# ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ И ИСТОЧНИКИ РАСПЛАВОВ НЕОАРХЕЙСКИХ УЛЬТРАКАЛИЕВЫХ РИОЛИТОВ КУРСКОГО БЛОКА ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА

# Н. В. Холина

## Воронежский государственный университет

Поступила в редакцию 16 января 2018 г.

Аннотация: в пределах Курского блока Воронежского кристаллического массива располагаются неоархейские высококремнистые ультракалиевые риолиты, которые по своим геохимическим особенностям относятся к гранитоидам А-типа и сформировались во внутриплитной постколлизионной геодинамической обстановке. Формирование ультракалиевых расплавов кислого состава происходило при частичном высокотемпературном плавлении коры, которая обогащалась мантийным веществом, несущим калийсодержащие флюиды. В качестве корового источника расплава могли быть тоналит-трондьемит-гранодиоритовые гнейсы обоянского комплекса, а источником мантийного вещества в пределах Курского блока могут являться неоархейские метабазиты, подстилающие ультракалиевые риолиты.

**Ключевые слова:** неоархей, ультракалиевые риолиты, геохимия, Курский блок, граниты A-типа, источники расплавов.

# GEOCHEMICAL TYPIZATION AND SOURCES OF MELTS OF THE NEOARCHEAN ULTRA-POTASSIC RHYOLITES OF THE KURSK BLOCK, VORONEZH CRYSTALLINE MASSIF

**Abstract:** within a block of the Kursk Voronezh crystalline massif are Neoarchean high-ultrapotassic rhyolites, which by their geochemical characteristics belong to granitoids A-type and formed in intraplate post-collisional geodynamic setting. The formation of ultrapotassic melts acid composition occurred at high temperature partial melting crust, which has been enriched mantle substance bearing a potassium-containing fluids. As the crustal source of the melt could be tonalite-trondhjemite-granodiorite gneisses of the Oboyan complex and the source of the mantle material within the Kursk block can be Neoarchean metabasites, the underlying ultrapotassic rhyolites.

**Keywords:** Neoarchean, ultrapotassic rhyolites, geochemistry, Kursk block, A-type granites, sources of melts.

#### Введение

Риолиты с высоким содержанием калия достаточно широко развиты в различных регионах мира, где они образуются на завершающих стадиях орогенеза или при активизации платформ (континентальный рифтогенез). Появляясь на завершающих этапах орогенного развития регионов, а также в процессе их тектоно-магматической активизации. Ультракалиевые риолиты могут служить реперами тектонической стадийности, позволяющими проследить эволюцию вулканической деятельности во времени и в пространстве на различных этапах геотектонического развития регионов.

На территории Курского блока Воронежского кристаллического массива риолиты с высоким содержанием калия располагаются в пределах Воронецко-Алексеевского зеленокаменного пояса и распространены ограниченно в южном замыкании Тим-Ястребовской структуры (рис. 1). Неоархейские кислые вулканиты объединены в лебединскую свиту михайловской серии и стратиграфически залегают на границе неоархея и палеопротерозоя.

В настоящей статье задачами исследования являются: (1) выявление геохимических особенностей неоархейских ультракалиевых риолитов Курского блока, (2) установление источников расплавов и тектонической обстановки проявления кислого магматизма в конце неоархея.

## Геологическое положение

Курский блок расположен в западной части Воронежского кристаллического массива и представляет собой гранит-зеленокаменную область, в пределах которой выделяются два неоархейских зеленокаменных пояса северо-западного простирания: западный Льговско-Ракитнянский (Белгородско-Михайловский) и восточный Алексеевско-Воронецкий (Орловско-Тимской).



Рис. 1. Схематическая геологическая карта Старооскольского рудного района с расположением скважин, вскрывших лебединскую свиту михайловской серии (по неопубликованным материалам Н. А. Плаксенко). НИЖНИЙ ПРОТЕРОЗОЙ. Оскольская серия: 1 - роговская свита. Кварцево-слюдистые сланцы, известняки и доломиты, метаалевролиты, метапесчаники, конгломераты. Курская серия. 2-7: 2-6 - коробковская свита. Кварциты магнетитовые, магнетит-гематитовые, силикатно-магнетитовые; сланцы кварц-биотитовые, кварц-амфиболовые, кварц-хлоритовые, углеродистые. 7 - стойленская свита. Сланцы кварц-биотитовые, кварц-серицитовые, кварц-хлоритовые, кварц-двуслюдяные, метапесчаники, кварциты, метагравелиты, метаконгломераты. ВЕРХНИЙ АРХЕЙ. 8-9 - Михайловская серия: 8 - лебединская свита. Метариолиты, метаграделиты, метадациты, сланцы кварц-биотитовые, кварц-двуслюдяные, кварц-хлоритовые, иногда метапесчаники, кварциты; 9 - александровская свита. Ортоамфиболиты, ортосланцы основного и ультраосновного состава. НИЖНИЙ АРХЕЙ. 10 - обоянская серия. Мигматизированные и гранитизированные гнейсы, мигматиты, прослои амфиболитов, амфиболовых сланцев. ИНТРУЗИВНЫЕ КОМПЛЕКСЫ. Раннепротерозойские: 11 - стойло-николаевский комплекс. Вторая фаза - гранодиориты, диориты, габбродиориты. 12-13 - позднеархейские: 12 - гранит-порфиры; 13 - салтыковский комплекс. Плагиограниты, тоналиты, гранодиориты; 14 - сергеевский комплекс. Вторая фаза - амфиболизированное габбро, аподиабазовые амфиболиты; 15 - региональные разломы; 16 - буровые скважины и их номера.

Ультракалиевые риолиты распространены локально в южном обрамлении Тим-Ястребовской структуры Алексеевско-Воронецкого зеленокаменного пояса, где они сохранились от размыва в отдельных структурно-фациальных зонах (Старооскольский рудный район) (рис. 1). Стратиграфическое положение пород установлено точно, так как в ряде скважин (6064, 6066, 5321, 12-а и др.) на толще вулканитов с размывом и угловым несогласием залегают метапесчаники и метаконгломераты стойленской свиты курской серии. Максимальная видимая мощность отложений до 300 м. В разрезах скважин (5321, 5329 и др.) отмечены маломощные прослои метапесчаников, разделяющие толщу вулканических пород на отдельные пачки и фиксирующие прерывистый характер процесса вулканизма. Количество потоков в разрезах скважин установить трудно, на их наличие указывает только присутствие прослоев осадочных пород (рис. 2).

Абсолютный возраст, определенный U-Pb методом по циркону из ультракалиевых риолитов Лебединского участка (гидрогеологическая шахта под Лебединским железорудным карьером, обр. ЛК-104), составляет 2612±10 млн. лет (SHRIMP) [1].



Рис. 2. Разрезы скважин, вскрывших образования неоархейских ультракалиевых риолитов КМА: 1 - кварцевый метапесчаник (PR1st); 2 - кварц-биотит-полевошпатовый метапесчаник (AR<sub>2</sub>lb); 3 – метариолиты, метатуфы кварц-полевошпатового порфира (AR<sub>2</sub>lb); 4 – конгломераты (PR<sub>1</sub>st); 5 – сланцы кварц-биотитовые, биотит-мусковитовые; 6 – сланцы биотит-полевошпатовые; 7 – сланцы биотит-амфиболовые; 8 – амфиболиты; 9 – диориты; 10 – сланцы и железистые кварциты курской серии (PR1kr); 11 – разломы.

Ň

## Петрография

Среди кислых эффузивов наибольшим распространением пользуются литокристаллокластические метатуфы риолитового состава (скв. 311а, 304а, 2296, 5328 и др.) и метариолиты (скв. 2296, 5327, 5328, 5329, 6066 и др.) (рис. 3). Все породы подверглись региональному метаморфизму, рассланцованы в различной степени, участками до мусковит-кварцевых сланцев.

Метатуфы риолитового состава и метариолиты макроскопически схожи, серой и светло-серой окраски иногда с розовым оттенком, сланцеватой текстуры, структура порфировидная, обусловленная наличием в мелкозернистой основной массе крупных зерен (кристаллокластов и порфировидных вкрапленников) кварца, микроклина. В метатуфах часто наблюдаются мелкие обломки кристаллических биотитовых сланцев, метапесчаников. Микроскопически породы характеризуются порфировой, порфиробластовой структурой с гранобластовой, лепидогранобластовой и микролепидогранобластовой структурами основной массы (рис. 3а, б, в, г). В риолитах отсутствует вулканическое стекло, которое было перекристаллизовано при метаморфических изменениях.

Вкрапленники составляют до 15 % объема породы. Резко преобладающими являются вкрапленники кварца характерного бледно-голубого цвета (иногда



*Рис. За.* Метариолит. Николи скрещены, увеличение х4, обр. 2296/250,5.



*Рис. 3в.* Метатуф риолитового состава. Николи скрещены, увеличение х4, обр. 5329/170,8.

ВЕСТНИК ВГУ. СЕРИЯ: ГЕОЛОГИЯ. 2018. № 1

до 10 мас. %). Их форма преимущественно угловатоокруглая, иногда наблюдаются кристаллы близкие к прямоугольной или шестиугольной форме размером до 5–7 мм. Присутствуют также вкрапленники микроклин-пертита, представляющие собой структуры распада, состоящие из альбита и микроклина, угловатоокруглой формы (рис. 3в). Отмечаются отдельные единичные зерна микроклина с хорошо выраженной решетчатой структурой размером от 0,5 до 3 мм.

Ориентировки распределения вкрапленников не наблюдается. Кроме вкрапленников присутствуют ксенокристаллы, образующие агрегаты мелких зерен. Ксенокристаллы кварца срастаются в отдельные участки или прерывистые полосы.

Основная масса породы представлена равномернозернистым агрегатом зерен кварца размером 0,05 мм и меньше, составляющим 55–60 % объема породы, полевыми шпатами – альбитом и микроклином (около 15 %), мусковитом (до 15 %), биотитом до 5 %. Акцессорные минералы представлены редкоземельными фосфатами (монацит, ксенотим), силикатами (циркон, эпидот, алланит, цоизит), единичными зернами апатита, рутила. Рудные минералы представлены единичными зернами пирита (до 2 %), сфалерита (до 1 %), ильменита (около 1 %). В качестве вторичных минералов присутствуют бастнезит, хлорит, кальцит.



*Рис. 36.* Метариолит. Николи скрещены, увеличение х4, обр. 2296/211,5.



*Рис. 3г.* Метатуф риолитового состава. Николи скрещены, увеличение х4, обр. 5328/297,7.

#### Методика аналитических исследований

Анализы химического состава проб производили на спектрометре последовательного действия PW-2400 производства компании PhilipsAnalytical B.V в ИГЕМ РАН. При калибровке спектрометра использованы отраслевые и государственные стандартные образцы химического состава горных пород и минерального сырья (14 ОСО, 56 ГСО). Подготовка препаратов для анализа породообразующих элементов выполнена путем плавления 0,3 г порошка пробы с 3 г тетрабората лития в индукционной печи с последующим отливом гомогенного стеклообразного диска. Точность анализа составляла 1–5 отн. % для элементов с концентрациями выше 0,5 мас. % и до 12 отн. % для элементов с концентрацией ниже 0,5 мас. %.

Малые и редкие элементы определяли методом индукционно-связанной плазмы с масс-спектрометрическим окончанием анализа (ICP-MS) в АСИЦ ИПТМ РАН. Разложение образцов пород, в зависимости от их состава, проводили путем кислотного вскрытия, как в открытой, так и в закрытой системах. Пределы обнаружения для REE, Hf, Ta, Th, U составляли 0,02–0,03 ppm, для Nb, Be, Co – 0,03–0,05 ppm, для Li, Ni, Ga, Y – 0,1 ppm, для Zr – 0,2 ppm, для Rb, Sr, Ba – 0,3 ppm, для Cu, Zn, V, Cr – 1–2 ppm. Правильность анализа контролировалась путем измерения международных и российских стандартных образцов GSP-2, BM, СГД-1А, СТ-1. Ошибки определения концентраций составляли от 3 до 5 мас. % для большинства элементов.

Sm-Nd изотопный анализ и изотопные исследования цирконов выполнены в Центре изотопных исследований ВСЕГЕИ (Санкт-Петербург). Выделение циркона проводилось по стандартной методике с использованием тяжелых жидкостей. Измерения абсолютного возраста цирконов проводились на ионном микрозонде SHRIMP-II по стандартной методике [2] с использованием эталонных цирконов «91500» и «Тетога». При расчетах использовали константы распада, предложенные в работе [3] и вводили поправку на нерадиогенный свинец по [4] на основе измеренного отношения <sup>204</sup>Pb/<sup>206</sup>Pb. Полученные результаты обрабатывали с помощью программ «SQUID v1.12» и «ISOPLOT/Ex 3.22» [5, 6].

#### Петрогеохимия

Метариолиты и метатуфы риолитового состава характеризуются высокими содержаниями SiO<sub>2</sub>, часто превышающими 75 мас. % (табл. 1, рис. 4а), высоким содержанием K<sub>2</sub>O (до 7–8 %) (рис. 5), низкими CaO (0,05–1,4 мас. %) и MgO (0,34–1,4 мас. %), повышенной железистостью (XFe = 0,54 – 0,89) и насыщенностью глиноземом (A/CNK = 1,05–2,0) (рис. 46) [7]. В них отмечаются широкие вариации в целом повышенных содержаний щелочей (K<sub>2</sub>O+Na<sub>2</sub>O = 5,8–9,5) с преобладанием калия, часто очень резким (K<sub>2</sub>O/Na<sub>2</sub>O = 1,4–43,6) (табл. 1).

Зависимость содержаний петрогенных оксидов от концентрации SiO<sub>2</sub> представлена на рис. 5 [8] и проявлена весьма незначительно. Это говорит о практически полном отсутствии линейности в изменении состава пород. Следовательно, породы представляют собой недифференцированную серию ультракалиевых риолитов.

Таблица 1

| Скв./глуб.                                                   | 2296/<br>211,5 | 2296/<br>250,5 | 2296/<br>260,3 | 2296/<br>288,5 | 2296/<br>297,8 | 2296/<br>324,0 | 5329/<br>170,8 | 5329/<br>203,7 | 5329/<br>228,0 | 5329/<br>238,2 | 5329/<br>386,6 | 5329/<br>391,8 |
|--------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| SiO <sub>2</sub>                                             | 76,65          | 75,2           | 74,5           | 72,3           | 75,8           | 75,17          | 74,5           | 73,98          | 72,04          | 74,17          | 76,56          | 76,2           |
| TiO <sub>2</sub>                                             | 0,28           | 0,4            | 0,41           | 0,39           | 0,37           | 0,23           | 0,46           | 0,33           | 0,34           | 0,35           | 0,16           | 0,28           |
| Al <sub>2</sub> O <sub>3</sub>                               | 10,5           | 12,2           | 13,0           | 13,9           | 10,85          | 11,59          | 12,35          | 12,06          | 13,66          | 13,03          | 12,34          | 12,7           |
| FeO                                                          | н.п.           | 1,97           | 1,44           | 2,63           | 2,27           | н.п.           | 1,8            | н.п.           | 0,84           | н.п.           | н.п.           | 1,02           |
| Fe <sub>2</sub> O <sub>3</sub>                               | 2,44           | 0,81           | 1,34           | 1,75           | 0,84           | 2,21           | 0,99           | 2,9            | 1,97           | 2,63           | 0,63           | 0,79           |
| MgO                                                          | 0,49           | 0,48           | 0,72           | 0,76           | 0,76           | 0,48           | 0,51           | 0,34           | 0,59           | 0,48           | 0,34           | 0,63           |
| MnO                                                          | 0,015          | 0,03           | 0,02           | 0,04           | 0,02           | 0,026          | 0,03           | 0,023          | 0,073          | 0,025          | 0,01           | <0,01          |
| CaO                                                          | 0,057          | 0,44           | 0,33           | 0,72           | 0,44           | 0,53           | 0,33           | 0,27           | 1,3            | 0,18           | 0,15           | 0,22           |
| Na <sub>2</sub> O                                            | 0,63           | 1,52           | 0,25           | 0,13           | 1,76           | 3,75           | 1,69           | 3,74           | 3,02           | 2,72           | 1,28           | 0,72           |
| K <sub>2</sub> O                                             | 8,06           | 6,73           | 6,51           | 5,68           | 6,09           | 5,33           | 4,86           | 5,71           | 5,14           | 5,36           | 7,72           | 6,12           |
| P <sub>2</sub> O <sub>5</sub>                                | 0,034          | 0,06           | 0,06           | 0,06           | 0,04           | 0,037          | 0,06           | 0,035          | 0,02           | 0,04           | 0,018          | 0,03           |
| ППП                                                          | 0,32           | 0,54           | 1,18           | 1,91           | 0,58           | 0,27           | 0,92           | 0,31           | 1,03           | 0,71           | 0,35           | 1,41           |
| Сумма                                                        | 99,56          | 100,3          | 99,77          | 100,2          | 99,84          | 99,78          | 100,6          | 99,74          | 99,64          | 99,7           | 99,68          | 100,1          |
| Mg#                                                          | 0,19           | 0,15           | 0,21           | 0,15           | 0,2            | 0,19           | 0,16           | 0,12           | 0,2            | 0,17           | 0,37           | 0,26           |
| Fe#                                                          | 0,83           | 0,84           | 0,78           | 0,84           | 0,79           | 0,82           | 0,84           | 0,89           | 0,79           | 0,84           | 0,65           | 0,73           |
| K <sub>2</sub> O/Na <sub>2</sub> O                           | 12,81          | 4,42           | 26,04          | 43,69          | 3,46           | 1,42           | 2,87           | 1,52           | 1,7            | 1,97           | 6,0            | 8,5            |
| Na <sub>2</sub> O/K <sub>2</sub> O                           | 0,078          | 0,22           | 0,04           | 0,023          | 0,29           | 0,7            | 0,34           | 0,65           | 0,58           | 0,5            | 0,16           | 0,12           |
| Fe <sub>2</sub> O <sub>3</sub> +MgO<br>+MnO+TiO <sub>2</sub> | 3,225          | 3,65           | 2,49           | 5,57           | 1,99           | 2,95           | 3,79           | 3,6            | 3,39           | 3,48           | 1,15           | 1,70           |
| A/CNK                                                        | 1,2            | 1,4            | 1,61           | 2,13           | 1,05           | 1,2            | 1,79           | 1,24           | 1,44           | 1,57           | 1,35           | 1,54           |

Химические составы неоархейских ультракалиевых риолитов лебединской свиты Курского блока

| Скв./глуб.                                                   | ЛК-<br>104 | 6066/<br>505,5 | 6072/<br>351,0 | 5328/<br>217,8 | 5327/<br>310,7 | 5321/<br>339,8 | 5321/<br>376,0 | 5321/<br>394,4 | 5321/<br>473,8 | 5321/<br>487,5 | 2281/<br>322,4 | 2281/<br>367,0 |
|--------------------------------------------------------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| SiO <sub>2</sub>                                             | 75,59      | 76,25          | 74,14          | 77,36          | 77,50          | 76,9           | 76,6           | 74,2           | 76,6           | 76,4           | 76,0           | 76,2           |
| TiO <sub>2</sub>                                             | 0,19       | 0,24           | 0,43           | 0,16           | 0,25           | 0,2            | 0,18           | 0,27           | 0,21           | 0,2            | 0,25           | 0,18           |
| Al <sub>2</sub> O <sub>3</sub>                               | 13,20      | 11,38          | 10,76          | 11,8           | 13,3           | 11,8           | 11,8           | 12,0           | 11,7           | 11,9           | 12,45          | 12,55          |
| FeO                                                          | Н.П.       | Н.П.           | 2,46           | н.п.           | 1,2            | 1,2            | 1,56           | 1,62           | 1,08           | 1,44           | 1,08           | 0,6            |
| Fe <sub>2</sub> O <sub>3</sub>                               | 1,24       | 2,26           | 3,28           | 1,51           | 0,39           | 0,69           | 0,77           | 1,12           | 1,5            | 0,62           | 0,82           | 0,72           |
| MgO                                                          | 1,04       | 0,43           | 1,28           | 0,76           | 0,49           | 0,87           | 1,42           | 1,86           | 1,02           | 0,71           | 0,86           | 0,47           |
| MnO                                                          | 0,005      | 0,02           | 0,06           | н.п.           | 0,04           | 0,03           | 0,04           | 0,04           | 0,03           | 0,04           | 0,02           | 0,01           |
| CaO                                                          | 0,05       | 0,38           | 1,4            | н.п.           | 0,37           | 0,12           | 0,37           | 0,18           | 0,25           | 0,37           | 0,66           | 0,44           |
| Na <sub>2</sub> O                                            | 0,21       | 2,15           | 1,0            | 0,78           | 1,41           | 0,35           | 0,66           | 1,28           | 0,36           | 0,26           | 2,72           | 2,93           |
| K <sub>2</sub> O                                             | 6,43       | 4,40           | 4,7            | 7,22           | 5,67           | 5,72           | 5,83           | 5,77           | 5,62           | 6,48           | 4,22           | 4,81           |
| $P_2O_5$                                                     | 0,02       | 0,02           | 0,05           | н.п.           | 0,03           | 0,02           | <0,02          | 0,02           | 0,02           | 0,02           | <0,03          | <0,03          |
| ППП                                                          | 1,85       | 1,31           | 1,32           | 0,24           | 1,14           | 1,28           | 1,15           | 0,97           | 1,35           | 1,15           | 0,69           | 0,48           |
| Сумма                                                        | 99,85      | 99,89          | 98,42          | 99,87          | 99,49          | 99,18          | 100,4          | 99,34          | 99,75          | 99,64          | 99,77          | 99,39          |
| Mg#                                                          | 0,48       | 0,16           | 0,19           | 0,33           | 0,24           | 0,32           | 0,38           | 0,41           | 0,29           | 0,26           | 0,32           | 0,27           |
| Fe#                                                          | 0,54       | 0,84           | 0,80           | 0,66           | 0,76           | 0,67           | 0,61           | 0,58           | 0,70           | 0,73           | 0,68           | 0,72           |
| K <sub>2</sub> O/Na <sub>2</sub> O                           | 30,62      | 2,04           | 4,7            | 9,21           | 4,02           | 16,3           | 8,83           | 4,5            | 15,6           | 24,9           | 1,55           | 1,64           |
| Na <sub>2</sub> O/K <sub>2</sub> O                           | 0,032      | 0,48           | 0,21           | 0,1            | 0,25           | 0,06           | 0,11           | 0,22           | 0,06           | 0,04           | 0,64           | 0,6            |
| Fe <sub>2</sub> O <sub>3</sub> +MgO<br>+MnO+TiO <sub>2</sub> | 2,47       | 2,95           | 5,05           | 2,43           | 1,17           | 1,79           | 2,41           | 3,29           | 2,76           | 1,57           | 1,09           | 1,38           |
| A/CNK                                                        | 1,97       | 1,26           | 1,51           | 1,47           | 1,45           | 1,69           | 1,46           | 1,38           | 1,64           | 1,46           | 1,21           | 1,16           |







|   | - | скв. | 606  |
|---|---|------|------|
| • | - | скв. | 229  |
| 0 | - | скв. | 532  |
|   | - | скв. | 5329 |

- 🛆 скв. 2281
- 🔷 скв. 5327

*Рис.* 4. Положение точек составов неоархейских ультракалиевых риолитов лебединской свиты Курского блока на классификационных петрохимических диаграммах:  $a - \text{SiO}_2$ -(Na<sub>2</sub>O+K<sub>2</sub>O);  $\delta - A/\text{NK}-A/\text{CNK}$  [7], где A = Al<sub>2</sub>O<sub>3</sub>, N = Na<sub>2</sub>O, K = K<sub>2</sub>O, C = CaO (в молекулярных количествах).





*Рис. 5.* Положение фигуративных точек составов неоархейских ультракалиевых риолитов лебединской свиты Курского блока на вариационных диаграммах Харкера [8].

По содержанию редких и редкоземельных элементов ультракалиевые риолиты резко обеднены Sr (20-60 ppm), обогащены Ba (до более чем 1000 ppm), Rb (116–208 ppm), высокозарядными элементами, особенно Nb (22–75 ppm), Ta (1,6–3,7 ppm), Y (43–90 ppm), Th (16–29 ppm), и редкоземельными элементами (REE) (∑REE = 413–683 ppm) (табл. 2, рис. 6). В

распределении REE отмечается обогащение легкими редкоземельными элементами с сильным фракционированием (La/Yb)<sub>n</sub> = 9,5–16 и глубокими отрицательными европиевыми аномалиями Eu/Eu\*=0,10–0,39. Тяжелые редкоземельные элементы (HREE) характеризуются относительно «плоским» распределением (Gd/Yb<sub>N</sub> = 1,5–2,2).

Таблица 2

| Скв./глуб. | 2296/211,5 | 2296/324,0 | ЛК-104             | 5329/203,7 | 5329/228,0 | 5329/238,2 | 5329/386,6 |
|------------|------------|------------|--------------------|------------|------------|------------|------------|
| Li         | 6,9        | 10,8       | 19,6               | 11,1       | 12,2       | 14,1       | 11,2       |
| Be         | 1,1        | 5,0        | 2,9                | 1,3        | 2,3        | 2,2        | 5,1        |
| Sc         | 3,1        | 3,0        | 2,5                | 3,0        | 3,7        | 2,6        | 0,58       |
| V          | 17,7       | 19,8       | 9,2                | 26,5       | 9,6        | 7,9        | 16,6       |
| Cr         | 14,1       | 13,5       | 0,64               | 25,4       | 1,9        | 1,2        | 18,1       |
| Со         | 1,2        | 1,5        | 0,51               | 0,80       | 0,94       | 0,47       | 1,7        |
| Ni         | 0,87       | < IIO      | 0,85               | 0,69       | 2,2        | 0,82       | 1,2        |
| Cu         | 54,9       | 6,9        | 3,9                | 4,2        | 4,8        | 3,3        | 8,3        |
| Zn         | 1301       | 64,5       | 17,7               | 64,8       | 90,2       | 80,1       | 434        |
| Ga         | 14,0       | 15,0       | 18,9               | 17,6       | 22,7       | 21,5       | 18,0       |
| Rb         | 154        | 116        | 155                | 118        | 122        | 146        | 208        |
| Sr         | 200        | 48,7       | 45,4               | 20,1       | 58,8       | 36,7       | 22,0       |
| Y          | 62,4       | 43,2       | 50,6               | 60,5       | 80,2       | 80,9       | 89,5       |
| Zr         | 431        | 449        | 243                | 559        | 601        | 454        | 560        |
| Nb         | 29,3       | 36,2       | 21,6               | 60,1       | 51,9       | 50,1       | 75,0       |
| Мо         | 1,9        | 1,6        | 0,40               | 0,64       | 0,91       | 0,39       | 4,2        |
| Cs         | 1,6        | 0,86       | 1,8                | 0,96       | 1,2        | 1,4        | 0,84       |
| Ba         | 1365       | 1113       | 415                | 1076       | 1131       | 949        | 718        |
| La         | 92,0       | 97,3       | 92,4               | 115        | 134        | 146        | 155        |
| Ce         | 179        | 188        | 191                | 223        | 274        | 293        | 299        |
| Pr         | 19,7       | 20,6       | 19,1               | 24,1       | 30,2       | 32,2       | 32,5       |
| Nd         | 73,3       | 75,7       | 63,1               | 91,7       | 100        | 106        | 119,7      |
| Sm         | 12,3       | 12,7       | 11,6               | 15,4       | 17,8       | 18,6       | 20,8       |
| Eu         | 1,1        | 1,3        | 0,58               | 1,6        | 1,6        | 1,7        | 0,67       |
| Gd         | 10,9       | 10,7       | 10,2               | 12,5       | 16,7       | 16,7       | 17,9       |
| Tb         | 1,7        | 1,4        | 1,6                | 1,8        | 2,6        | 2,6        | 2,7        |
| Dy         | 10,4       | 7,7        | 9,0                | 10,6       | 14,6       | 14,3       | 15,5       |
| Но         | 2,0        | 1,4        | 1,8                | 2,0        | 2,9        | 2,8        | 2,9        |
| Er         | 5,9        | 4,2        | 5,4                | 5,9        | 8,3        | 7,9        | 8,1        |
| Tm         | 0,80       | 0,58       | 0,78               | 0,81       | 1,2        | 1,1        | 1,0        |
| Yb         | 5,3        | 4,1        | 5,2                | 5,5        | 7,8        | 6,9        | 6,7        |
| Lu         | 0,72       | 0,59       | 0,75               | 0,78       | 1,16       | 0,99       | 0,88       |
| Hf         | 8,6        | 8,7        | 7,4                | 11,3       | 15,2       | 11,6       | 14,2       |
| Та         | 1,6        | 1,6        | 1,6                | 2,7        | 3,1        | 2,8        | 3,7        |
| W          | 0,78       | 0,73       | 1,6                | 0,78       | 0,48       | 1,3        | 1,1        |
| Pb         | 209        | 28,8       | 8,1                | 4,1        | 18,5       | 5,7        | 67,0       |
| Bi         | 0,13       | < IIO      | 0,056              | < IIO      | 0,024      | 0,005      | < IIO      |
| Th         | 18,1       | 22,9       | 29,3               | 16,3       | 21,9       | 19,3       | 25,6       |
| U          | 3,1        | 2,8        | 4,6                | 2,1        | 2,6        | 2,2        | 5,0        |
| ∑REE       | 415        | 426,9      | 412,5              | 510        | 612,8      | 650,8      | 683,3      |
| Eu/Eu*     | 0,29       | 0,39       | 0,16               | 0,34       | 0,28       | 0,29       | 0,1        |
| (Gd/Yb)n   | 1,64       | 2,11       | 1,58               | 1,82       | 1,72       | 1,95       | 2,15       |
| (La/Yb)n   | 11,64      | 16,05      | 11,98              | 14,02      | 11,58      | 14,26      | 15,49      |
| Sr/Y       | 3,2        | 1,13       | 0,89               | 0,33       | 0,73       | 0,45       | 0,24       |
| La/Yb      | 17,26      | 23,8       | 17,77              | 20,8       | 17,18      | 21,16      | 22,98      |
| Y bn       | 25,5       | 19,56      | 24,8               | 26,5       | 37,3       | 33,0       | 13,22      |
| ND/Ta      | 18,/       | 22,91      | 13,5               | 22,62      | 16,/4      | 17,89      | 20,26      |
| I U/ I a   | 2.12       | 2,38       | 3,23<br>2 34       | 2,08       | 2,31       | 2,40       | 1,82       |
| K/Rh       | 2,13       | 286.08     | 2,34               | 281.30     | 272.62     | 227.30     | 1,19       |
| 11/11/0    | 210,42     | 200,00     | ∠1 <del>4</del> ,/ | 201,39     | 212,02     | 441,39     | 1,17,9     |

Содержания редких и редкоземельных элементов в неоархейских ультракалиевых риолитах лебединской свиты Курского блока



*Рис.* 6. Нормированные к хондриту содержания редкоземельных элементов в неоархейских ультракалиевых риолитах лебединской свиты Курского блока.

## Обсуждение результатов

### Геохимическая типизация кислых вулканитов

Вулканиты кислого состава являются аналогами гранитоидов, поэтому для определения источников вулканитов могут быть использованы методики, применяемые для реконструкции источников гранитов.

Петрохимические особенности ультракалиевых риолитов, такие как: высокое содержание щелочей (Na<sub>2</sub>O + K<sub>2</sub>O), низкие концентрации CaO, а также обогащение Ga, Zr, Nb, Y, REE (кроме Eu) и невысокие содержания Sr, Sc, V и Eu свидетельствуют о том, что кислые вулканиты близки к анарогенным гранитоидам А-типа. Это подтверждается положением точек их составов на дискриминантных диаграммах по [9] (рис. 7).

Определение геотектонической обстановки формирования риолитов по соотношениям редких элементов [10] показывает их образование во внутриплитных, либо постколлизионных условиях (рис. 8а). Совмещение полей двух обстановок не позволяет однозначно говорить о геодинамических условиях формирования кислых пород, поэтому была дополнительно использована серия дискриминантных диаграмм [11], на которых точки составов риолитов попадают в поле внутриплитной обстановки и имеют постколлизионную природу (рис. 8б).





*Рис.* 8. Составы неоархейских ультракалиевых риолитов лебединской свиты Курского блока: *а* – на дискриминантных диаграммах по (Eby, 1992) [10]; *б* – на дискриминантных диаграммах по (Pearce et al., 1984) [11]. Поля гранитоидов А-типа: *А1* – кислые магматические породы океанических островов и континентальных рифтов; *А2* – анорогенные гранитоиды пост-коллизионных обстановок (в геодинамических условиях внутри- и окраинно-континентального типов).

Данные геотектонические условия образования ультракалиевых риолитов лебединской свиты согласуются и с временной позицией геологической истории формирования Курского блока в неоархее. Определенный возраст ультракалиевых риолитов в интервале времени 2612±10 млн лет [1] свидетельствует об формировании этих пород после образования складчатости, а также фиксирует одновременное проявление кислого внутриплитного вулканизма вместе с гранитоидными интрузиями атаманского комплекса (2528±4 – 2615±15 млн лет) [12]. Таким образом, ультракалиевые риолиты появились на завершающем этапе орогенного развития Курского блока в процессе его тектоно-магматической активизации и определили нижнюю границу формирования палеопротерозойских толщ курской серии.

## Возможные источники расплавов

Для оценки возможных источников вулканитов кислого состава были проанализированы Sm-Nd изотопно-геохимические данные. Отрицательные значения  $\varepsilon_{Nd}$  (табл. 3) для кислых вулканитов могут свидетельствовать о том, что их источники имели длительную коровую предысторию (TNd(DM) = 3300 млн лет).

Таблица 3

Sm-Nd изотопные данные для неоархейских ультракалиевых риолитов лебединской свиты Курского блока

| № обр.     | Содерж   | ание, ррт | 147 cm/144 Nd* | 143NJJ/144NJJ | <b>T</b> ** | cNd                 | T-DM*** |  |
|------------|----------|-----------|----------------|---------------|-------------|---------------------|---------|--|
|            | Sm мкг/г | Nd мкг/г  | SIIV INU       | INU/ INU      | 1           | EINU <sub>(T)</sub> |         |  |
| ЛК104      | 4,8272   | 25,5434   | 0,11424        | 0,510892      | 2612        | -6,4                | 3436    |  |
| 2296/211,5 | 13,7819  | 77,5896   | 0,10735        | 0,510789      | 2612        | -6,1                | 3361    |  |

В результате анализа литературных данных были рассмотрены достаточно разнообразные гипотезы образования ультракалиевых риолитов [13, 14, 15], основными из которых являются: 1) магматическая модель формирования, которая представлена как минимум тремя возможными способами обогащения расплава калием - парциальное плавление обогащенного калием кристаллического субстрата земной коры, ликвационное расщепление расплава на натриевую и калиевую фазы и метамагматическая модель, основанная на постепенном обогащении магматического расплава калием (флюидно-магматическое взаимодействие); 2) немагматическая модель формирования предполагает присутствие метасоматических процессов в накоплении калия, или же объясняется низкотемпературной одуляризацией первично стекловатых риолитов.

Согласно экспериментальным данным, возможными коровыми источниками для кислых расплавов А-типа могут быть породы, образующиеся при высокотемпературном частичном плавлении нижне- и среднекоровых пород тоналитового или гранодиоритового состава, на формирование которых могут влиять как температура плавления, так и окислительновосстановительные условия. В качестве подобного корового источника для неоархейских ультракалиевых риолитов лебединской свиты можно рассматривать тоналит-трондьемит-гранодиоритовые гнейсы обоянского комплекса (рис. 9).

Однако остается нерешенным вопрос о привносе в магматический расплав большого количества калия для того, чтобы сформировались расплавы высококалиевого состава. Такие расплавы, возможно, могли возникнуть при парциальном плавлении кристаллического субстрата при последовательном метаморфизме метапелитовых пород [13]. Возможно, формирование ультракалиевых расплавов кислого состава происходило при воздействии на гранитные расплавы потоков калийсодержащих флюидов, что указывает на их связь с мантийными компонентами.



*Рис.* 9. Диаграмма є Nd–Т для неоархейских ультракалиевых риолитов лебединской свиты Курского блока.

Об участии корового и мантийного компонентов [16] при формировании кислых пород могут свидетельствовать данные по содержанию Rb и отношения К/Rb в риолитах. Положение точек составов пород на диаграмме K/Rb-Rb (рис. 10), на которой выделены области мантийных, коровых и мантийно-коровых гранитоидов [17], свидетельствует об их принадлежности к гибридным образованиям, состоящим из смеси корового и мантийного материала. Следовательно, возможным источником тепла и поставщиком мантийного вещества были базитовые расплавы. Таким образом, коровое вещество доминирует в составе кислых пород, а мантийное вещество является носителем тепловой энергии, за счет которой плавился материал коры, а также служит источником привноса калийсодержащих флюидов.

Предполагается, что процессы формирования риолитового расплава протекали под воздействием глубинных флюидов с низкой активностью H<sub>2</sub>O из высокотемпературных магм (более 1000°) при давлении > 8 кбар (температура кристаллизации риолитов 850– 860°) [18].



*Рис. 10.* Диаграмма K/Rb-Rb для ультракалиевых риолитов лебединской свиты Курского блока.

Источником мантийного вещества в пределах Курского блока могут являться неоархейские метабазиты, подстилающие ультракалиевые риолиты (рис. 2).

#### Выводы

Проанализировав полученные результаты, можно сделать следующие выводы:

1. По петрогеохимическим характеристикам породы представляют собой недифференцированную серию ультракалиевых риолитов и типичны для магматических пород кислого состава корового происхождения. Что свидетельствует о магматической природе этих пород.

2. Установлено, что по своим геохимическим особенностям ультракалиевые риолиты лебединской свиты относятся к гранитоидам А-типа и сформировались во внутриплитной постколлизионной геодинамической обстановке. Локальное расположение риолитов, незначительный объем и их приуроченность к отдельным структурным зонам Тим-Ястребовской структуры Курского блока указывает на приуроченность данных пород к постколлизионной рифтовой структуре.

3. Формирование ультракалиевых риолитовых расплавов возможно при взаимодействии коровых магм с обогащенным материалом подлитосферной мантии. В качестве возможного корового источника расплава для неоархейских ультракалиевых риолитов могли быть тоналит-трондьемит-гранодиоритовые гнейсы обоянского комплекса, которые взаимодействовали с мантийным веществом, несущим калийсодержащие флюиды при низкой активности H<sub>2</sub>O. Источником мантийного вещества в пределах Курского блока могут являться неоархейские метабазиты михайловской серии, подстилающие ультракалиевые риолиты.

#### ЛИТЕРАТУРА

1. Возраст неоархейских ультракалиевых риолитов – важный геохронологический репер эволюции раннедокембрийской коры Воронежского кристаллического массива / К. А. Савко [и др.] // Изотопное датирование геологических процессов: новые

Воронежский государственный университет

Холина Наталья Викторовна, преподаватель кафедры полезных ископаемых и недропользования, ведущий инженер НИИ Геологии ВГУ

E-mail: holina\_geol@mail.ru; Тел.: 8 (473) 222-64-19

результаты, подходы и перспективы. Материалы VI Российской конференции по изотопной геохронологии. — ИГГД РАН Санкт-Петербург. СПб : Sprinter, 2015. — С.247–249.

2. *Larionov, A. N.* The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite / A.N. Larionov, D.G. Gee, V.L.(Eds.) Pease // Geol. Soc. London Mem. – 2004. – V. 30. – P. 69–74.

3. *Steiger, R. H.* Subcommission on geochronology: convention of the ust of decay constants in geo- and cosmochronology / R. H. Steiger, E. Jäger // Earth Planet. Sci. Lett. – 1977. – V. 36. – P. 359–362.

4. *Stacey, J. S.* Approximation of terrestrial lead isotope evolution by a two-stage model / J. S. Stacey, J. D. Kramers // Earth and Planet. Sci. Lett. – 1975. – V. 26. – N. 2. – P. 207-221.

5. *Ludwig, K. R.* SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel / K. R. Ludwig // Berkeley Geochronology Center Special Publication. – 2005a. – 22 p.

6. *Ludwig, K. R.* User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel / K. R. Ludwig // Berkeley Geochronology Center Special Publication. – 2005b. – 71 p.

7. *Maniar, P. D.* Tectonic discrimination of granitoids / P. D. Maniar, P.M. Piccoli // Geol. Soc. Amer. Bull. – 1989. – V. 101. – P. 635–643.

8. *Harker, A.* The Tertiary igneous rocks of skye / A. Harker // Mem. Geol. Surv. – United Kingdom. – 1904. – 481 p.

9. *Whalen, J. B.* A-type granites: geochemical characteristics discrimination and petrogenesis / J. B. Whalen, K. L. Currie, B. W. Chappell // Contrib. Mineral. Petrol. – 1987. – V. 95. – P. 407–419.

10. *Eby, G. N.* Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications / G. N. Eby // Geology. — 1992. – V. 20. – P. 641–644.

11. *Pearce, J. A.* Trace element discrimination diagrams for the tectonic interpretation of granitic rocks / J. A. Pearce, N. B. W. Harris, A. G. Tindle // J. Petrol. – 1984. – V. 25. – P. 956–983.

12. Артеменко, Г. В. Геохронологическая корреляция вулканизма и гранитоидного магматизма юго-восточной части Украинского щита и Курской магнитной аномалии / Г. В. Артеменко // Геохимия и рудообразование. – Киев: Наукова думка, 1995. – Вып. 21. – С. 129–154.

13. Фромберг, Э. Д. Ультракалиевые риолиты – геология, геохимия, петрология: Автореф. дис. ...д-ра геолого-минерал. наук: 04.00.08 / Э. Д. Фромберг. Московский гос. ун-т. – Москва, 1993. – 45 с.

14. Литвиновский, Б. А. Генезис ультракалиевых кварцевых порфиров на севере Арабо-Нубийского щита / Б. А. Литвиновский, Н. С. Карманов, Е. Вапник // Геология и геофизика. – 2006. – Т.47. – №11. – С.1123–1147.

15. Safonov, O. G. Interaction of biotite-amphibole gneiss with H<sub>2</sub>O-CO<sub>2</sub>-(K, Na)Cl fluids at 550 MPa and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust / O. G. Safonov, S. A. Kosova, Dirk D. van Reenen // Journal of Petrology. -2014. - V.55. - N.12. - P.2419-2456.

16. Гребенников, А. В. Гранитоиды А-типа: проблемы диагностики, формирования и систематики / А. В. Гребенников // Геология и геофизика. – 2014. – Т. 55. – № 9. – С. 1356–1373.

17. Коваленко, В. И. Вариации коэффициента распределения рубидия в магматических породах / В. И. Коваленко, В. С. Антипин, И. Д. Рябчиков // Геохимия. – 1981. – № 7. – С. 1017–1029.

18. Холина, Н. В. Высокие температуры кристаллизации неоархейских риолитов Курского блока Воронежского кристаллического массива: результаты минеральной термометрии / Н. В. Холина, К. А. Савко, В. М. Холин // Вестн. Воронеж. гос. ун-та. Сер. : Геология. – 2016. – №3. – С. 53–60.

Holina N. V., Lecturer of the Mineral Resource Department, the Master Engineer of SRI of Geology E-mail: holina\_geol@mail.ru Tel.: 8 (473) 222-64-19

Voronezh State University