УДК 549.621.9:553.81 (470.11)

# ИСПОЛЬЗОВАНИЕ ПИРОПОВ ДЛЯ ОЦЕНКИ ПЕРСПЕКТИВ АЛМА-ЗОНОСНОСТИ ТРУБКИ 746-Б АРХАНГЕЛЬСКОЙ АЛМАЗОНОСНОЙ ПРОВИНЦИИ

## Д. В. Еременко, А. В. Еременко, С. В. Бондаренко

#### Воронежский государственный университет

Поступила в редакцию 27 января 2015 г.

Аннотация: в статье дана оценка перспектив алмазоносности трубки 746-б, основанная на морфологических особенностях и закономерностях вариаций химического состава пиропов. В работе представлены классификации гранатов из трубки 746-б методами, предложенными Н.В. Соболевым, В.К. Гараниным и Дж. Доусоном - В. Стефенсоном.

**Ключевые слова:** трубка 746-б, пироповый минал, высокохромистые лерцолиты, каплевидный микрорельеф, поверхность растворения.

# USE PYROPE TO DETERMINE THE PROSPECTS OF DIATREME 746-B OF ARKHANGELSK DIAMOND-BEARING PROVINCE

ABSIRACE IN ARTICLE PRESENTS THE ESTIMATION OF PROSPECTS OF EVEN DIAMONDIFEROUS KIMBERITE PIPES OCCU. RENCE TUBE 746-B, BASED ON MORPHOLOGICAL CHARACTERISTICS AND REGULARTIES OF VARIATION OF CHEMICAL COM POSITION OF PYROPES. THE WORK PRESENTS THE CLASSIFICATION OF GARNETS FROM THE 746-B PIPE METHODS PRO-POSED BY N. SOBOLEV, V. GARANIN AND G. DAWSON-B. STEPHENSON. KEYWORDS: PIPE 746-B, PYROPE MINAL, HIGH CHROME LEHERZOLITE, TEARDROP-SHAPED MICRO-RELLEF, SURFACE DIS-SOLVING.

Трубка 746-б находится на территории Кепинской площади, в восточной части Зимнебережного алмазоносного района Архангельской области и приурочена к Золотицкому выступу Кольско-Двинской палеорифтовой системы [1]. Документирование керна скважины и петрографическое изучение шлифов показало, что трубка сложена разнообразными породами, которые можно отнести к породам кратерной и жерловой фации. Кратерная часть имеет мощность 115,5 метров, сравнимую с мощностями кратеров трубки Гриба, Пионерская, Архангельская, Карпинского-1 и представлена алевропесчаным материалом с многочисленными обломками пород и микроинъекциями кимберлитового материала, аналогичными тем, которые наблюдал Веричев Е. М. [2] в породах кратерной части трубки Гриба. В интервале глубин 198,0 – 254,0 м прослеживается автолитовая брекчия, переходящая в порфировый кимберлит в различной степени карбонатизированная и в меньшей степени окварцеванная. В этой связи, следует отметить, что промышленно алмазоносны только многофазные трубки, в строении которых участвуют столбы автолитовых кимберлитовых брекчий (трубка Гриба, Карпинского-1,2, Пионерская и др.) [3].

Были изучены под стереоскопическим микроскопом Stereo Discovery V8 37 зерен гранатов из трубки 746-б. Исследуемые гранаты представлены, главным образом, обломками зерен угловатой и изометричной формы с раковистыми сколами, что говорит о высокой динамике при подъеме кимберлитового материала и неблагоприятно влияет на возможность обнаружения целых зерен алмазов. Более детальное изучение поверхностей гранатов из трубки 746-б проводилось с помощью поляризационного микроскопа Axiolab объективами с увеличением: 20х/0,40 Pol и 50х/0,70 Pol. На исследуемых гранатах наблюдались блоковая поверхность, каплевидный микрорельеф, поверхности, образованные каналами травления, бороздами и ступеньками, бугорками с многочисленными дырочками – устьями каналов травления (рис. 1).

Выделенные поверхности характерны для гранатов, подвергшихся процессам интенсивной коррозии и растворения. По мнению Кудрявцевой Г. П. [4] это может указывать на агрессивность среды кимберлитового расплава, что также может неблагоприятно отразиться на потенциальной алмазоносности трубки.

Компонентный состав всех 37 зерен гранатов пироповый (54,92 – 79,04 мол. %), на что указывает и высокое содержание магния в исследуемых гранатах (18,25 – 21,75 мас. % MgO) (табл. 1). На этом фоне выделяется зерно с резко пониженным содержанием пиропового минала (35,34 мол. %) (рис. 2). Именно это зерно отличается аномально высокими содержаниями кноррингитового минала, характеризуется аномально высоким содержанием хрома (16,23 мас. % Cr<sub>2</sub>O<sub>3</sub>) и низким содержанием магния (16,62 мас. % MnO).



Рис. 1. Характер поверхности зерен пиропов из тубки 746-б (а - каналы травления; б - блоковая поверхность; в - каплевидный микрорельеф; г - борозчатая поверхность).

### Таблица 1

| № зерна | SiO <sub>2</sub> | $TiO_2$ | $Al_2O_3$ | $Cr_2O_3$ | FeO  | MnO  | MgO   | CaO  | Na <sub>2</sub> O | ZnO  |
|---------|------------------|---------|-----------|-----------|------|------|-------|------|-------------------|------|
| 1       | 40.15            | 0.61    | 20.11     | 4.75      | 7.61 | 0.30 | 21.75 | 4.71 | 0.05              | 0.06 |

Химический состав гранатов по данным микрозондового анализа (мас.%)

| Проба     | № зерна | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | FeO  | MnO  | MgO   | CaO  | Na <sub>2</sub> O | ZnO  | Сумма  |
|-----------|---------|------------------|------------------|--------------------------------|--------------------------------|------|------|-------|------|-------------------|------|--------|
| 746-1/133 | 1       | 40,15            | 0,61             | 20,11                          | 4,75                           | 7,61 | 0,30 | 21,75 | 4,71 | 0,05              | 0,06 | 100,10 |
| 746-1/133 | 2       | 40,76            | 1,09             | 17,48                          | 5,37                           | 9,04 | 0,33 | 19,33 | 5,92 | 0,03              | 0,14 | 99,49  |
| 746-1/133 | 3       | 41,14            | 0,12             | 19,23                          | 5,72                           | 7,18 | 0,34 | 20,33 | 5,30 | 0,00              | 0,00 | 99,36  |
| 746-1/133 | 4       | 39,67            | 0,82             | 16,12                          | 7,87                           | 9,08 | 0,47 | 18,62 | 6,14 | 0,05              | 0,00 | 98,84  |
| 746-1/133 | 5       | 41,47            | 0,15             | 19,20                          | 5,76                           | 7,19 | 0,34 | 20,29 | 5,30 | 0,03              | 0,00 | 99,73  |
| 746-1/133 | 6       | 41,13            | 0,69             | 17,03                          | 6,90                           | 7,14 | 0,25 | 20,25 | 5,99 | 0,03              | 0,00 | 99,41  |
| 746-1/133 | 7       | 41,35            | 0,10             | 19,42                          | 5,69                           | 7,24 | 0,32 | 20,41 | 5,21 | 0,03              | 0,00 | 99,77  |
| 746-1/133 | 8       | 38,88            | 0,20             | 10,33                          | 16,23                          | 7,36 | 0,41 | 16,62 | 8,67 | 0,04              | 0,00 | 98,74  |
| 746-1/133 | 9       | 41,36            | 0,14             | 19,18                          | 5,67                           | 7,25 | 0,39 | 20,46 | 5,42 | 0,03              | 0,00 | 99,90  |
| 746-1/133 | 10      | 41,36            | 0,09             | 18,77                          | 6,90                           | 7,67 | 0,50 | 20,21 | 4,75 | 0,00              | 0,08 | 100,33 |
| 746-1/133 | 11      | 41,11            | 0,09             | 19,49                          | 5,60                           | 7,12 | 0,40 | 20,48 | 5,28 | 0,02              | 0,04 | 99,63  |
| 746-1/133 | 12      | 40,33            | 0,13             | 17,42                          | 8,34                           | 7,62 | 0,43 | 18,82 | 6,30 | 0,00              | 0,03 | 99,42  |
| 746-1/133 | 13      | 40,72            | 0,09             | 15,89                          | 8,73                           | 6,81 | 0,27 | 19,50 | 6,52 | 0,00              | 0,00 | 98,53  |
| 746-1/133 | 14      | 40,77            | 0,08             | 17,69                          | 8,00                           | 7,54 | 0,41 | 18,53 | 6,47 | 0,01              | 0,00 | 99,50  |
| 746-1/133 | 15      | 40,68            | 0,02             | 17,65                          | 8,18                           | 7,18 | 0,34 | 18,49 | 6,48 | 0,00              | 0,01 | 99,03  |
| 746-1/133 | 16      | 40,77            | 0,08             | 19,33                          | 5,82                           | 7,08 | 0,34 | 20,37 | 5,40 | 0,02              | 0,01 | 99,22  |
| 746-1/133 | 17      | 40,34            | 0,08             | 17,75                          | 7,39                           | 7,64 | 0,38 | 18,80 | 6,56 | 0,02              | 0,00 | 98,96  |
| 746-1/133 | 18      | 41,31            | 0,15             | 19,36                          | 5,46                           | 7,14 | 0,39 | 20,41 | 5,34 | 0,00              | 0,01 | 99,57  |
| 746-1/133 | 19      | 40,84            | 0,02             | 17,74                          | 8,02                           | 7,39 | 0,44 | 19,55 | 5,63 | 0,03              | 0,02 | 99,68  |
| 746-1/133 | 20      | 41,15            | 0,19             | 17,56                          | 7,86                           | 7,23 | 0,40 | 19,80 | 5,90 | 0,03              | 0,02 | 100,14 |
| 746-1/133 | 21      | 41,64            | 0,13             | 19,06                          | 5,78                           | 7,07 | 0,40 | 20,41 | 5,24 | 0,03              | 0,00 | 99,76  |
| 746-1/133 | 22      | 41,27            | 0,08             | 18,11                          | 7,44                           | 7,41 | 0,47 | 19,19 | 6,17 | 0,02              | 0,00 | 100,16 |
| 746-1/193 | 23      | 40,11            | 0,10             | 16,09                          | 9,89                           | 7,47 | 0,41 | 18,25 | 6,93 | 0,05              | 0,03 | 99,33  |
| 746-1/193 | 24      | 40,23            | 0,06             | 16,42                          | 9,53                           | 7,35 | 0,47 | 18,49 | 6,76 | 0,04              | 0,02 | 99,37  |
| 746-1/193 | 25      | 40,46            | 0,10             | 16,85                          | 8,75                           | 7,42 | 0,44 | 19,25 | 6,24 | 0,02              | 0,00 | 99,53  |
| 746-1/193 | 26      | 40,33            | 0,23             | 16,99                          | 8,73                           | 7,25 | 0,46 | 19,04 | 6,39 | 0,04              | 0,07 | 99,53  |
| 746-1/193 | 27      | 39,96            | 0,09             | 17,70                          | 8,08                           | 7,17 | 0,41 | 19,47 | 6,05 | 0,00              | 0,00 | 98,93  |
| 746-1/193 | 28      | 40,50            | 0,06             | 17,51                          | 8,51                           | 7,31 | 0,48 | 19,09 | 6,15 | 0,03              | 0,00 | 99,64  |
| 746-1/193 | 29      | 40,46            | 0,07             | 19,00                          | 6,46                           | 7,63 | 0,50 | 19,29 | 5,96 | 0,00              | 0,00 | 99,37  |
| 746-1/193 | 30      | 41,75            | 0,72             | 19,30                          | 3,63                           | 7,60 | 0,29 | 21,48 | 4,81 | 0,06              | 0,00 | 99,64  |
| 746-1/193 | 31      | 40,65            | 0,13             | 17,62                          | 8,05                           | 7,43 | 0,42 | 18,97 | 6,03 | 0,02              | 0,00 | 99,32  |
| 746-1/193 | 32      | 40,69            | 0,07             | 17,96                          | 8,06                           | 7,38 | 0,58 | 19,48 | 5,05 | 0,00              | 0,06 | 99,33  |
| 746-1/193 | 33      | 39,86            | 0,07             | 16,49                          | 9,08                           | 7,88 | 0,41 | 18,50 | 6,69 | 0,03              | 0,02 | 99,03  |
| 746-1/216 | 34      | 41,05            | 1,10             | 16,45                          | 7,75                           | 6,62 | 0,32 | 20,65 | 5,33 | 0,08              | 0,00 | 99,35  |
| 746-1/216 | 35      | 40,70            | 1,10             | 16,42                          | 7,64                           | 6,82 | 0,29 | 20,90 | 5,28 | 0,05              | 0,03 | 99,23  |
| 746-1/216 | 36      | 40,34            | 0,03             | 18,44                          | 7,31                           | 7,29 | 0,37 | 19,43 | 6,00 | 0,02              | 0,03 | 99,26  |
| 746-1/216 | 37      | 40,44            | 0,14             | 17,98                          | 7,39                           | 6,85 | 0,42 | 19,67 | 5,86 | 0,02              | 0,03 | 98,80  |



*Рис.2.* Диаграмма составов граната из трубки 7466, в координатах основных миналов альмандин-кноррингит-пироп (almandine-knorringite-pyrope).



*Рис.3.* Диаграмма составов граната из трубки 7466, в координатах основных миналов альмандин-уваровит-андрадит (almandine-uvarovite-androdite).

Содержание андрадитового минала в большинстве исследуемых зерен гранатов варьирует в диапазоне 0,00 - 2,47 мол. %. Химический состав этих зерен отличается относительно данной выборки низкими содержаниями титана и трехвалентного железа. Выделяется небольшая группа гранатов, отличающаяся от других зерен повышенными содержаниями андрадитового минала (3,91 - 8,77 мол. %) (рис. 3). Все зерна гранатов из трубки 746-б отличаются относительно высокими содержаниями кноррингитового минала по сравнению с зернами гранатов ААП (3,40 - 15,35 мол. %) [3]. Это связано с высокой и средней хромистостью исследуемых гранатов (4,75 - 9,89 масс. %  $Cr_2O_3$ ). Одно зерно имеет аномально высокое содер-

жание кноррингитового минала (29,41 мол. %) в сравнении с гранатами других трубок ААП [3].

Большая часть гранатов характеризуется высокими содержаниями уваровитового минала (11,03 – 19,89 мол. %). Эти зерна отличаются повышенными содержаниями хрома в сравнении с гранатами других трубок ААП [3]. Несколько зерен имеют невысокие содержания уваровитового минала (4,36 – 10,52 мол. %). Соответственно содержание хрома в них более низкое. Можно отметить закономерность: гранаты, имеющие высокие содержания андрадитового минала, отличаются пониженными значениями уваровитового минала (рис. 3). Эта закономерность отражается в содержании хрома и титана. Зерна, имеющие высокие значения титана, характеризуются более низкими содержаниями хрома.

Все зерна исследуемых гранатов характеризуются средними содержаниями спессартинового минала (0,56 – 1,20 мол. %). Что связано с невысоким содержанием марганца в гранатах (0,27 – 0,58 масс. % MnO) в сравнении с гранатами других трубок ААП [3].

Из всего вышесказанного можно сделать вывод о том, что в исследуемых гранатах помимо преобладающей пироповой составляющей, велико содержание уваровитового и кноррингитового миналов. Это подтверждается их высокой хромистостью и магнезиальностью.

Выделяется небольшая группа гранатов, в которой, наряду с преобладающими значениями пиропового минала, отмечаются повышенные содержания андрадитового и пониженные уваровитового и альмандинового миналов. Это подтверждается повышенными содержаниями в этих зернах титана и трехвалентного железа и более низкими хрома, двухвалентного железа относительно гранатов других тел ААП [3]. Также можно отметить одно зерно с аномально высоким содержанием кноррингитового минала и пониженным пиропового. Хотя пироповая компонента остается преобладающей в гранате. Это зерно характеризуется высоким содержанием хрома (16,23 мас. %), пиропы с таким высоким содержанием хрома до сих пор не были встречены на Зимнем Берегу.

На диаграмме в координатах CaO-Cr<sub>2</sub>O<sub>3</sub> исследуемые гранаты не удовлетворяют условиям алмазоносности по Н. В. Соболеву [7], так как они все располагаются в области равномерно-зернистых лерцолитов (рис. 4), а гранаты дунит-гарцбургитового генезиса, определяющие уровень промышленной алмазоносности любой трубки, в гранатах из трубки 746-б отсутствуют. Для сравнения на диаграмму Н. В. Соболева вынесены результаты анализов гранатов по другим объектам, расположенным недалеко от исследуемой трубки.

Большинство гранатов из убогоалмазоносной трубки Рождественская [5] расположены в области лерцолитов и верлитов и не удовлетворяют условиям алмазоносности по Н. В. Соболеву. Отличаются низкими содержаниями хрома и достаточно высокими содержаниями кальция. Гранаты из слабоалмазоносной трубки 840 [6] лежат в лерцолитовой области и не



*Рис.4.* Диаграмма составов гранатов в координатах  $CaO-Cr_2O_3$ .

удовлетворяют условиям алмазоносности по Н. В. Соболеву, но имеют более высокие содержания хрома в отличие от гранатов из трубки Рождественская.

Исследуемые гранаты характеризуются более высокими значениями хрома в отличие от гранатов из трубок Рождественская и 840. По расположению точек на диаграмме в области лерцолитов они ближе к гранатам из трубки Карпинского II. Хотя гранаты из трубки Карпинского II отличаются более широким спектром распространения [7]. Здесь можно наблюдать гранаты не только лерцолитового парагенезиса. Три зерна попадают в область верлитового парагенезиса и два зерна относятся к дунит-гарцбургитовому.

Таким образом, из диаграммы Н.В. Соболева можно сделать вывод, что исследуемые гранаты не имеют строгих аналогов в других трубках. Но если искать сходства, то исследуемые гранаты близки к гранатам из лерцолитового парагенезиса трубки Карпинского II. Большинство авторов, занимающихся проблемами алмазной геологии, говорят о том, что алмазоносным является не только дунит-гарцбургитовый парагенезис. Встречаются алмазоносные лерцолиты и верлиты.

Метод линейного дискриминантного анализа, предложенный В. К. Гараниным, был использован в разделении гранатов трубки 746-б на химикогенетические группы (ХГГ) [8].

В рамках классификации В. К. Гаранина изученные гранаты могут быть отнесены к ультраосновному парагенезису, в связи с отсутствием гроссулярового и наличием кноррингитового миналов, в связи с высокими содержаниями магния, хрома и относительно низкими содержаниями кальция. Исследуемые гранаты принадлежат к 3, 4, 7 и 8 ХГГ.

Большинство гранатов принадлежат к 3 ХГГ. Она представлена 22 зернами исследуемых гранатов. Зерна относятся к парагенезису алмазоносных равномерно-зернистых лерцолитов с высокохромистым среднекальциевым пиропом. Компонентный состав этой группы кноррингит-уваровит-альмандин-пироповый (в гранате в небольшом количестве присутствует андрадитовый минал). Гранатам этой группы присущи высокие содержания хрома (6,00 – 10,22 мас. % Cr<sub>2</sub>O<sub>3</sub>), повышенные содержания закисного железа (4,5 – 9,6 мас. % FeO). Содержания кальция варьируют от 2,25 до 7,06 мас. % CaO.

К гранатам 4 ХГГ относятся 8 исследуемых зерен. Компонентный состав аналогичен составу гранатов из 3 ХГГ. Данная ХГГ отличается от вышеописанной группы средними содержаниями хрома  $(3,6 - 7,14 \text{ мас. } \% \text{ Cr}_2\text{O}_3)$ .

7 ХГГ представлена 5 зернами гранатов. Компонентный состав 7 группы андрадит-уваровит-альмандин-кноррингит-пироповый. Гранаты, представляющие данную группу, принадлежат к слабоалмазоносным равномерно-зернистым ильменитовым лерцолитам с высокохромистым титанистым гранатом. 7 ХГГ отличается высокими содержаниями титана (0,75 – 1,91 мас. % TiO<sub>2</sub>) и хрома (6,00 – 12,60 мас. % Сг<sub>2</sub>O<sub>3</sub>) при высоком содержании кальция (5,41 – 7,62 мас. % CaO).

К гранатам 8 ХГГ по дискриминантному анализу относятся 2 исследуемых зерна. Компонентный состав аналогичен составу гранатов из 7 ХГГ. Данная ХГГ отличается от 7 группы более низким содержанием хрома (0,01 – 5,11 мас. % Cr<sub>2</sub>O<sub>3</sub>) [8].

Генетическая принадлежность гранатов, описанных выше ХГГ, соответствует области распространения исследуемых гранатов на диаграмме Н.В. Соболева и относится к лерцолитовому парагенезису.

Диаграмма в координатах CaO-Cr2O3 с выделенными В.К.Гараниным областями распространения ХГГ ультраосновного парагенезиса (рис. 5) подтверждает принадлежность исследуемых гранатов к 3, 4, 7 и 8-ой химико-генетической группе, так как значения исследуемых гранатов падают в области вышеперечисленных ХГГ. Одно зерно граната не попадает в выделенные В. К. Гараниным области ХГГ, но по результатам дискриминантного анализа относится к 3 ХГГ. Расположение зерна вне области распространения гранатов З ХГГ связано с аномально высоким содержанием хрома (16,23 мас.% Cr<sub>2</sub>O<sub>3</sub>) и высоким содержанием кальция (8,67 мас.% СаО). На диаграмме (рис. 5) видно, что области различных групп накладываются друг на друга. Эту особенность диаграммы следует подчеркнуть в связи с тем, что В. К. Гараниным при выводе уравнений дискриминантных функций не указаны эмпирическая и теоретическая ошибки классификации. Это обстоятельство оставляет вопрос о точности отнесения гранатов к той или иной ХГГ открытым.

Тем не менее, полученные данные, в рамках классификации В. К. Гаранина, относятся к высокохромистым, а, следовательно, к высокопродуктивным лерцолитам.

Помимо В. К. Гаранина вопросами классификации гранатов занимались Дж. Доусон и В. Стефенсон. Метод дискриминантного анализа, предложенный Дж. Доусоном и В. Стефенсоном [9], был использован в разделении исследуемых гранатов на группы. По дискриминантному анализу большинство исследуемых



Рис. 5. Расположение изученных гранатов на диаграмме Н. В. Соболева CaO-Cr<sub>2</sub>O<sub>3</sub>. Поля распределения ХГГ гранатов по В.К. Гаранину [8]. Поля на диаграмме соответствуют гранатам из алмазоносных дунитов и гарцбургитов (I), из лерцолитов (II), и верлитов (III) по данным Н.В. Соболева (1974); 1 – алмазоносные дуниты и гарцбургиты, 2 – алмазоносные перидотиты с высоко и среднехромистым гранатом, 3 – алмазоносные равномерно-зернистые лерцолиты с высокохромистым гранатом, 4 - алмазоносные равномерно-зернистые лерцолиты со среднехромистым гранатом, 5 алмазоносные равномерно-зернистые лерцолиты с низкохромистым гранатом, 6 – алмазоносные верлиты, 7 – слабоалмазоносные равномерно-зернистые лерцолиты, 8 - слабоалмазоносные равномерно-зернистые ильменитовые лерцолиты. Квадратами обозначены зерна гранатов, принадлежащие к 4 ХГГ; ромбами к 8 ХГГ; крестиками к 3 ХГГ; кружками к 7 ХГГ.



Рис.6. Расположение изученных гранатов на диаграмме в координатах FeO-MgO-CaO (черные точки). Средние содержания (белые точки) и поля распределения групп гранатов по Дж. Доусону и В. Стефенсу. *1* – титанистый пироп, *2* – высокотитановый пироп, *3* – кальциевый пиропальмандин, *4* – титанистый кальциевый магнезиальный альмандин, *5* – магнезиальный альмандин, *6* – пиропгроссуляровый альмандин, *7* – железомагнезиальный уваровит-гроссуляр, *8* – железомагнезиальный гроссуляр, *9* – хромовый пироп, *10* – малокальциевый хромовый пироп, *11* – уваровит-пироп, *12* – кноррингитовый уваровит-пироп.

гранатов попадают в 10 группу (26 зерен) – группу малокальциевых хромовых пиропов. Гранаты этой группы преобладают в кимберлитах некоторых трубок и наиболее обычны в качестве включений в алмазе [10]. Следует заметить, что из всех групп только 10-я группа алмазоносна. Два зерна граната относятся к 11 группе – группе уваровит-пиропов. Гранаты этой группы характеризуются умеренными содержаниями магния, но повышенными кальция, хрома и титана. Эти гранаты встречаются в кимберлитах и в ксенолитах перидотитов [10]. Одно зерно граната относится к кноррингитовым уваровит-пиропам (группа 12). По составу гранаты этой группы схожи с гранатами из 11 группы, но содержат меньше TiO<sub>2</sub> и очень много Cr<sub>2</sub>O<sub>3</sub>. Встречаются гранаты в кимберлитах, отмечены единичные находки в алмазоносном гранатовом серпентините [10]. Два зерна граната попадают в группу титанистых пиропов (1 группа). Гранаты этой группы могут встречаться как в кимберлитах, так и в лерцолитах. Три зерна исследуемых гранатов относятся к группе высокотитановых пиропов (2 группа). Гранаты этой группы, по Дж. Доусону и В. Стефенсону, представляют мегакристаллы высокотитанового пиропа в кимберлите. Они содержат больше титана, чем гранаты 1 группы. Диаграмма в координатах FeO – MgO – СаО с выделенными областями распределения групп по Дж. Доусону и В. Стефенсону подтверждает принадлежность исследуемых гранатов к 1, 2, 9, 10, 11 и 12 группам (рис. 6). Хотя можно наблюдать, что большинство исследуемых гранатов не попадают в область 10 группы, а расположены в 1 и 9 областях. Но ближе всего исследуемые гранаты к средним значениям гранатов из девятой группы.

Одно зерно близко к гранатам 12 группы. Большинство исследуемых гранатов расположено около средних значений гранатов 10 группы. Несколько гранатов приближены к 9 группе. Часть исследуемых гранатов близки к средним значениям гранатов из 11 группы (рис. 6). Диаграммы со средними содержаниями составов гранатов различных групп подтверждают результаты вычислений дискриминантного анализа. Можно сказать, что в рамках классификации Дж. Доусона и В. Стефенсона большинство изученных гранатов (26 зерен) принадлежат к группе малокальциевых хромовых пиропов алмазоносного парагенезиса.

Таким образом, по результатам проведенных исследований можно сделать следующие выводы:

1. Исследуемые гранаты представлены, главным образом, обломками зерен угловатой и изометричной формы, что говорит о высокой динамике при подъеме кимберлитового материала и неблагоприятно влияет на возможность обнаружения целых зерен алмазов.

2. При детальном изучении микрорельефа зерен с помощью поляризационного микроскопа на исследуемых гранатах наблюдались блоковая поверхность, каплевидный микрорельеф, поверхности, образованные каналами травления, бороздами и ступеньками, бугорками с многочисленными дырочками – устьями каналов травления. Эти поверхности характерны для гранатов, подвергшихся процессам коррозии и растворения, что также неблагоприятно влияет на потенциальную алмазоносность трубки. 3. Исследованные гранаты характеризуются высокими содержаниями пироповой составляющей. Одно зерно отличается высоким содержанием хрома (16,23 мас. %), пиропы с таким высоким содержанием хрома до сих пор не были встречены на Зимнем Берегу. Велико содержание уваровитового и кноррингитового миналов. Это подтверждается высокой хромистостью и магнезиальностью гранатов.

4. На диаграмме Н. В. Соболева гранаты не удовлетворяют условиям алмазоносности, поскольку фигуративные точки их составов располагаются в области равномерно-зернистых лерцолитов. Следует заметить, что некоторые авторы говорят не только об алмазоносном дунит-гарцбургитовом парагенезисе, но и о алмазоносных лерцолитах [3]. По содержанию хрома и кальция исследованные гранаты отличаются от гранатов из других трубок Архангельской алмазоносной провинции. Тем не менее, можно отметить сходство исследуемых гранатов, относящихся к лерцолитовому парагенезису, с гранатами из алмазоносной трубки Карпинского II. В рамках классификации В. К. Гаранина изученные гранаты относятся к высокохромистым (3, 4, 7 и 8 ХГГ), а, следовательно, к группе высокопродуктивных лерцолитов. В рамках классификации Дж. Доусона и В. Стефенсона большинство изученных гранатов принадлежат к группе малокальциевых хромовых пиропов алмазоносного парагенезиса.

Таким образом, закономерности вариаций химического состава пиропов, некоторое сходство с гранатами алмазоносной трубки Карпинского II и данные классификаций (по Гаранину и по Доусону) исследуемых гранатов позволяют достаточно высоко оценивать перспективы алмазоносности трубки 746-б.

#### ЛИТЕРАТУРА

1. Еременко, А.В. Геология и геодинамическая модель формирования трубок взрыва Архангельской алмазоносной провинции / А.В.Еременко, В.М.Ненахов // Вестник Воронеж. гос. ун-та. Сер. Геология. – 2002. – № 1. – С. 36–42.

2. Веричев, Е.М. Геологическое строение и вещественный состав кимберлитовой трубки имени В. П. Гриба (Архангельская алмазоносная провинция) / Е.М. Веричев, Н.Н. Головин, А.А. Заостровцев // Очерки по геологии и полезным ископаемым Архангельской области: сб. науч. тр. – Архангельск. – 2000. – 96 с.

3. Богатиков, О.А. Архангельская алмазоносная провинция / О.А. Богатиков, В.К. Гаранин, В.А. Кононова, Г.П. Кудрявцева [и др.] / Под ред. О.А. Богатикова. – Москва: изд-во МГУ. – 2000. – 552 с.

4. *Кудрявцева, Г.П.* Атлас. Морфогенез алмаза и его минералов-спутников из кимберлитов и родственных пород Архангельской алмазоносной провинции / Г.П. Кудрявцева, Т.В. Посухова, В.В. Вержак, Е.М. Веричев [и др.]. – 1-е изд. – М.: Поляр. кр. – 2005. – 624 с.

5. *Ларченко*, *В.А.* Отчет о результатах оценочных работ на алмазы на трубке Рождественская Архангельской алмазоносной провинции АК «АЛРОСА – Поморье» / В.А. Ларченко, В.П. Гунин. – Архангельск. – 2005. – 287 с.

6. *Ларченко, В.А.* Отчет о результатах оценочных работ на алмазы на трубке 840 Архангельской алмазоносной провинции АК «АЛРОСА – Поморье» / В.А. Ларченко, В.П. Гунин. – Архангельск. – 2006. – 210 с.

7. Вержак, В.В. Геологическое строение, вещественный состав, условия образования и методика разведки месторождения алмазов им. М. В. Ломоносова: автореф. дис. ... канд. геол.-мин. наук / В.В. Вержак. – Москва, 2001. – 36 с.

8. *Гаранин, В.К.* Включения в алмазе и алмазоносные породы / В.К. Гаранин, Г.П. Кудрявцева, А.С. Марфунин, О.А. Михайличенко. – М.: Изд-во МГУ. – 1991. – 256 с.

9. *DAWSON, J.B.*Statistical classification of garnets from kimberlite and associated xenoliths / J.B. Dawson, W.E. Stephens. – Journal of Geology, 1975. – Vol. 83. – P. 589 – 607.

10. Доусон, Дж. Кимберлиты и ксенолиты в них / Под ред. акад. В.С.Соболева. – М.: Изд-во «Мир». – 1983. – 300 с.

#### Воронежский государственный университет

Еременко Д.В., преподаватель кафедры общей геологии и геодинамики E-MAII: KRIOVA DASHA@MAILRU

Тел.: 89192477051

Еременко А.В., кандидат геолого-минералогических наук, доцент кафедры общей геологии и геодинамики E-MAII: AVEREMA@YANDEXRU Ten.: 89050529155

Бондаренко С. В., кандидат геолого-минералогических наук, доцент кафедры общей геологии и геодинамики E-MAIL: SW\_BONDARENKO@HOTMAILCOM Teл.: 89601057692

#### VORONEZHSTATE UNIVERSITY

EREMENKO D. V., TEACHER OF THE GENERAL GEOLOGY AND GEODY-NAMICS DEPARTMENT E-MAIL: KRILOVA\_DASHA@MAILRU TEL: 89192477051

EREMENKO A. V. CANDIDATE OF GEOLOGICAL AND MINERALOGICAL SCIENCES, ASSOCIATE PROFESSOR OF THE COMMON GEOLOGY AND GEODYNAMIC DEPARTMENT E-MAIL: AVEREMA@YANDEX.RU TEL: 89050529155

BONDARENKOS. V., CANDIDATE OFGEOLOGICALAND MINERALOGICAL SCIENCES, ASSOCIATE PROFESSOR OF THE COMMON GEOLOGY AND GEODYNAMIC DEPARTMENT E-MAIL: SW\_BONDARENKO@HOTMAILCOM TEL: 89601057692