шпаты 75,3
гидрооксиды железа 3,4	карбонаты, флюорит 1,6
сфалерит, галенит,	биотит, мусковит 5,0
халькопирит 0,018	

Кроме того, в акцессорных количествах в составе протолочек обнаружены висмутовый минерал, шеелит, турмалин, берилл, фенакит, вольфрамит, арсенопирит.

Вдоль зон дробления фиксируется аргиллизация пород, сопровождающая кварцевые и кварцалюмофторидные прожилки с сидеритом, каолинитом и сульфидами (галенитом, пиритом, сфалеритом). Наиболее интенсивно эти процессы захватили породы вдоль осевой зоны разлома в центральной части месторождения (рис. 1). Прожилки образовались при температурах 100-170°С [1].

Последовательность формирования месторождения

Минеральные парагенезисы на месторождении сформированы в три этапа (табл. 3).

Ha раннем этапе образовалась флюоритбериллиевая ассоциация. В этот же этап сформировались кварцевые и кварц-полевошпатовые прожилки. Рудный этап сопровождался образованием молибденитовых, кварц-молибденитовых прожилков в ассоциации с бедной вкрапленностью пирита и флюорита. На завершающем этапе сформировалась алюмофторидная минерализация с сульфидами железа, свинца и цинка. Рудогенез завершился образованием карбонатных (кальцитовых) и кварц-карбонатных прожилков. Неясным осталось время кристаллизации кварцевых прожилков со щелочным амфиболом.

Дорудный этап

Флюорит-кварц-полевошпатовые прожилки с бериллийсодержащими минералами встречаются в гранитах и сиенитах периферических частей месторождения. Они обнаружены также в центральной брекчии. Это

Последовательность образования	Ассоциации минералов	Метасоматические процессы	
Дорудный	Кварц-микроклин-флюорит- бертрандит-фенакитовая	Калишпатизация Альбитизация Флюоритизация	
Рудный	Кварц-микроклин-флюоритовая Молибденит-кварцевая «Сухие» молибденитовые прожилки Кварц-сульфидная	Окварцевание Флюоритизация Пиритизация	
Заключительный	Алюмофторидная с кварцем, флюоритом, каолинитом, карбонатами, баритом, сульфидами Кварц-карбонатная	Аргиллизация Карбонатизация	

	Последова	тельность	формиров	ания минера	альных ас	социац	ий	
Жарчихинск	кого место	рождения	и метасол	атические н	процессы	ux con	ровождан	эщие

прожилки и выделения неправильной формы переменной мощности (до 1,5–2 см), ветвящиеся, имеющие неровные границы с вмещающими породами. Нередко они слагают собой цемент в участках дробленых пород. Здесь же встречается редкая вкрапленность пирита, мусковита. Полевые шпаты представлены микроклином и альбитом. Последний развивается по калиевому полевому шпату, иногда нацело замещая его. Среди бериллиевых минералов установлены бертрандит и фенакит. Первый ассоциирует большей частью с флюоритом и калиевым полевымшпатом, второй тяготеет к существенно кварцевым и флюорит-кварцевым выделениям. Формирование этих прожилков происходило при температурах, достигавших 450–490°C [1].

Полевошпат-кварцевые и кварцевые прожилки развиты как внутри рудной зоны, так и за ее пределами во вмещающих гранитах и сиенитах. Это существенно мономинеральные кварцевые, реже кварцполевошпатовые парагенезисы иногда с небольшим количеством флюорита. Участками они раздроблены, секутся рудными прожилками. Кварц в них, как правило, крупнозернистый, а распределение полевого шпата (микроклина) и флюорита весьма неравномерное. В некоторых прожилках присутствует арфведсонит (табл. 4, рис. 2 а–б), слагающий тонкопризматические кристаллы и их агрегатные скопления в кварце. Вместе с амфиболом встречены зерна рутила. В рутиле в пределах 0,5–1,2 мас. % присутствует FeO, в одной пробе до 1,3 мас. % Nb₂O₅.

В сравнении с эталонным, арфведсонит с месторождения Жарчиха содержит меньшее количество Na₂O, компенсируемое K₂O, и наименьшее FeO – TiO₂, MnO, MgO. На классификационной диаграмме амфибол из полевошпат-кварцевых прожилков попадает в поле арфведсонита (рис. 3).

Таблица 4

Таблица 3

№ п/п	1	2	3	4
SiO ₂	51,07	51,07	51,34	52,01
TiO ₂	0,58	0,58	-	0,53
Al_2O_3	0,81	1,04	0,89	0,68
FeO	22,36	23,22	22,89	23,2
MnO	3,25	3,28	2,29	3,45
MgO	7,64	7,41	7,3	7,63
CaO	1,61	1,39	1,9	1,33
Na ₂ O	8,1	7,94	7,98	7,98
K ₂ O	1,08	1,08	1,19	1,17
Сумма	96,52	99,09	95,78	100,31
-O =F	-	0,86	-	0,98
Криста	ллохимические фо	рмулы рассчитан	ы на 23 атома ки	слорода
Si	7,96	7,94	8,05	8,00
Ti	0,07	0,07	-	0,06
Al	0,15	0,19	0,16	0,12
Fe	2,91	3,02	3,00	2,98
Mn	0,43	0,43	0,30	0,45
Mg	1,78	1,72	1,71	1,75
Ca	0,27	0,23	0,32	0,22
Na	2,45	2,39	2,43	2,38
K	0,22	0,22	0,24	0,23
F	_	1,02	_	1,03

Химический состав арфведсонита (мас. %)

Примечание: Состав минерала приведен без учета воды. Здесь и далее «-» ниже предела обнаружения.

Рис. 2. Арфведсонит и рутил в полевошпат-кварцевых и кварцевых прожилках. Изображения в отраженных электронах. Здесь и далее сокращения: кварц – Qz, калиевый полевой шпат – Fsp, плагиоклаз – Pl, каолинит – Kln, рутил – Rt, арфведсонит – Arf.

Рис. 3. Классификационная диаграмма для амфиболов [14].

Рудный этап

В рудный этап сформировались кварцмолибденитовые и «сухие» молибденитовые прожилки. Мощность их варьирует от долей мм до 1 см, обычно не превышает 3–5 мм. Вкрапленность и агрегатные скопления мелкочешуйчатого молибденита приурочены к зальбандам прожилков, частично в срастании с кварцем. Значительная часть молибденита рассеяна в интерстициях и трещинах пород, образуя обогащенные участки, мощностью от мм до 0,3– 0,5 см. В прожилках присутствуют также более поздние пирит и флюорит, которые обычно рассеяны в жильной матрице.

Мощность «сухих» молибденитовых прожилков обычно не превышает 1–2 мм. Это прямолинейные микропрожилки, встречающиеся в относительно слабонарушенных породах. Кроме того, молибденит распределен в межзерновых пространствах. Кроме молибденита, здесь в небольших количествах присутствуют кварц, пирит, флюорит, тяготеющие к центральной части прожилков.

Кварц-сульфидные прожилки завершают рудный этап. Они неправильной формы, мощностью до 2–3 мм (иногда до 0,6–1 см), обычно ветвящиеся. Состав их существенно кварцевый с переменными количествами пирита, флюорита, сфалерита, галенита. В качестве акцессорных минералов присутствуют пирротин, халькопирит, карбонаты.

Заключительный этап

В этот этап сформировалась алюмофторидная и алюмофосфатная минерализации (5 а, б, д, е). В составе ее установлены: прозопит, ральстонит, геарксутит, жарчихит, черчит и минерал группы плюмбогуммита с промежуточным составом гояцит-горсейкситфлоренсит. С ними ассоциируют кварц, флюорит, барит, сидерит, каолинит, не диагностированный алюмофторид. Минерализация приурочена к центральной части месторождения, где слагает несколько зон прожилкования, вытянутых параллельно дайке гранитов, и прослежена до глубины 500 м, ширина зон достигает десятков метров. Прожилки мощностью до нескольких сантиметров имеют неправильную форму, часто ветвятся, цементируют дробленые граниты. Завершается этот этап аргиллизацией и окварцеванием пород.

Наибольшее распространение получили прозопит,

Рис. 4. Диаграмма состава (ф.е.) алюмофосфатов из ассоциации с алюмофторидами.

ральстонит, диккит-каолинит, сидерит. Они обычно приурочены к центральной части прожилков, где выполняют интерстиции между зернами кварца и друзовые полости. В меньших количествах присутствует геарксутит, барит, кальцит, флюорит, жарчихит. Химические составы алюмофторидов представлены в таблице 5. Пирит, галенит и сфалерит тяготеют к зальбандам, образуя вкрапленность, гнездообразные скопления, полосовидные выделения. Здесь же присутствуют небольшие количества флюорита.

Прозопит (Ca_{1,3}Al_{1,8}(F_{0,66},OH_{0,34})8) ассоциирует с каолинитом (табл. 5, рис. 5 б, е). В сравнении с эталонным CaAl₂F₆(OH)₂, состоящим на (мас. %) 16,56 % из Ca, 22,29 % – Al, 7,44 % – H₂O и 47,09 % – F, прозопит с Жарчихинского месторождения содержит меньше фтора и больше – воды. В прожилках содержания его колеблются от первых % до 60 %. Он образует гнездообразные скопления радиально-лучистых агрегатов с мелкими друзовидными полостями, выполненными хорошо образованными таблитчатыми и клиновидными кристаллами. Минерал кристаллизовался после кварца, выполнял центральные зоны в прожилках, отлагался в пустотах и трещинках последнего. По трещинам и краям зерен прозопит замещается ральстонитом, геарксутитом, каолинитом. Участками с ним ассоциируют алюмофосфат, черчит, сидерит и недиагностированный алюмофторид.

Ральстонит $(Na_{1,3}Mg_{0,67}Al_{1,1}(F_{5,8},OH_{0,2})_{\Sigma=6}\cdot H_2O)$ тесно ассоциирует с прозопитом (табл. 5, рис. 5д). В отличие от идеализированной формулы эталонного $Na_{0,7}Mg_{0,7}Al_{1,3}(F_{4,18}(OH)_{1,82})_{\Sigma=6}\cdot H_2O$ с содержаниями 5,98 % Na; 6,32 % – Mg; 21,06 % – Al; 18,75% – H₂O и 39,55% – F, ральстонит, определенный на Жарчихинском месторождении, отличается лишь большим количеством воды, меньшим алюминия и, в некоторых пробах содержащий до 0,33 % Са. Количество минерала в прожилках достигает 10–20 %. Он представлен вкрапленностью и гнездами среди прозопита. В пустотах часто встречаются хорошо образованные кристаллы октаэдрического и кубооктаэдрического облика.

Ральстонит кристаллизовался после прозопита, об этом свидетельствует замещение прозопита ральстонитом по краям зерен и трещинкам, а в пустотах кристаллы его нарастают на агрегаты прозопита. Минерал ассоциирует с сидеритом, по отношению к которому является более ранним. Более ранний он также по отношению к недиагностированному алюмофториду. Как и прозопит, ральстонит замещается геарксутитом, каолинитом, недиагностированным алюмофторидом.

Жарчихит с идеализированной формулой AlF(OH)₂ был открыт С. В. Болохонцевой с соавторами в 1988 году [12]. Он образует щетковидные агрегаты и мелкозернистые выделения, выполняющие пустоты в кварце. Размер отдельных кристаллов его по удлинению не превышает 2,5 мм. От других алюмофторидов минерал отличается наиболее высоким содержанием Al.

Таблица 5

Ком- по- нент	Прозопит						Ральстонит				Жарчи- хит*	Недиа рова алюмо	гности- анный офторид
Al	22,13	22,86	20,59	20,99	20,94	20,80	16,69	16,46	20,02	20,62	33,73	25,46	23,19
Ca	16,16	16,09	15,83	15,94	15,70	15,81	0,33	0,31	-	-	-	-	-
Mg	-	-	-	-	-	-	7,10	7,17	6,31	5,96	-	11,04	10,29
Na	_	-	_	-	-	_	6,42	5,98	5,46	5,75	-	5,16	3,08
F	25,63	27,86	24,93	24,86	24,04	24,42	35,33	35,21	38,32	38,20	23,75	40,26	48,19
0	24,73	25,39	22,98	23,67	23,00	23,59	11,13	10,95	15,28	15,51	40,00	8,32	7,04
Сумма	88,65	92,20	84,33	85,46	83,68	84,62	77,00	76,08	85,39	86,04	97,48	90,24	91,79
		Крисп	паллохим	ические д	формулы	рассчит	аны по ме	етоду иог	нно-кати	онного б	аланса		
Al	1,79	1,81	1,76	1,76	1,77	1,76	1,03	1,04	1,20	1,21	1,00		
Ca	1,32	1,29	1,36	1,35	1,34	1,35	0,02	0,02	-	-	-		
Mg	-	-	-	-	-	-	0,73	0,75	0,63	0,58	-		
Na	-	_	-	-	-	-	1,40	1,33	1,15	1,19	-		
F	0,67	0,73	0,66	0,65	0,63	0,64	5,58	5,56	6,05	6,03	1,33		
OH	0.33	0.27	0.34	0.35	0.37	0.36	0.42	0.44	-0.05	-0.03	1.67		

Химический состав представительных анализов алюмофторидных минералов (мас. %)

Примечание: Состав минералов приведен без учета воды. * - по [12].

Рис. 5. а, б – зерна алюмофосфата–Al-P в ассоциации с прозопитом–Pros, каолинитом, флюоритом–Fl, сидеритом–Sd, галенитом–Gn, цирконом–Zrn, кварцем; *в* – форма выделений накрита–Nak; *г* – зональность барита–Brt, зоны серого цвета в барите обусловлены тонкораспыленным каолинитом; *д* – выделение черчита–Chrch в ассоциации с кварцем, ральстонитом–Rlst, каолинитом, флюоритом, мусковитом–Ms, цирконом, рутилом, калиевым полевом шпатом; *е* – зерна сфалерита–Sp и ватанабеита–Wat в ассоциации с алюмофторидами, каолинитом, флюоритом и рутилом. Изображения в отраженных электронах.

Геарксутит (CaAl(OH, F)₅·H₂O) совместно с каолинитом является одним из наиболее поздних минералов в кварц-алюмофторидных прожилках. Он образует скопления снежно-белых мелкочешуйчатых агрегатов в пустотах, трещинах, интерстициях, развивается по прозопиту, в меньшей мере по ральстониту. Недиагностированный алюмофторид содержит в своем составе алюминий, магний, натрий и железо. Встречается в ассоциации с прозопитом, ральстонитом, сидеритом, представлен агрегатами мелких зерен (менее 1 мм) белого цвета, замещающими прозопит, ральстонит. На стенках пустот встречаются мелкие кристаллы, представленные комбинацией двух ромбических призм, пирамиды и пинакоида. В составе его, вероятно, присутствует вода. По содержанию главных компонентов он приближается к ральстониту, но кристаллографические формы не позволяют отнести его к последнему.

Минерал группы плюмбогуммита встречен в ассоциации с алюмофторидами (рис. 5 а, б). По химическому составу относится к группе плюмбогуммита, с переменными значениями флоренситового (до 65 %) и гояцитового (до 60 %), в меньшей степени горсейкситового (до 45 %) компонентов (табл. 6, рис. 4). Важной особенностью минерала является относительно высокие концентрации фтора и тория, присутствие железа и кальция.

Химические составы алюмофосфата имеют широкие вариации (рис. 4). При этом значительная часть точек лежит в областях за пределами пятидесятипроцентных границ, которыми обычно ограничены самостоятельные минеральные виды.

Накрит установлен на поверхности агрегатов прозопита и трещинках в кварце в виде радиальнопластинчатых агрегатов и тонкочешуйчатых выделений. Форма выделений показана на рис. 5в. Кристаллическая структура отличается от каолинита меньшим смещением слоистых пакетов относительно друг друга.

Барит является одним из поздних минералов. Он слагает маломощные прожилки и вкрапленники. В друзовых пустотах встречены его кристаллы. Минерал характеризуется зональным строением (рис. 5г), относительно однородным составом, невысоким содержанием стронция и свинца (до 2 мас. %). Зональность в барите обусловлена присутствием тонкой вкрапленности каолинита.

Чёрчит встречается в виде мелких зерен (рис. 5 д), тесно ассоциирует с кварцем, ральстонитом и цирконом. Помимо Y, который является основным тяжелым редкоземельным элементом, также наблюдаются переменные количества Gd, Dy, Er, Yb (табл. 7).

Среди алюмофторидов отмечены зерна циркона (рис. 5д), в которых содержится до 1,5 мас.% гафния и тория.

Сульфидная минерализация в ассоциации с алюмофторидами представлена в основном пиритом, галенитом, сфалеритом. Редко среди них (рис. 5д) встречаются зерна сульфида меди с мышьяком и сурьмой, по составу приближающегося к ватанабеиту $-Cu_4(As,Sb)_2S_5$.

Таблица 6

Ком															
по-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
нент															
Al_2O_3	27,30	27,87	23,83	19,44	25,56	25,75	25,60	24,96	23,09	27,32	27,68	20,07	26,53	25,96	24,62
FeO	3,65	_	3,07	9,75	2,79	0,53	0,80	1,57	1,45	_	1,30	5,80	-	2,68	3,99
CaO	1,18	0,85	1,72	1,86	0,97	1,25	1,41	0,81	0,87	_	0,64	1,83	0,49	1,55	0,92
BaO	5,53	7,22	6,96	6,39	8,73	3,33	4,52	8,35	3,68	5,38	4,97	4,05	6,50	3,53	4,92
SrO	6,66	4,20	6,11	3,58	6,27	5,00	3,25	7,60	5,71	8,70	9,61	4,77	7,99	3,87	8,33
Ce ₂ O ₃	5,55	6,45	6,41	4,33	4,95	7,37	8,53	3,72	6,42	8,05	5,99	6,45	6,34	8,44	5,49
La ₂ O ₃	3,10	2,60	2,42	-	2,02	3,33	3,26	1,23	-	4,40	4,26	1,22	5,18	4,05	3,83
Pr_2O_3	_	_	0,92	-	-	-	1,24	-	1,43	_	_	-	-	1,12	-
Nd ₂ O ₃	1,60	2,27	2,02	2,47	2,18	1,71	3,30	1,90	3,25	2,11	1,92	3,50	0,96	1,84	1,06
ThO ₂	1,64	1,74	1,40	5,58	1,45	-	0,92	1,59	0,80	0,76	0,82	4,68	-	1,42	1,24
PbO	_	3,62	_	-	-	4,98	3,54	-	-	_	-	-	-	3,13	-
P_2O_5	21,93	24,61	21,68	18,19	24,13	22,82	22,52	21,65	21,31	24,04	25,21	20,19	25,39	21,01	22,73
Сумма	84,37	84,60	80,86	77,34	84,02	78,98	83,40	78,94	71,78	84,38	86,23	76,76	84,00	81,82	81,22
-O =F	2,62	1,33	1,82	2,42	2,09	1,22	1,90	2,34	1,59	1,52	1,61	1,77	1,94	1,35	1,72
			Кри	сталло:	химичес	кие фор	мулы ра	ссчита	ны на 14	атомо	в кислор	ода			
Al	4,40	2,20	4,47	3,56	4,41	5,22	4,64	4,32	4,70	4,95	4,91	4,02	4,59	5,08	4,58
Fe	0,42	0,21	0,41	1,27	0,34	0,08	0,10	0,19	0,21	_	0,16	0,82	-	0,37	0,53
Ca	0,14	0,07	0,20	0,25	0,10	0,14	0,16	0,09	0,10	_	0,06	0,23	0,05	0,18	0,10
Ba	0,30	0,15	0,43	0,39	0,50	0,22	0,27	0,48	0,25	0,32	0,29	0,27	0,37	0,23	0,30
Sr	0,53	0,26	0,56	0,32	0,53	0,50	0,29	0,65	0,57	0,78	0,84	0,47	0,68	0,37	0,76
Ce	0,28	0,14	0,37	0,25	0,27	0,46	0,48	0,20	0,41	0,45	0,33	0,40	0,34	0,51	0,32
La	0,16	0,08	0,14		0,11	0,21	0,18	0,07	1	0,25	0,24	0,08	0,28	0,25	0,22
Pr	_	_	0,05	-	-	-	0,07	-	0,09	_	-	-	-	0,07	-
Nd	0,08	0,04	0,11	0,14	0,11	0,11	0,18	0,10	0,20	0,12	0,10	0,21	0,05	0,11	0,06
Th	0,05	0,03	0,05	0,20	0,05	-	0,03	0,05	0,03	0,03	0,03	0,18	-	0,05	0,04
Pb	_	_	_	_	_	0,23	0,15	-	_	_	_	_	_	0,14	_
Р	2,54	1,27	2,92	2,39	2,99	3,33	2,93	2,69	3,12	3,13	3,21	2,90	3,15	2,95	3,04
F	2.70	1.35	2.17	2.82	2.30	1.58	2.19	2,58	2,06	1,76	1,82	2,25	2,14	1,69	2,04

Химический состав редкоземельных алюмофосфатов (мас. %)

Примечание: Состав минералов приведен без учета воды. В пробе 10 присутствует 1,37 % SiO₂, в 4, 8 и 14 около 0,85 % SO₃, которые, скорее всего, были захвачены из матрицы.

Химі	Химический состав черчита (мас. %)						
Компонент	1	2	3				
Sm ₂ O ₃	_	-	1,33				
Gd ₂ O ₃	1,84	2,11	3,71				
Dy ₂ O ₃	2,93	4,15	5,03				
Er_2O_3	1,32	1,5	_				
Yb_2O_3	1,58	1,61	2,49				
Y_2O_3	34,38	42,61	39,1				
ThO ₂	_	-	1,7				
P_2O_5	30,92	34,62	33,75				
Сумма	72,97	86,6	88,46				
-O=F ₂	-	-	0,57				
Сумма	72,97	86,6	87,68				
Криста	аллохимические	формулы рассч	нитаны				
по л	летоду ионно-к	атионного бала	пнса				
Sm	0,00	0,00	0,02				
Gd	0,03	0,03	0,05				
Dy	0,04	0,05	0,07				
Er	0,02	0,02	0,00				
Yb	0,02	0,02	0,03				
Y	0,85	0,91	0,85				
Th	0,00	0,00	0,02				
Р	1,22	1,18	1,17				
F	0,00	0,00	0,07				

Таблица 7

Примечание: Состав минерала приведен без учета воды.

		()
№ п/п	1*	2
Fe	0,54	_
Cu	34,68	41,1
Zn	6,93	_
Sb	21,89	14,3
As	3,9	15,4
S	24,04	26,2
Ag	-	0,1
Mn	_	0,3
Bi	-	2,4
Сумма	91,98	99,8
Кристаллохил	иические формули	ы рассчитаны
по методу	ионно-катионно	го баланса
Fe	0,06	0,00
Cu	3,64	3,96
Zn	0,71	0,00
Sb	1,20	0,72
As	0,35	1,26
S	5,00	5,00
Ag	0,00	0,01
Mn	0,00	0,03
Bi	0,00	0,07

Таблица 8

Химический состав ватанабеита (мас. %)

Примечание: * – минерал с Жарчихинского месторождения.

В сравнении с эталонным ватанабеитом [15] (табл. 8), в нем (проба 1*) ниже содержание Cu, существенно более низкие концентрации As и высокие Zn.

Карбонаты встречены на участках метасоматически замещенных пород, где слагают редкие карбонатные и кварц-карбонатные прожилки, сформировавшиеся после молибденитовых, флюоритовых и сульфидных прожилков, а также в ассоциации с алюмофторидными минералами. Среди карбонатов диагностированы кальцит, анкерит, сидерит.

Сидерит присутствует в алюмофторидных прожилках, где образует вкрапленность, гнезда, а в друзовых пустотках присутствуют ромбоэдрические кристаллы. В последних случаях сидерит тесно ассоциирует с ральстонитом. Для минерала характерна неоднородность состава, связанная с широкими вариациями (от 1 до 10 мас. %) концентраций марганца. Содержания других компонентов не превышают сотых долей процента.

Мономинеральные карбонатные прожилки завершают этот этап, по своему составу они делятся на кальцитовые и анкеритовые. Как правило, мощность их варьирует от долей мм до 5–7 см.

Обсуждение результатов

Результаты проведенных исследований указывают на сложное многоэтапное развитие молибденового месторождения Жарчиха. В составе месторождения, наряду с трубообразным рудным телом, встречаются «линейные» жильные или жилоподобные тела и пострудные дайки. При этом отмечается наличие разновозрастной фтор-бериллиевой, кварц-молибденитовой, алюмофторидной и карбонатной минеральных ассоциаций.

Анализ многочисленных публикаций по минералогии молибденовых месторождений как зарубежных [3, 4, 5], так и отечественных [1, 2, 9, 11, 13], показал, что фтор-бериллиевая [16] и алюмофторидная (алюмофосфатная) минерализации не являются типоморфными. Поэтому присутствие их на Жарчихинском месторождении представляет большой интерес. Подобную минерализацию можно выделить в специфический минеральный тип, либо же, при отсутствии генетической связи между этими типами, связывать такую ассоциацию с телескопированием разновозрастных парагенезисов.

Фтор-бериллиевая минерализация Жарчихинского месторождения расположена автономно от молибденовой. По своим минеральным и геохимическим свойствам она идентична с распространенным в регионе флюорит-фенакит-бертрандитовым оруденением и находится в пределах Западно-Забайкальской бериллиеносной провинции [6], специализированной на флюорит-бертрандит-фенакитовую минерализацию, имеющую возраст 224–226 млн лет [7].

Алюмофторидная минерализация, как известно, является типоморфной для щелочных комплексов пород. Проведенные минералогические исследования выявили, что алюмофторидная минерализация оторвана от основного рудного этапа и пространственно ассоциирована с кварцевыми прожилками.

Исследования выполнены при финансовой поддержке РФФИ 17-05-00129_ а.

ЛИТЕРАТУРА

1. Покалов, В. Т. Рудно-Магматические системы гидротермальных месторождений / В. Т. Покалов // Недра. – М., – 1992. – 177 с.

2. Батурина, Е. Е. Молибденовые и вольфрамовые месторождения Западного Забайкалья (основные черты металлогении и геохимии) / Е. Е. Батурина, Г. С. Рипп // Наука. – М., – 1984. – 152 с.

3. Processes and ore genesis at the Yaochong Mo deposit, Henan Province, China / Q.-Q. Liu [et al.] // Ore Geology Reviews – 2017. – V. 86. – P. 692–706.

4. Metallogenic age and hydrothermal evolution of the Jidetun Mo deposit in central Jilin Province, northeast China: Evidence from fluid inclusions, isotope systematics, and geochronology / Z.-G. Wang [et al.] // Ore Geology Reviews – 2016. – V. 89. – P. 731–751.

5. Shrimp U–Pb, Ar–Ar and fission-track geochronology of W–Mo deposits in the Balkhash Metallogenic Belt (Kazakhstan), Central Asia, and the geological implications / X. Chen [et al.] // Journal of Asian Earth Sciences. – 2015. – V. 110. – P. 19–32

 Куприянова, И. И. Бериллиевые месторождения России / И. И. Куприянова, Е. П. Шпанов // ГЕОС – М. – 2011. – 354 с.
Возраст рудоносного магматизма Ауникского месторождения Западно-Забайкальской бериллиеносной металлогенической провинции / Д. А. Лыхин [и др.] // Доклады

PAH. – 2003. – T. 392. – \mathbb{N}_2 2. – C. 230–234.

8. Канакин, С. В. Алгоритм учета фона в рентгеноспектральном микроанализе с волновой дисперсией / С. В. Канакин, Н. С. Карманов, М. И. Лапина // Тез. докл. III Всероссийской и VI Сибирской конф. по рентгеноспектрально-

Геологический институт СО РАН, г. Улан-Удэ

Савченко Алена Алексеевна, аспирант E-mail: savchenko.alena.alex@rambler.ru Teл.: 8-(3012)-43-39-55; 8-(983)-536-19-87

Рипп Герман Самуилович, к.г.-м.н., ведущий научный сотрудник E-mail: ripp@ginst.ru Teл.: 8-(3012) 43-39-55 му анализу. - Иркутск. - 1998. - 66 с.

9. Верник, В. П. Жарчихинское молибденовое месторождение. В кн. Месторождения Забайкалья / В. П. Верник, Г. С. Рипп // Б.и. – Чита.– 1995. – Т.1. – Кн.1. – С. 176–179.

10. Объяснительная записка листа М-48-VI, серия селенгинская // Министерство природных ресурсов России / В. С. Платов [и др.] // ВСЕГЕИ (Санкт-Петербург). – Москва. – 2000. – 156 с.

11. Покалов, В. Т. Жарчихинское проявление молибдена в брекчиевой трубке в каледонидах Западного Забайкалья / В. Т. Покалов, С. В. Болохонцева, В. В. Васин // Известия. Сер. геологическая. – М. — 1985. – №7. – С. 99–107

12. Жарчихит AIF(OH)₂ – новый минерал / С. В. Болохонцева [и др.] // Записки всесоюзного минералогического общества. – 1988. – Вып.1. – С. 79–83.

13. Новая вулканическая структура с молибденовой минерализацией в Западном Забайкалье / В. В. Скрипкина [и др.] // Доклады АНСССР. – 1982. – Т.264. – №6. – С. 1461–1464.

14. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical. Associations amphibole nomenclature / B. E. Leake [et al.] // American Mineralogist. – 2004. – V. 89. – P. 883–887.

15. Watanabeite, $Cu_4(As,Sb)_2S_5$, a new mineral from the Teine mine, Sapporo, Hokkaido, Japan / M. Shimizu [et al.] // Mineralogical Magazine. – 1993. – V. 57. – P. 643–649.

16. Проблема источников флюидов Оротского бериллиевого месторождения (Западное Забайкалье) / М. О. Рампилов [и др.] // Известия Сибирского отделения. Секции наук о Земле Российской академии естественных наук. Геология, разведка и разработка месторождений полезных ископаемых. – 2017. – Т. 40. – № 1. – С. 42–51.

Geological Institute SB RAS, Ulan-Ude

Savchenko A. A., post-graduate student, laboratory assistant E-mail: savchenko.alena.alex@rambler.ru Tel.: 8-(3012)-43-39-55; 8-(983)-536-19-87

Ripp G. S., PhD, leading researcher E-mail: ripp@ginst.ru Tel.: 8-(3012) 43-39-55