ГЕОХИМИЯ, МИНЕРАЛОГИЯ, ПЕТРОЛОГИЯ

УДК 552.321.6:549.27

РУДНЫЕ МИНЕРАЛЬНЫЕ АССОЦИАЦИИ В УЛЬТРАМАФИТАХ МАССИВА ОГНИТ, ИРКУТСКАЯ ОБЛАСТЬ, ВОСТОЧНЫЙ САЯН

Г. И. Шведов¹, А. Ю. Барков², О. И. Олешкевич³

¹ Красноярский Филиал ООО ''Норильскгеология'', г. Красноярск ² Череповецкий государственный университет ³ ООО ''УК ''Интергео'', г. Москва

Поступила в редакцию: 25 июня 2015 г.

Аннотация: разнообразные ассоциации рудных минералов, в особенности видов минералов элементов группы платины, развиты в ультрамафитовом массиве Огнит (Мэдэк) неопротерозойского возраста в Восточно-Сибирской металлогенической провинции (Восточно-Саянской никеленосной провинции), Иркутская область, Восточный Саян. Первичные выделения сульфидов NI-CU (пентландит, халькопирит, троилит, кубанит) в различной степени подвергались ремобилизации в процессе серпентинизации ультрамафитов. Аваруит и самородная медь формировались из H₂-H₂O-содержащей флюидной фазы в результате реакций с первичным пентландитом и халькопиритом в условиях весьма низких уровней фугитивности кислорода и серы в системе. Обогащённость рудоформирующей среды AS способствовала довольно широко проявленной кристаллизации зёрен арсенидных минералов, включая каплевидные и субгедральные кристаллы орселита и маухерита. Установленные виды рудных минералов также включают обогащённые АG сплавы и соединения (самородное серебро, гессит, штромейерит), аурикуприд, алтаит, кобальтин, SE-содержащий галенит, шандит, паркерит и самородный висмут. Таким образом, восстановительные условия, характерные для массива Огнит, привели к образованию ряда природных сплавов и самородных элементов, включая графит на стадии автометасоматического изменения рудоносных ультрамафитов.

Ключевые слова: рудные минералы, ультрамафит-мафитовые комплексы, неопротерозойские комплексы, Огнит, Восточно-Саянская никеленосная провинция, Восточно-Сибирская металлогеническая провинция, Восточный Саян, Россия.

ASSOCIATIONS OF ORE MINERALS IN ULTRAMAFIC ROCKS OF THE OGNIT COMPLEX, IRKUTSKAYA OBLAST, EASTERN SAYANS

ABSTRACTVERSE ASSEMBLAGES OF ORE MINERALS, ESPECIALLY SPECIES OF PLATINUM-GROUP MINERALS, AN OPED IN THE OGNIT (MEDEK) ULTRAMAFIC COMPLEX OF NEOPROTEROZOIC AGE IN THE EAST SIBERIAN MET PROVINCE, EASTERN SAYANS. DURING SERPENTINIZATION, PRIMARY GRAINS OF BASE-METAL SULPHIDES (PER CHALCOPYRITE, TROILITE, CUBANITE) WERE REMOBILIZED TO VARIOUS DEGREES. GRAINS OF AWARUITE AND PER LIKELY FORMED **FROMHE**ARING FLUIDS VIA REACTIONS INVOLVING PENTLANDITE AND CHALCOPYRITE, A TREMELY LOW LEVELS OF SULPHUR AND OXYGEN FUGACITIES. THE INFERRED AS-ENRICHMENT IN THE ORE-H RONMENT LIKELY PROMOTED THE FORMATION OF GRAINS OF VARIOUS AS-BASED SPECIES, INCLUDING DRO GRAINS AND SUBHEDRAL CRYSTALS OF ORCELITE AND MAUCHERITE. THE OBSERVED SPECIES OF ORE MINEL CLUDE AG-ENRICHED ALLOYS AND COMPOUNDS (NATIVE SILVER, HESSITE, AND STROMEYERITE), AURICUPR COBALTITE, SE-BEARING GALENA, SHANDITE, PARKERITE, AND NATIVE BISMUTH. HIGHLY REDUCING CONDIT ACTERISTIC OF THE OGNIT COMPLEX, THUS RESULTED IN THE CRYSTALLIZATION OF A VARIETY OF ALLOYS A MENTS, INCLUDING GRAPHITE AT A DEUTERIC STAGE OF ALTERATION.

KEY WORDS*RE MINERALS, ULTRAMAFIC-MAFIC COMPLEXES, NEOPROTEROZOIC COMPLEXES, OGNIT, EAST NICKEL PROVINCE, EAST SIBERIAN METALLOGENIC PROVINCE, EASTERN SAYANS, RUSSIA.*

Введение

Пояс пироксенит-перидотит-дунитовых комплексов, включающий массивы Шумиха, Кингаш, Голумбей, Тартай, Огнит, Желос, Токты-Ой и Малый Задой, которые ассоциируют с Йоко-Довыренским комплексом в Байкало-Патомской зоне (рис. 1а), являются рудоносными в отношении Cu-Ni, Cr и элементов группы платины (ЭПГ). Массивы локализованы у

Рис. 1 а. Обобщённая геологическая схема, показывающая местоположение массива Огнит среди родственных ему неопротерозойских ультрамафит-мафитовых комплексов Восточно-Сибирской металлогенической провинции (по данным [3] с незначительными изменениями): № 1 – докембрийский фундамент Сибирского кратона; № 2-6 – складчатые области рифейского и рифей-вендского возраста (№ 2 и 3), раннекаледонского возраста (№ 4) и позднекаледонского возраста (№ 5); № 3 – область Присаянья, включающая террейны Кан и Алхадыр; № 6 – покровные образования Западно-Сибирской плиты.

южного обрамления Сибирского кратона в Восточно-Сибирской металлогенической провинции [1–3]. Представительные изотопные возраста комплексов этого пояса варьируют в пределах 731–710 Ма, что сопоставимо с рядом датировок 725–710 Ма, опубликованных для района Франклин, Канада. Таким образом, отмечается вероятное соответствие значений радиометрических возрастов комплексов предполагаемому событию (около 750 Ма) распада суперконтинента Родиния в неопротерозойское время [3–5].

В настоящей статье, авторы ставят целью обсудить результаты детального исследования ассоциаций рудных минералов, включая минералы элементов группы платины (МЭПГ), некоторые редкие, а также неназванные соединения в перидотит-дунитовом массиве Огнит (рис. 1б). Полученные данные указывают на развитие двух контрастных ассоциаций МЭПГ. Первая, более ранняя ассоциация обнаруживает довольно тесные связи с первичными сульфидными Ni-Cu минералами и интерпретируется в качестве поздней магматической. Вторая ассоциация МЭПГ, тесно связанная с последующими процессами серпентинизации и карбонатизации вмещающих ультрамафитов, образовалась в высоковосстановительных условиях при значительно более низких температурах. Полученные результаты позволяют более полно охарактеризовать рудную минералогию массива Огнит. Следует отметить, что минерализация элементов группы платины (ЭПГ) в неопротерозойских комплексах в мире изучена не столь масштабно и детально, как в других типах платиноносных ультрамафитмафитов, таких как раннепротерозойские расслоенные интрузии.

Аналитические данные были получены методом сканирующей электронной микроскопии (СЭМ) и

Рис. 1 б. Схематическая карта региональной геологии массива Огнит (по данным [2]): № 1 – граниты, сиениты и диориты ордовикского-раннедевонского возраста; № 2 – раннедевонские вулканогенные породы; № 3 – неопротерозойские метатерригенные породы; № 4 – неопротерозойские метавулканогенные и метаосадочные образования.

энергодисперсионного анализа (ЭДС), с использованием систем "MIRA 3 LMU (Tescan Ltd.)" и "INCA Energy 450+ XMax 80", в институте «Геологии и Минералогии» СО РАН, г. Новосибирск. В целом, минералы ЭПГ и другие рудные минералы (например, рис. 2-5) образуют довольно мелкие выделения и срастания (≤1-10, до 50 мкм). Условия проведения анализов следующие: ускоряющее напряжение 20 кВ, ток зонда 1.6 нА; выбор метода и условий рационален, так как в ходе анализа СЭМ/ЭДС, как известно, минимизируются объёмы возбуждаемого вещества. Линия L и химически чистые элементы были использованы в качестве стандартов для Pd, Rh, Ru, Ag, Sn, Sb и Ge (соединения PtAs₂ и HgTe для As и Te). Линия К и чистые элементы использованы для Fe, Cu, Ni и Co (FeS₂ для S). Линия M (или линия L в соответствующих случаях) и чистые элементы использованы для Pt, Ir, Os, Bi и Au. Полученные спектры обрабатывались автоматически. Применялась нормализация результата (к 100 %) в тех случаях, когда сумма анализа оказывалась низкой вследствие недостаточности объёма анализируемой фазы (как правило, в случае зёрен ≤1-3 мкм). Атомные соотношения в нормализованных результатах сохраняются, однако, неизменными.

Геология, автометасоматические изменения и рудная минерализация

В современном эрозионном срезе массив Огнит представляет собой округлое в плане тело диаметром около 1 км (рис. 1б). Сложен он преимущественно ультраосновными породами, варьирующими от дунита до плагиоклаз-содержащего перидотита, с разной степенью их серпентинизации и карбонатизации [1, 2]. Вмещающие комплекс породы представлены неопротерозойскими метатерригенными образованиями, а также контактирующими с ними неопротерозойскими метавулканогенными и метаосадочными породами (рис. 1б). В породах массива локально отмечаются достаточно высокие содержания Ni (до 1,1 %), в особенности, в минерализованном дуните (35–38 % MgO), содержащем повышенные уровни Pt (0,55 г/т) и Pd (0,9 г/т) [1].

Зоны вкрапленного сульфидного Ni-Cu оруденения содержат пентландит в качестве основного сульфидного минерала, а также варьирующие количества халькопирита, троилита и кубанита. В целом, суммарная доля сульфидной минерализации составляет от 1 до 3 объём. %, соответствуя малосульфидному типу. Характерные примеры текстур сульфидных срастаний даны на рис. 2а-в. Как отмечалось, сульфидное оруденение развито в серпентинизированных ультрамафитах, в которых, соответственно, основными вторичными породообразующими минералами являются минералы группы серпентина. Десять образцов последних проанализированы (СЭМ/ЭДС) в разных текстурных формах и ассоциациях; выявлены значительные вариации в содержании Mg (28,9-42,9 % MgO). Представительный состав в этом ряду: MgO 37,51,

FeO 2,25, SiO₂ 38,7 %, соответствует формуле (Mg_{2.90}Fe_{0.10})(Si_{2.00}O₅)(OH)₄ (на основе 7 атомов кислорода на формульную единицу, а.ф.е.). Аналитические данные выявили наличие двух видов кальциевых амфиболов: *актинолита*, (Ca_{1.86}Na_{0.22})(Mg_{3.83}Fe²⁺_{0.70} Fe³⁺_{0.26}Al_{0.17}Ti_{0.04})_{Σ5.0}(Si_{7.55}Al_{0.45})_{Σ8.0}O₂₂(OH)₂ и *черма*кита. $(Na_{0.41}K_{0.07})_{\Sigma 0.5}(Ca_{1.72}Na_{0.28})_{\Sigma 2.0}(Mg_{2.36}Fe^{2+}_{1.26})$ $Fe^{3+}_{0.66}Al_{0.66}Ti_{0.06}\sum_{5.0}(Si_{6.35}Al_{1.65})\sum_{8.0}O_{22}(OH)_2$ (Ha ochobe О=23 а.ф.е.), по всей вероятности, сформированные в результате полного замещения пироксена. В ассоциацию вторичных минералов также входит клинохлор: $(Mg_{5.07}Fe_{0.23})Al_{1.0}(Al_{0.29}Cr_{0.16}Si_{3.26}O_{10})(OH)_8$ (O=14)а.ф.е.); довольно широко развиты карбонаты, в особенности кальцит (<2 % MgO и FeO) и доломит.

Магнетит присутствует в разных формах и ассоциациях: как ангедральные зёрна, первичные зёрна с элементами субидиоморфных очертаний (рис. 2г), а также выделения вторичного происхождения, сформированные в процессе наблюдаемого замещения и десульфуризации первичного пентландита (рис. 4д, е). *Хромит*, в изученных авторами ультрамафитах, совсем не редок в качестве акцессория. В работе [1], сообщаются следующие обобщённые вариации состава

Рис. 2 а. Зерно омейита (Om), локализованное у границы троилита (Tro) с минералом группы хлорита (Chl); Сср: ассоциирующий халькопирит, частично замещающий троилит. Рис. 2 б. Морфология сульфидного зерна, сложенного троилитом (Tro), халькопиритом (Ccp), кубанитом (Cbn) и пентландитом (Pn: ламели в троилите), расположенного среди нерудного минерала, вероятно вторичного силиката (Sil). Рис. 2 в. Каплевидное включение орселита (Orc) в пентландите (Pn) в ассоциации с магнетитом (Mag), который содержит микро-агрегаты орселита (Orc) и сплава Pt, Cu, и Fe (обозначен «Pt-Cu-Fe-Ni»). Сплав состава PtCu₅ формирует тонкую кайму по каплевидному зерну орселита. Рис. 2 г. Округлое полиминеральное зерно рудных минералов, состоящее из орселита (Orc), эрлихманита (Er), платарсита с высоким содержанием Ru-Os (Pts), сперрилита (Spy) и пентландита (Pn). Символ Lr означает лаурит; Cu самородная медь; Sil вторичный силикатный минерал. Рис. 2 ∂ . Довольно крупное субгедральное зерно орселита (Orc), ассоциирующее с пентландитом (Pn), магнетитом (Mag) и минералом группы серпентина (Srp). Символы Sob и Ag относятся к субмикронным включениям соболевскита и сплава Ag, соответственно. Рис. 2 е. Зерно ирарсита (Irs), окружённое весьма тонкой каймой холлингвортита (Holl), образующее включение в пентландите (Pn). Рис. 2 а, δ : микрофотографии в отражённом свете; Рис. 2 в-е: изображения в обратнорассеянных электронах.

Рис. 3 а. Микро-агрегат зёрен соболевскита (Sob), паоловита(?) (Plv), гессита (Hs) и алтаита (Alt), которые сосредоточены во вторичном силикате (Sil). *Рис. 3 б.* Мельчайшее срастание Sb–содержащего кабриита или таймырита (Cab) и неназванного Pd₂Ge, ассоциирующие с халькопиритом (Ccp). *Рис. 3 в.* Прожилковидные зёрна Sb–содержащего кабриита, Cab (или таймырита), в ассоциации с мертиитом–II (и/или стибиопалладинитом) и фазой Pd₂Ge. *Рис. 3 г.* Фаза Pd₂Ge в срастании с мертиитом–II и/или стибиопалладинитом (Stp), а также Sb–содержащим кабриитом или таймыритом (Cab). Pn пентландит, Srp член группы серпентина. *Рис. 3 д.* Срастание налдреттита (Nld) и Pd₂Ge, расположенные у границы пентландита (Pn). *Рис. 3е.* Микровыделение фазы Pd₂Ge у границы зерна пентландита (Pn) и карбонатного минерала (Cb). *Рис. 3 (a-e):* изображения в обратнорассеянных электронах.

Рис. 4 а. Прожилок пентландита (Pn), «секущий» вторичный силикат (Sil) и сопровождающийся микрозёрнами МЭПГ: соболевскита (Sob) и налдреттита(?) (Nld), а также ассоциирующего алтаита (Alt). Рис. 4 б. Выделения аваруита (Awr) «облачной» морфологии, тесно ассоциирующие с пентландитом (Pn) и самородной медью (Cu). Символ Mag означает магнетит (вторичный). Рис. 4 в. Узкие, дифференцированные слои аваруита (Awr) и самородной меди (Cu), развивающиеся вдоль границ зёрен пентландита (Pn), вновь в характерной близости к прожилковидным выделениям вторичного магнетита (Mag); Сср: ламели халькопирита. Рис. 4 г. Выделения самородной меди (Cu), ассоциирующие с магнетитом (Mag) и крайне незначительным халькозином (Cct). Рис. 4 д. Глобулярное зерно пентландита (Pn) и аваруита (Awr), присутствующие в качестве реликтов в ядре, которое окружается вторичным магнетитом (Mag). Рис. 4 е. Слегка округлое зерно пентландита (Pn), замещаемое магнетитом по ортогональным направлениям. В ассоциации присутствуют аваруит (Awr), самородная медь (Cu) и минерал группы серпентина (Srp: вмещающий). Рис. 4 (*a-e*): изображения в обратнорассеянных электронах.

хромита в комплексах восточно-Сибирской провинции: 30-45 % Cr₂O₃ и 18–43 % Al₂O₃. В исследованных образцах также присутствует низко-Al разновидность хромита (<1 % Al₂O₃): (Fe²⁺_{0.99}Mg_{0.06}Mn_{0.02})_{Σ1.07} (Cr_{1.04}Fe³⁺_{0.75}Ti_{0.08}Al_{0.04}V_{0.02})_{Σ1.93}O₄.

Пентландит, основной сульфидный минерал оруденения, неизменно содержит заметную примесь Со (1,1-1,4, среднее 1,2 мас. %). Его составы сравнительно обогащены Fe. Значения отношения (Ni+Co): Fe (атом. %) варьируют от 0,7 до 1,1, со средним значением 0,90, по результатам анализов 13 зёрен. Наблюдаемый ряд составов пентландита (в значениях а.ф.е.): Fe 4,18-5,19 (среднее 4,67), Ni 4,57-3,24 (4,02), Co 0,08-0,18 (0,15), ΣME 8,73-9,04 (8,91), S 7,96-8,22 (среднее 8,06). Халькопирит стехиометричен (CuFeS₂), с весьма незначительной примесью Ni в некоторых составах. Изученный троилит - фактически чистый моносульфид состава близкого к идеальному Fe_{1.00}S_{1.00}, i.e. Fe 63,5, S 36,5, сумма 100,0 мас.%. Представительный состав кубанита: Cu 23,8, Fe 43,1, S 36,0, сумма 102,9 мас.% соответствует формуле Си_{0.99}Fe_{2.04}S_{2.97} (Σ=6 а.ф.е.). Хизлевудит (Ni₃S₂) относится к поздним второстепенным минералам. Он формирует удлинённые зёрна, прожилки (до 0.1 мм) в срастании с пентландитом и магнетитом; его типовой состав: Ni 71,8, Fe 1,6, S 26,6, сумма 100,0 мас.%, отвечает формуле (Ni_{2.94}Fe_{0.07})_{Σ3.01}S_{2.00}. Халькозин (Cu_{1.99}S_{1.01}) проявляется также как второстепенная вторичная фаза (рис. 4г).

Орселит (Ni_{5-x}As₂) обнаруживает сравнительное разнообразие текстурных форм, образуя довольно крупные субидиоморфные кристаллы (рис. 2д), округлые включения и микро-агрегаты (рис. 2в). Представительный состав: Ni 67,0, As 34,9, сумма 101,9 мас.%, приводит к эмпирической формуле (в расчёте на As=2 а.ф.е.): Ni_{4.90}As_{2.00}, с довольно небольшой степенью вакансии атомов в позиции никеля. Маухерит (Ni₁₁As₈) распространен незначительно. В одном из срастаний было обнаружено субгедральное ~50микронное зерно, зона ядра в котором сложена маухеритом, тогда как периферия образована орселитом; минерал группы серпентина является для них вмещающим (рис. 5а). Состав маухерита достаточно необычен, обладая весьма высоким содержанием кобальта: Ni 44,8, Co 8,4, Fe 0,6, As 47,0, S 0,5, сумма 101,3 мас.%, формула (Ni_{9.30}Co_{1.74}Fe_{0.13})_{Σ11.17}(As_{7.64}S_{0.19}) 57 83. Судя по характеру зональности, кобальтистый маухерит здесь является первичным и более ранним, а орселит, вероятно, формировался в результате метасоматического замещения маухерита в процессе серпентинизации. В свою очередь, авторами статьи наблюдалось формирование каймы маухерита по сперрилиту (Pt_{1.0}As_{1.9}), в небольшом зерне (<10 мкм) среди серпентина. Кобальтин-герсдорфит редок. Субгедральный кристалл размером около 10 мкм, локализованный в троилите фактически идеального состава Fe100S100 (СЭМ/ЭДС), содержит: Co 20,9, Ni 8.5, Fe 6.3, As 46,0, S 18,3, сумма 100,0 мас.%; его формула имеет вид $(Co_{0.59}Ni_{0.24}Fe_{0.19})_{\Sigma 1.02}As_{1.03}S_{0.95}$ (на основе суммы

Рис. 5 а. Субгедральное зерно маухерита (Mch), присутствующего в центральной, ядерной части, частично замещаемое по периферии орселитом (Orc). Символ Chr означает хромит; Mgt магнетит; Srp минерал группы серпентина (вмещающий).

Рис. 5 б. Многочисленные пластинчатые выделения графита (Gr), с тенденцией их округлого в плане распределения, в ассоциации с мелкими зёрнами троилита (Tro), включающие ламели пентландита, зёрнами кубанита (Cbn) и халькопирита (Ccp). Вмещающий минерал: вторичный силикат (Sil). *Рис. 5а, б:* микрофотографии в отражённом свете.

3 a.ф.e.).

Во время исследования были проанализированы более десятка зёрен алтаита (РbTe) и гессита (Ag₂Te). Эти теллуриды развиты довольно широко, имея, однако, как и другие рудные фазы, довольно малые размеры выделений (типично <10 мкм). Состав алтаита: Pb 64,0, Te 38,5, сумма 102,5 мас.%, соответствует формуле Pb_{1.01}Te_{0.99}. Состав гессита: Ag 62,5, Те 37,5, сумма 100,0 мас.%, также стехиометричен и близок к идеальному: Ag_{1.99}Te_{1.01}. Зёрна самородного серебра и другие соединения Ад и Аи довольно тесно ассоциируют с МЭПГ. Все обнаруженные фазы Ад-Аи сплавов имеют составы со значительным преобладанием Ag, демонстрируя ограниченный твёрдый раствор с Аи и Си (рис. 8). Se-содержащий галенит (3,3 мас.% Se), найденный в ассоциации с поздними (вероятно, ремобилизованными) прожилковидными зёрнами кубанита и халькопирита, является промежуточным членом серии галенит-клаусталит: $Pb_{1,1}(S_{0.81}Se_{0.10})_{\Sigma 0.9}$. Ангедральные до субгедральных зёрна *шандита* (Ni₃Pb₂S₂) и *паркерита* (Ni₃Bi₂S₂), размерностью <10 до 50 мкм, сосредоточены в преде-

Рис. 6. Вариации составов природных интерметаллических соединений Pd, Pt, Cu, Sn и Sb на диаграмме Sn – Sb (в атомах на формульную единицу, а.ф.е. ; Σ атомов = 4). Условные обозначения: *открытый кружок* Sb-содержащие фазы массива Огнит (наши данные); заполненный квадрат составы из Норильского комплекса по данным [20]; заполненный треугольник: из Норильского комплекса [21]; открытый треугольник: из Норильского комплекса [22]; открытый ромб: из Норильского комплекса [16]; заполненный ромб: из расслоенного комплекса Бушвельд, ЮАР [23]; заполненный кружок: из микрогабброидов комплекса Джалтул (траппового типа), Красноярский край [24]. В общей сложности, на диаграмме отражены результаты 132 микрозондовых анализов (N=132), для которых рассчитано значение коэффициента корреляции (R= -0,97).

Рис. 7 а, б. Положение составов фаз висмутотеллуридов палладия из массива Огнит (наши данные) на диаграммах

54

Рd – (Bi+Te+Sb) и Te–Bi–Sb (а.ф.е.). Незначительные примеси Ni, Cu и Fe, где присутствуют, суммированы к значениям Pd. Фазы типа Pd(Bi,Te,Sb)_{1+X} (X<0,5) обозначены символом заполненный квадрат. Майченерит и меренскит показаны символами заполненный кружок и ромб, соответственно.

Рис. 8. Составы сплавов Ag-Au (самородное серебро) и аурикуприда (Cu₃Au) из комплекса Огнит (наши данные) на тройной диаграмме Cu – Ag – Au (атомные соотношения).

лах поздних выделений магнетита. Их составы: Ni 27,2 и 26,9, Pb 67,9 и 1,5, Bi не установлено и 62,4, S 9,4 и 9,2, суммы 104,5 и 100,0 мас.%, соответствуют формулам: Ni_{2.99}Pb_{2.12}S_{1.9} и Ni_{3.05}(Bi_{1.99}Pb_{0.05})_{52.04}S_{1.9}, соответственно. *Аурикуприд* (Cu₃Au), обнаруженный в этой ассоциации, содержит Cu 44,4, Fe 2,7, Au 48,2, сумма 95,3 мас.%, отвечая формуле (Cu_{2.82}Fe_{0.20})_{53.02} Au_{0.99} (Σ =4 а.ф.е.). Микрозёрна *сфалерита* (или вюртцита) также сопровождают МЭПГ в некоторых случаях (рис. 3а); им характерны примеси Fe (\leq 3 мас.%) и Cd (0,8 мас.%). Таким образом, охарактеризованные фазы Ag, Pb, Bi и Zn типично кристаллизовались на поздних стадиях автометасоматического изменения ультрамафитов.

Выделения аваруита, ассоциирующие с самородной медью, отличаются значительным разнообразием микротекстур, формируя срастания типа «сэндвич», в которых узкие слои самородной меди являются внешними по отношению к сопряжённым микрослоям аваруита (рис. 4в). Такие взаимоотношения могут указывать на более раннее формирование аваруита в этих срастаниях. Наблюдаются также зёрна «облачной» морфологии и каймообразные зёрна, развивающиеся по пентландиту (рис. 4б). По составу, аваруит близок стехиометрии Ni₃Fe. Его типичный состав: Fe 25,8, Ni 71,1, сумма 96,9 мас.%, соответствует формуле (Ni_{2.90}Fe_{0.10})Fe_{1.00}. Составы двух зёрен самородной меди довольно обогащены Ni (4,6-4,8 %) и Fe (5,3-4,0 %); их содержания Си, как основного компонента, и аналитические суммы варьируют в ряду: 88,6-89,1 % и 98,5-97,9 мас.%. Интересно отметить, что кристаллы первичной самородной меди содержат сопоставимые примеси Ni и Fe (около 3 %) в ультраосновном щелочном комплексе Лесная Варака (Кольский п-ов). Последние, однако, при этом существенно обогащены Pt: 0,6–10 мас.% [6], которая не установлена в зёрнах самородной меди массива Огнит.

Локально *графит* формирует существенные скопления в ассоциации с сульфидными минералами (рис. 5б). В качестве редкой фазы, установлено проявление *самородного висмута*, анализ которого (СЭМ/ЭДС) выявил лишь присутствие основного компонента. Висмут формирует включение (~60 мкм) в халькопирите, в срастании с висмутотеллуридом никеля, гесситом и алтаитом. В заключение этого раздела, отметим, что в рудных зонах комплекса Огнит спорадически присутствуют другие вторичные и второстепенные рудные минералы: пирит, борнит, макинавит, ковеллин, виоларит и валлериит.

Минералы элементов группы платины (МЭПГ)

Палладиевые висмутотеллуриды и антимониды. Установлена протяжённая серия твёрдых растворов (табл. 1, рис. 7б), которая включает, в качестве конечных компонентов, соболевскит (идеально PdBi), котульскит (PdTe) и садберит (PdSb). Как можно видеть на диаграмме (рис. 7а), сопоставляющей суммарные содержания металлов с полуметаллами и Ві, как металлоидом, составы фаз этой серии обнаруживаютзаметную степень нестехиометричности, отвечая обобщённой формуле *МЕ*(Bi,Te,Sb)_{1+X}. Таким образом, данная серия, по всей вероятности, простирается по направлению к дивисмутотеллуриду палладия типа меренскиита (Pd, Pt)(Te, Bi)₂. Проявления родственных фаз типа *ME*_{1,0}(Te,Bi,Sb)_{1+х} известны в других рудопроявлениях ЭПГ: комплексе Вэллгрин, Канада [7], "Pd₇(Te,Bi)₈" в массиве Конттиярви, Финляндия [8], "Pd₃(Te₂Sb₂)" в комплексе Дональдсон Вест и "(Pd,Ni)_{0.44}(Te,Sb)_{0.56}" в руднике Томсон, Канада [9, 10]. В работе [7] предлагается, что гантелевидные пары (Те₂)²⁻, вероятно, формируются в структуре за счёт ионов Te²⁻ для осуществления принципа сохранения баланса зарядов в серии котульскит [Pd²⁺Te²⁻] меренскиит [Pd²⁺(Te₂)²⁻] и достижения электронейтральности. Кроме того, некоторые из анализированных нами фаз висмутотеллуридов соответствуют меренскииту и майченериту, PdTeBi (рис. 7б).

Палладиевые антимониды, *мертиит-II* (Pd₈Sb₃) и/или *стибиопалладинит* (Pd₅Sb₂), диагностика которых требует рентгеновских данных, а также *налдреттит* Pd₂Sb (довольно редкий вид МЭПГ: [11]) установлены в ассоциации с другими МЭПГ (рис. 3 вд). Микрозёрна *полярита* (Pd₂PbBi), *урванцевита* [Pd(Bi,Pb)₂], *фрудита* (PdBi₂) и *сперрилита* (PtAs₂) ассоциируют с висмутотеллуридами и антимонидами палладия (табл. 1).

Дисульфиды и диарсениды Ru-Os, являющиеся членами серий лаурит-эрлихманит (RuS₂–OsS₂) и андуоит-омейит (RuAs₂–OsAs₂), формируют индивидуальные включения и полиминеральные срастания (рис. 2а, б, г). Сульфоарсениды ЭПГ относительно обычны в зонах оруденения (рис. 2г, е). Составы их поликомпонентны, отличаясь большим разнообразием и соответствуя ирарситу, холлингвортиту и платарситу (табл. 1). Известно, что платарсит имеет идеальную формулу вида PtAsS, и, фактически, может представлять собой смешанновалентное соединение типа: $(Pt^{4+}_{0.5}Pt^{2+}_{0.5})(AsS)^{3-}$ [12–14]. Авторами выявлены две разновидности платарсита, обогащённые Os и Ru: $(Pt_{0.30}Ir_{0.25}Os_{0.22}Ru_{0.10}Ni_{0.09}Rh_{0.07}Fe_{0.03})_{\Sigma 1.06}As_{0.96}S_{1.04}$ and (Pt_{0.34}Ru_{0.31}Ir_{0.19}Ni_{0.10}Fe_{0.04})_{Σ0.98}As_{0.99}S_{1.04} (табл. 1). Таким образом, ЭПГ так называемой иридиевой подгруппы (IPGE: Os, Ir, Ru), обладающие более высокими значениями точки плавления, заполняют значительную часть позиции Pt (ЭПГ) в структуре. Существенная примесь Ni, вероятно, входит в форме герсдорфитового компонента, что можно видеть на примере сложных зональных зёрен сульфоарсенидов ЭПГ-Со-Ni [15].

Неназванный минерал *Pd*_{2+x}*Cu*_{1-x}(Sb,Sn). Как известно, станниды Pd-Pt-Cu, родственные кабрииту, таймыриту и татьянаиту, образуют обширные серии твёрдых растворов, соответствуя обобщённой формуле типа (Pd,Pt)_{2+x}Cu_{1-x}(Sn,Sb) – (Pt,Pd)_{2+x}Cu_{1-x}(Sn,Sb), где 0 < X < 0,5 [16]. Эти МЭПГ представляют собой весьма редкие виды [13]. Как правило, в их составах присутствует лишь малая примесь Sb [например, 17-19]. Тем не менее, описано несколько проявлений Sb-содержащих станнидов этого типа в комплексах Норильского рудного района и микрогабброидах массива Джалтул, Красноярский край, а также расслоенного комплекса Бушвельд (ЮАР) [20-24, 16]. На рис. 6 приведено сопоставление составов фаз с преобладанием Sb над Sn, которые обнаружены нами в комплексе Огнит (табл. 1), с составами из литературных источников. Как можно видеть, в этой серии составов (рис. 6) выявляется обратная линейная корреляция с коэффициентом корреляции R = - 0,97, что свидетельствует о замещении сурьмой олова в структуре. Таким образом, налицо потенциально новый вид МЭПГ: неназванный, Sb-доминантный аналог таймырита или кабриита.

Неназванный *Pd*₂*Ge* [25] образует мельчайшие зёрна (до 4 мкм: рис. 3б-е, табл. 1), тесно ассоциируюшие с фазами станноантимонила Pd-Cu, который описан выше, и антимонидами палладия. Средний состав германида и его вариации: Pd 75,4 (72,9-76,9), Ge 24,2 (23,1-25,8), сумма 99,6 мас.% (96,1-101,3), что соответствует формуле Pd_{2.04}Ge_{0.96}, рассчитанной на основе суммы 3 а.ф.е. Следовательно, эта фаза является природным эквивалентом синтетического соединения Pd₂Ge, известного в системе Pd-Ge [26]. Данная находка этого минерала не является первой. Ранее фаза Pd₂Ge выявлялась в рудных зонах Норильского комплекса [27], комплексов Кондёр, Хабаровский край [28], и Бушвельд [29]. Неизвестная фаза, имеющая в составе Pd и Ge (без объявления состава), ранее документировалась в комплексе Бушвельд [30]. Имеются находки природного германида никеля (Ni₂Ge), в комплексе г. Озёрной траппового типа [31].

Таблица 1

Ана- лиз	Os	Ru	Ir	Pt	Rh	Pd	Cu	Fe	Ni	Co	Sn	Ge	Te	Sb	Bi	Pb	As	S	Сумма, мас.%
1	18,6	23,7					2,4	1,9									51,5	0,6	98,7
2	46,4	4,3					1,5	1,7									46,2		100,1
3		59,0																41,0	100,0
4	46,8	20,2						1,2	0,7								0,6	30,4	99,9
5			57,9	3,2	0,9				1,7								25,2	11,3	100,2
6	3,6		18,8	6,0	18,4			2,8	3,7	1,0							29,0	14,2	97,5
7	6,9		20,4	8,8	13,0	1,4		2,0	2,9	0,7							30,0	11,2	97,3
8	15,2	3,7	17,1	21,3	2,7			0,6	1,9								26,1	11,5	100,1
9		12,1	13,7	25,3				0,8	2,2								28,6	12,8	95,5
10				54,7	0,6									2,6			43,3		101,2
11						70,1								32,6					102,7
12						67,0			1,0					32,4					100,4
13						65,3	1,5	1,1	0,7		1,3			28,8					98,7
14						60,3	1,6		1,6					36,4				0,9	100,8
15						33,8									36,0	30,2			100,0
16						21,3									66,3	13,6			101,2
17						21,3									79,9				101,2
18						57,3	10,5		1,3		15,5			16,2					100,8
19						57,3	9,3		1,1		14,2			17,8					99,7
20						37,2							14,9	4,7	42,2				99,0
21						40,6							8,4	9,6	41,8				100,4
22						30,0	2,7	0,9	1,5				2,3	5,2	56,8				99,4
23						25,1		0,8					33,4		40,6				99,9
24						75,4						24,2							99,6
25				38,5			53,3	4,8	3,4										100,0

Представительные составы минералов элементов группы платины из массива Огнит, Иркутская область, Восточный Саян

Примечание: аналитические данные получены на основе изучения представительных образцов из буровых скважин (ООО "Геокомп"): с-103 (интервалы 32,0 м, 370, 25 м, 510,0 м); с-105 (147,0, 149,1 м); с-110 (113,3 м).

Атомные соотношения

Продолжение таблицы 1

Ана- лиз	Os	Ru	Ir	Pt	Rh	Pd	Cu	Fe	Ni	Co	Sn	Ge	Те	Sb	Bi	Pb	As	S	Σ (a.φ.e.)
1	0,26	0,63					0,10	0,09									1,86	0,05	3
2	0,77	0,13					0,07	0,10									1,93		3
3		0,94																2,06	3
4	0,51	0,42						0,04	0,03								0,02	1,98	3
5			0,87	0,05	0,03				0,08								0,97	1,01	3
6	0,04		0,23	0,07	0,42			0,12	0,15	0,04							0,90	1,03	3
7	0,09		0,27	0,12	0,32	0,03		0,09	0,13	0,03							1,02	0,89	3
8	0,22	0,10	0,25	0,30	0,07			0,03	0,09								0,96	0,99	3
9		0,31	0,19	0,34				0,04	0,10								0,99	1,04	3
10				0,95	0,02									0,07			1,96		3
11						4,98								2,02					7
12						4,83			0,13					2,04					7
13						7,37	0,28	0,24	0,14		0,13			2,84					11
14						1,80	0,08		0,09					0,95				0,09	3
15						2,00									1,08	0,92			4

ВЕСТНИК ВГУ. СЕРИЯ: ГЕОЛОГИЯ. 2016. № 1

Ана- лиз	Os	Ru	Ir	Pt	Rh	Pd	Cu	Fe	Ni	Co	Sn	Ge	Те	Sb	Bi	Pb	As	S	Σ (a.φ.e.)
16						1,03									1,63	0,34			3
17						1,03									1,97				3
18						2,18	0,67		0,09		0,53			0,54					4
19						2,22	0,60		0,08		0,49			0,60					4
20						0,99							0,33	0,11	0,57				2
21						1,05							0,18	0,22	0,55				2
22						0,81	0,12	0,05	0,07				0,05	0,12	0,78				2
23						1,00		0,06					1,11		0,83				3
24						2,04						0,96							3
25				1,00			4,26	0,44	0,29										6

Атомные соотношения

Примечания: Результаты микрозондовых анализов получены методом СЭМ/ЭДС; пропуски в табл. 1 означают, что элемент не установлен или не анализировался. Атомные соотношения выражены в значениях атомов на формульную единицу (а.ф.е.). Анализ № 1 – андуоит, № 2 – омейит, № 3 – лаурит, № 4 – эрлихманит, № 5 – ирарсит, № 6 и 7 – холлингвортитирарсит, № 8 – платарсит, обогащённый Os (осарситовым компонентом), № 9 – платарсит, обогащённый Ru (руарситовым компонентом), № 10 – сперрилит, № 11 и 12 – стибиопалладинит (или мертиит-II), № 13 – мертиит-II или стибиопалладинит, № 14 – налдреттит, № 15 – полярит, № 16 – урванцевит, № 17 – фрудит, № 18 и 19 – Sb-содержащий аналог кабриита или таймырита, № 20–22 – минералы серии соболевскит-котульскит-(садберит), № 23 – майченерит, № 24 – неназванный Pd₂Ge (средний из 6 анализов), № 25 – неназванный PtCu₅.

Тройное соединение германия, фаза неназванного германосульфида (Ni,Cu)₅GeS, обнаружено в другом комплексе траппового типа: Джалтул, Красноярский край [24]. Все эти проявления приводят к мысли, что минералогия Ge в мафит-ультрамафитах изучена недостаточно детально, определяя явную возможность установления в них новых минеральных видов германия.

Узкая кайма неназванного сплава *PtCu₅* окружает каплевидное включение орселита в пентландите (рис. 2в). Его состав заметно стехиометричен, соответствуя формуле Pt_{1.00}(Cu_{4.26}Fe_{0.44}Ni_{0.29})_{Σ4.99}, основанной на сумме 6 а.ф.е. (табл. 1). Представляется, что эта находка является эквивалентом синтетической фазы PtCu₅ (Cu_{83,34}Pt_{16,66}) [32] и природного сплава PtCu₅, обнаруженного в расслоенном массиве Луккулайсваара (сев. Карелия), где его формирование связывается с действием восстановленной флюидной фазы [33]. Таким образом, фаза PtCu₅ также рассматривается в качестве потенциально нового вида МЭПГ, в дополнение к уже открытым видам системы Pt-Cu: хонгшиитом (PtCu) и недавно изученным китагохаитом (kitagohaite Pt₇Cu [34]). Кроме того, потенциально новые МЭПГ этой системы включают фазы Pt₃Cu из Камчатки и PtCu₃ из Восточного Саяна [35, 36].

Обсуждение результатов

Первая ассоциация МЭПГ. Наблюдаемые структурные взаимоотношения и составы указывают на развитие в рудных зонах массива Огнит двух контрастных ассоциаций МЭПГ, каждая из которых имеет свою специфику, отражённую, в том числе, в видовом разнообразии ассоциирующих минералов. Первая ассоциация представлена дисульфидами Ru-Os (серия лауритэрлихманит), диарсенидами Ru-Os (серия андуоитомейит) и сульфоарсенидами ЭПГ, обогащёнными ІгRu-Os (табл. 1). Фазы этих сульфоарсенидов представляют собой сложные твёрдые растворы платарсита, осарсита и руарсита. Хотя крайние компоненты этих серий, осарсит (OsAsS) и руарсит (RuAsS), имеют значительные структурные различия с сульфоарсенидами Pt, Ir и Rh (платарситом, ирарситом и холлингвортитом), в природных сульфоарсенидах ЭПГ всё же существует значительная изоморфная смесимость этих компонентов.

Продолжение таблицы 1

Как отмечалось, МЭПГ первой ассоциации в значительной степени содержат в составах элементы иридиевой подгруппы (IPGE): Os, Ir и Ru, имеющие наиболее высокие значения точки плавления среди ЭПГ. Для этой ассоциации отчётливо прослеживается тесная связь с первичными сульфидными минералами: пентландитом, халькопиритом и троилитом (рис. 2a, б, г). Наблюдаемые структуры первичных сульфидов отражают процесс отделения несмесимого сульфидного расплава в ходе магматической эволюции комплекса Огнит. Это заключение согласуется с представлениями [1], постулирующими формирование зон сульфидной минерализации комплексов Восточно-Сибирской провинции процессом отделения и сегрегации сульфидного расплава в ходе кристаллизации материнской магмы пикритового состава.

Довольно широкое развитие троилита ($Fe^{2+}S$) в зонах минерализации ЭПГ (рис. 2 а, б) указывает на умеренно восстановительную среду минералообразования, возникшую в магматической системе комплекса во время отделения капель несмесимого сульфидного расплава. Присутствие значительного количества видов арсенидных минералов, в особенности каплевидных включений орселита в пентландите (рис. 2в), согласуется со сравнительно высокой степенью обогащения сульфидного расплава мышьяком. Повышенная активность As в среде минералообразования способствовала кристаллизации индивидуальных субгедральных зёрен орселита (рис. 2д) и маухерита (рис. 5а). Впоследствии первичные сульфиды подвергались широкому воздействию автометасоматического водосодержащего флюида, что привело к их ремобилизации, как можно видеть на примере прожилковидных выделений пентландита (рис. 4а).

Зёрнам первой ассоциации МЭПГ характерны элементы субгедральной морфологии, согласующиеся с тем, что они кристаллизовались как первичные фазы: например, лаурит в ассоциации с эрлихманитом (рис. 2г). Термальная стабильность RuS₂ довольно высока (1275°C), что согласуется с широко принятыми представлениями о кристаллизации лаурита в магматическую стадию [37, и др.]. Вместе с тем, возможно формирование лаурита-эрлихманита и в гидротермальных условиях, в средах с высоким содержанием летучих компонентов [14]. Как известно, чистый OsS₂ кристаллизуется при более высоком уровне \mathcal{K}_2 , чем RuS₂. Следовательно, наблюдаемое сосуществование лаурита и эрлихманита (рис. 2г) предполагает резкие флуктуации уровня \mathcal{K}_2 в среде минералообразования.

Следует отметить развитие кайм некоторых МЭПГ, например, холлингвортита вокруг ядра ирарсита (рис. 2e), что является типичным для зональных сульфоарсенидов ЭПГ-Ni-Co [38]. Кайма фазы PtCu₅, окружающая каплевидное включение орселита в пентландите (рис. 2в), могла быть сформирована в процессе фракционной кристаллизации (от центра к краю) капли ранее единого расплава. Платина и Си, как компоненты «несовместимые» по отношению к орселиту, должно быть накапливались в остающемся расплаве в ходе кристаллизации, достигнув максимума в заключительную стадию, когда сплав PtCu₅ сформировался в условиях низких уровней В2 и Ю2 (фугитивности кислорода) в системе. Интересно также отметить узкую кайму пентландита, развитую по периферии зерна лаурита (рис. 2г), что согласуется с достаточно ранней кристаллизацией последнего.

Вторая ассоциация МЭПГ и аваруит. Вторая выделяемая ассоциация МЭПГ более разнообразна в видовом отношении. Она включает палладиевые висмутотеллуриды и антимониды, такие как фазы типа $Pd(Bi,Te,Sb)_{1+X}$ $Pd(Te,Bi,Sb)_{1+X}$ меренскиит, майченерит (рис. 7б), мертиит-II и/или стибиопалладинит, налдреттит, полярит, урванцевит, фрудит, неназванные МЭПГ состава Pd_{2+x}Cu_{1-x}(Sb,Sn) и Pd₂Ge. Важные особенности этой ассоциации заключаются в следующем: (1) Палладий является основным минералообразующим элементом данных МЭПГ, содержащих Bi, Te, Sn, Sb, Pb и Ge (табл. 1). (2) Зёрна этих МЭПГ типично ассоциируют с минералами автометасоматического генезиса в участках и зонах вторичного изменения. Они формируют кластероподобные микроагрегаты, локализованные в минералах группы серпентина, ассоциируя с карбонатами, клинохлором и т.д. (рис. 3а, в). Зёрна МЭПГ этой ассоциации сопровождают и локализуются у границ зёрен ремобилизованных, нередко прожилко-

видных зёрен сульфидов (таких как вышеупомянутый прожилок пентландита в серпентине: рис. 4а). (3) В таких микрокластерах МЭПГ сопровождаются Адсодержащими минералами: в основном самородным серебром (рис. 8) и гесситом, а также алтаитом и галенитом. Эти наблюдения согласуются с достаточно поздним образованием МЭПГ данной ассоциации, вероятно из Н2-Н2О-содержащих флюидов при относительно низких температурах. Надо полагать, что в локальном масштабе автометасоматические флюиды содержали в качестве летучих компонентов смесь СО2 и СН₄. Пластинчатые зёрна графита (рис. 5б) осаждались в соответствии с возможной реакцией $CO_2 + CH_4 \rightarrow 2C$ + 2H₂O, которая рассматривается наиболее вероятностной для графита, формирующегося из флюидов в самых разных системах [39, и др.].

Таким образом, условия крайне низких значений Ю₂ и В₂ превалировали в системе в процессе автометасоматического изменения, когда ассоциирующие аваруит и самородная медь формировались в результате реакции флюидной фазы с зёрнами первичных сульфидных минералов. Экспериментальные данные подтверждают эти представления о формировании второй ассоциации МЭПГ при сравнительно низких температурах, в основном в ходе процесса серпентинизации ультрамафитов. Большинство фаз типа Pd(Bi,Te,Sb)_{1+X} обладают Ві-доминантными составами (рис. 7б). Температуры плавления висмутидов палладия довольно низки. К примеру, синтетический фрудит PdBi₂ плавится при 480°С; точка плавления PdBi равна 610 °С [40]. Последнее значение существенно ниже 746°С, что соответствует точке плавления чистого PdTe [41]. Садбериит (PdSb), синтетический эквивалент которого плавится при несколько повышенной температуре (~800°С), является весьма подчинённым компонентом в серии составов массива Огнит (рис. 7б). Таким образом, члены этой серии, вероятно, последовательно обогащались Ві (замещающим Те) с прогрессирующей кристаллизацией, и первоначально формировались фазы, обогащённые Те. Температура плавления меренскиита также понижается с изоморфным вхождением в структуру Ві вместо Те: от 740°С (для чистого дителлурида PdTe₂) до 500-525°С (для состава Pd_{1.05}Te_{1.34} Ві061). Синтетический майченерит не стабилен при температуре выше 501 °С [42], что согласуется с формированием установленного майченерита (табл. 1, анализ 23) на поздней стадии автометасоматического процесса. Температуры кристаллизации упорядоченных интерметаллических соединений Cu-Pd-Sn также весьма низки, что установлено экспериментами [43]: 320°С для фазы Pd₉Cu₃Sn₄ (аналог таймырита) и 198°C для Pd₂CuSn (аналог кабриита). Эти данные согласуются с развитием поздних микропрожилков Sb-содержащих станнидов в массиве Огнит (рис. 3в). Появление столь необычного соединения состава Pd2Ge в срастании с интерметаллическими фазами палладия, обогащёнными Sn и Sb (рис. 3в, г), свидетельствует об определённом сходстве в геохимическом поведении Sn и Ge во флюидной среде при низких температурах. Интересно

отметить, что ранее тесная связь между Ge и Sn была зафиксирована в ремобилизованных жильных рудах меди [44]. Хотя точка плавления Pd₂Ge довольно высока (1295°C: [26]), значительная задержка во времени кристаллизации этой фазы с формированием при низких температурах вполне вероятна, как отражение обогащения среды летучими компонентами в процессе автометасоматического изменения ультрамафитов.

Как известно, аваруит формируется на ранних стадиях серпентинизации ультрамафитов, обычно в абиссальных перидотитах. Фазовые взаимоотношения в системе Fe-Ni-O-S показывают, что проявления аваруита и родственных ему самородных металлов и сплавов отражают крайне низкие уровни Ю2: на порядки ниже пирит-пирротин-магнетитового буфера при 300°С, вместе с весьма низкими значениями В₂ (также на порядки ниже этого буфера [45, 46]). В комплексе Огнит, каймы и зёрна аваруита формировались в результате метасоматического замещения первичного пентландита, реликты которого нередко сохраняются, например, в «глобулярном зерне» (рис. 4д), в котором реликтовый аваруит сосуществует с вторичным магнетитом. По всей вероятности, форма этого зерна может отражать первичную характеристику: морфологию глобулы несмесимого сульфидного расплава. Известно, что серпентинизация ультрамафитов приводит к установлению высоковосстановительного режима, что обусловлено высвобождением H₂ при окислении (с участием H₂O) дивалентного железа в первичных силикатах до трёхвалентного состояния во вторичных минералах. Соответствуя наблюдаемым в массиве Огнит текстурным особенностям (рис. 4б в, д), вероятная реакция трансформации пентландита в аваруит имеет вид: $(Ni_{4.5}Fe_{4.5})S_8 + 4H_2 + 4H_2O \rightarrow 1,5 Ni_3Fe + Fe_3O_4 + 8H_2S,$ предполагая среду минералообразования с весьма низкими уровнями IO_2 и IS_2 [46]. Близкая ассоциация аваруита с самородной медью (рис. 4б, е), с фактом установленного присутствия ламелей халькопирита (рис. 4в), согласуются с комплементарной реакцией типа: $3CuFeS_2 + 5H_2 + H_2O \rightarrow 3Cu + Fe_3O_4 + 6H_2S$, допускающей формирование выделений самородной меди путём десульфуризации халькопирита, как основного медьсодержащего сульфидного минерала в зонах Ni-Си-ЭПГ оруденения массива Огнит.

Благодарности

Выражаем признательность Н. С. Карманову и сотрудникам аналитического подразделения Института Геологии и Минералогии, СО РАН, г. Новосибирск, а также проф. А. Д. Савко, главному редактору, редакции и рецензентам журнала «Вестник Воронежского госуниверситета; серия геол.» за рассмотрение рукописи статьи. А. Ю. Барков благодарит Д. В. Афанасьева, ректора ЧГУ, за поддержку проектов НИР в сфере «Науки о Земле».

Работа выполнена при поддержке РФФИ (проект № 16-05-00884).

ЛИТЕРАТУРА

1. Мехоношин, А. С. Сульфидное платиноидно-медно-никелевое оруденение массивов Гутаро-Удинской металлогенической зоны (юг Сибири) / А. С. Мехоношин, Т. Б. Колотилина // «Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения»: М-лы третьей междун. конф., г. Екатеринбург. – 2009. – Т. 2. – С. 49–54.

2. *Мехоношин, А. С.* Платинометальная минерализация дунитверлитовых массивов Гутаро-Удинского междуречья (Восточный Саян) / А. С. Мехоношин [и др.] // Геология рудных месторождений, 2013. – Т. 55(3). – С. 189–202.

3. *TOLSTYKH, N. D*u-Ni-PGE deposits of east Siberia hosted by Neoproterozoic mafic-ultramafic complexes. / N. D. Tolstykh [et al.] // Convention 11th International Conference on Gondwana to Asia 20–21 September, Beijing, China IAGR Conference. – 2014. – No. 20. – P. 138–140.

4. *GLADKOCHUB, DM*? fic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia / D. P. Gladkochub [et al.] // Precambrian Research. – 2006. – V. 147. – P. 260–278.

5. *ERNST, R. EA* proposed 725 Ma Dovyren–Kingash LIP of southern Siberia, and possible reconstruction link with 725–715 Ma Franklin LIP of North Laurentia / R. E. Ernst, M. A. Hamilton, U. Soderlung // Geological Association of Canada (GAC). Mineralogical Association of Canada (MAC), Joint Annual Meeting Geosciences at Edge, May 27–29, St. Johns, Newfoundland and Labrador, Canada. – 2012. – V. 35. – P. 27–29.

6. *BARKOV, A.* Primary platinum-bearing copper from the Lesnaya Varaka ultramafic alkaline complex, Kola Peninsula, northwestern Russia / A. Y. Barkov [et al.] // Mineralogy and Petrology. – 1998. – V. 62. – P. 61–72.

7. *BARKOV, A.* Platinum-group minerals from the Wellgreen Ni–Cu–PGE deposit, Yukon, Canada / A. Y. Barkov [et al.] // Canadian Mineralogist, 2002. – V. 40. – P. 651–669.

8. *VUORELAINEN*[s&mertieite and other platinum-group minerals from the Konttijärvi layered mafic intrusion, northern Finland / Y. Vuorelainen [et al.] // Economic Geology, 1982. – V. 77 – P. 1511–1518.

9. *DILLON-LEITCH, H.* **(DH**tribution of platinum-group elements in the Donaldson West deposit, Cape Smith Belt, Quebec / H. C. H. Dillon-Leitch, D.H. Watkinson, C. J. A. Coats // Economic Geology, 1986 – V. 81. – P. 1147–1158.

10. *CHEN*, YPlatinum-group minerals and gold in arsenic-rich ore at the Thompson mine, Thompson Nickel Belt, Manitoba, Canada / Y. Chen, M.E. Fleet, Y. Pan // Mineralogy and Petrology, 1993. – V. 49. – P. 127–146.

 CABRI, L. JNaldrettite, Pd₂Sb, a new intermetallic mineral from the Mesamax Northwest deposit, Ungava region, Quebec, Canada / L. J. Cabri [et al.] // Mineralogical Magazine, 2005. – V. 69 – P. 89–97.

12. *CABRI, L. J.* Platinum-group minerals from Onverwacht. II. Platarsite, a new sulfarsenide of platinum / L. J. Cabri, J. H. G. Laflamme, J. M. Stewart // Canadian Mineralogist, 1977. – V. 15. – P. 385–388.

13. *CABRI, L. J.*The Geology, Geochemistry, Mineralogy, Mineral Beneficiation of the Platinum-Group Elements / L. J. Cabri, Ed. // Canadian Institute of Mining, Metallurgy and Petroleum. – 2002. – spec. V. 54. – 852 P.

14. *BARKOV, A.* An unusual association of hydrothermal platinumgroup minerals from the Imandra layered complex, Kola Peninsula, northwestern Russia. / A. Y. Barkov, M.E. Fleet // Canadian Mineralogist, 2004. – V. 42. – P. 455–467.

15. *BARKOV, A.* Zoned sulfides and sulfarsenides of the platinumgroup elements from the Penikat layered complex, Finland / A. Y. Barkov [et al.] // Canadian Mineralogist, 2004. – V. 42 – P. 515–537.

16. *BARKOV, A.* The taimyrite-tatyanaite series and zoning in intermetallic compounds of Pt, Pd, Cu, and Sn from Noril'sk, Siberia, Russia. / A. Y. Barkov [et al.] // Canadian Mineralogist, 2000. – V. 38. – P. 599–609.

17. COOK, N. J.Sobolevskite, taimyrite, and Pt₂CuFe (tulameenite?) in complex massive talnakhite ore, Noril'sk orefield, Russia / N. J. Cook [et al.] // Canadian Mineralogist, 2002. – V. 40. – P. 329–340.

 WILSON, G. CCoarse-grained cabriite from Noril'sk, Russia / G. C. Wilson, J. C. Rucklidge, C. Cermignani // Canadian Mineralogist, 2002. – V. 40. – P. 473–479.

19. *SHCHEKA*, *G.* **M**acrocrystals of Pt–Fe alloy from the Kondyor PGE placer deposit, Khabarovskiy kray, Russia: trace-element content, mineral inclusions and reaction assemblages / G. G. Shcheka // Canadian Mineralogist, 2004. – V. 42. – P. 601–617.

20. Разин, Л. В. Ромбический станнид палладия, меди и платины из медно-никелевых сульфидных руд месторождений норильского типа. / Л. В. Разин, Л. С. Дубакина, В. Т. Дубинчук // Записки Всесоюзного Минералогического Общества, 1976. – Т. 105(2). – С. 206–213.

21. Бегизов, В. Д. Новые данные о таймырите (Pd, Cu, Pt)₃Sn из медно-никелевых руд Талнахского месторождения / В. Д. Бегизов, Е. Н. Завьялов, Е. Г. Павлов // Записки Всесоюзного Минералогического Общества, 1982. – Т. 111(1). – С. 78–83.

22. *EVSTIGNEEVA, TCL*ibriite Pd₂SnCu, a new species in the mineral group of palladium, tin and copper compounds / T. L. Evstigneeva, A. D. Genkin // Canadian Mineralogist, 1983. – V. 21. – P. 481–487.

23. *RUDASHEVSKY*, NE‰lution of PGE mineralization in hortonolitic dunites of the Mooihoek and Onverwacht pipes, Bushveld complex / N. S. Rudashevsky, S. N. Avdontsev, M. B. Dneprovskaya // Mineralogy and Petrology, 1992. – V. 47(1). – P. 37–54.

24. *Рябов, В. В.* Уникальная полиминеральная ассоциация кобальт-никелевых и благороднометальных фаз в габбродолеритах траппового массива Джалтул (Сибирская платформа) / В. В. Рябов, А. А. Лапковский // Доклады Академии Наук, 2010. – Т. 434(4). – С. 522–526.

25. Шведов, Г. И. Новая находка германида палладия (Pd₂Ge) / Г. И. Шведов, А. И. Стехин, А. В. Тарасов // Современные проблемы теоретической, экспериментальной и прикладной минералогии (Юшкинские чтения-2013): материалы минералогического семинара с международным участием, 19–22 мая 2013 г., г. Сыктывкар. – Сыктывкар, 2013. – С. 157–159.

26. OKAMOTO, HThe Ge-Pd system (germanium-palladium) / H. Okamoto // Journal of Phase Equilibria, 1992. – V. 13(4). – P. 410–413.

27. *KOMAROVA, M.* **Z**he PGE mineralization of disseminated sulphide ores of the Noril'sk-Taimyr region / M. Z. Komarova [et al.] // In: L. J. Cabri (Ed.). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements. Canadian Institute of Mining, Metallurgy and Petroleum. – 2002. – spec. V. 54. – P. 547–567.

28. *NEKRASOV, I. YC*Compositional variations in platinum-group minerals and gold, Konder alkaline-ultrabasic massif, Aldan shield, Russia / I. Ya. Nekrasov [et al.] // Canadian Mineralogist, 2005. – V. 43. – P. 637–654.

29. *HOLWELL, D.* Relatinum group mineral assemblages in the Platreef at the Sandsloot Mine, northern Bushveld complex, South Africa / D. A. Holwell, I. Mcdonald, P. E. B. Armitage // Mineralogical Magazine, 2006. – V. 70. – P. 83–101.

30. *MCLAREN, C.* The platinum-group chemistry and mineralogy of the UG-2 chromitite layer of the Bushveld Complex / C. H. Mclaren, J.P.R. de Villiers // Economic Geology, 1982. – V. 77. – P. 1348–1366.

Красноярский Филиал ООО "Норильскгеология"

Шведов Г. И., геолог I категории

E-MAIL: G.SHVEDOV@MATerRU, 79082015079

Барков А. Ю., д. г.-м. н., заведующий научной лабораторией «Промышленная и рудная минералогия» Череповецкого государственного университета

E-MAIL: BARKOV@CHSUeRU;+7 911 543 9575

Олешкевич О. И., главный геолог ООО "УК "Интергео". E-MAIL:OLESHKEVICHOI@MMCINTE**RGEO:R4**Q52872951 31. *RYABOV, V.* VGe and Ge-bearing mineral phases in gabbrodolerites of Mt. Ozernaya trap intrusion (Siberian platform) / V. V. Ryabov, L. V. Agafonov // Goldschmidt 2013, 25–30 August 2013, Florence, Italy. – 2013. – V. 77(5). – P. 2106.

32. *HE, H. C.* The phase transformations and structure of $Cu_{83,34}$ Pt_{16.66} alloy / H. C. He, Y. N. Li // Journal of Materials Science, 1988. – V. 23(5). – P. 1558–1562.

33. *BARKOV, A.* Fluid migration and its role in the formation of platinum-group minerals: evidence from the Imandrovsky and Lukkulaisvaara layered intrusions, Russia / A. Y. Barkov, Y. E. Savchenko, A. A. Zhangurov // Mineralogy and Petrology, 1995. – V. 54. – P. 249–260.

34. *CABRAL, A.* **K**itagohaite, Pt_7Cu , a new mineral from the Lubero region, North Kivu, Democratic Republic of the Congo / A. R. Cabral [et al.] // Mineralogical Magazine, 2014 – V. 78 – P. 739–745.

35. *TOLSTYKH, N.* **T**he association of platinum-group minerals in placers of the Pustaya river, Kamchatka, Russia / N. D. Tolstykh [et al.] // Canadian Mineralogist, 2000. – V. 38. – P. 1251–1264.

36. Орсоев, Д. А. Минерал состава РtСu₃ из хромитов Оспинско-Китойского гипербазитового массива (В. Саян) / Д. А. Орсоев, Н. Д. Толстых, Е. В. Кислов // Записки Всероссийского Минералогического Общества, 2001. – Т. 130(4). – С. 61–71.

37. *BRENAN, J. M*-High-temperature stability of laurite and Ru-Os-Ir alloy and their role in PGE fractionation in mafic magmas / J. M. Brenan, D. Andrews // Canadian Mineralogist, 2001. - V. 39. - P. 341-360.

 BARKOV, A. IZoning and substitutions in Co–Ni–(Fe)–PGE sulfarsenides from the Mount General'skaya layered intrusion, Arctic Russia / A. Y. Barkov [et al.] // Canadian Mineralogist, 1999. – V. 37. – P. 127–142.

39. RAY, J. S. CARBON ISOTOPIC VARIATIONS IN FLUID-DEPOSITED GRAPHI EVIDENCE FOR MULTICOMPONENT RAYLEIGH ISOTOPIC FRACTIONAT J. S. RAY. // INTERNATIONAL GEOLOGY REVIEW, 2009. – V. 51(1). – P. 45–57.

40. *EVSTIGNEEVA, TPE*culiarities of phase formation in the system Pd-Bi-Te. / T. L. Evstigneeva [et al.] // 21^{st} General Meeting of the International Mineralogical Association, Sandton Convention centre in the Gauteng province of South Africa, 09/2014. – 2014. – V. 702. – P. 103.

41. *KIM, WON SA*. Phase relations in the system Pd–Sb–Te / Won Sa Kim, G. Y. Chao // Canadian Mineralogist, 1991. – V. 29. – P. 401–409.

42. *HOFFMAN*, Phase relations of michenerite and merenskyite in the Pd-Bi-Te system / E. Hoffman, W. H. Maclean // Economic Geology, 1976. – V. 71. – P. 1461–1468.

43. *Евстигнеева, Т. Л.* Олово в магматическом и постмагматическом процессах; под ред. И. Я. Некрасов / Т. Л. Евстигнеева, И.Я. Некрасов. – М.: Наука. – 1984. – С. 143–170.

44. *REISER, F. K. M*Mineralogy and geochemistry of tin- and germanium-bearing copper ore, Barrigão re-mobilized vein deposit, Iberian Pyrite Belt, Portugal / F. K. M. Reiser [et al.] // International Geology Review, 2011. – V. 53(10). – P. 1212–1238.

45. *FROST, B. I*On the stability of sulfides, oxides and native metals in serpentinite / B. R. Frost // Journal of Petrology, 1985. – V. 26. – P. 31–63.

46. *KLEIN, F*Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. / F. Klein, W. Bach. // Journal of Petrology. – 2009. – V. 50(1). – P. 37–59.

"OOO NORIL'SK GEOLOGIYA"

SHVEDOV G. I., GEOLOGYST

E-MAIL: G.SHVEDOV@MATTaRU+79082015079

BARKOV A.Y., DR.SC., HEAD OF SCIENTIFIC LABORATORY OF INDUSTRIAL ORE MINERALOGY, CHEREPOVETS STATE UNIVERSITY E-MAIL: BARKOV@CHSU.RU; ORE-MINERALS@MAIL.RU TEL: +7 911 543 9575 OLESHKEVICH O.I., CHIEF GEOLOGIST, «OOO UK INTERGEO", E-MAIL: OLESHKEVICHOI@MMCINTERGEO.RU; TEL.: +74952872951