ГЕОХИМИЯ И УСЛОВИЯ КРИСТАЛЛИЗАЦИИ ПОРОД ГАББРОДИО-РИТ–АНОРТОЗИТОВОГО И МОНЦОГРАНИТНОГО ИНТРУЗИВОВ ЛОСЕВСКОЙ СТРУКТУРНО-ФОРМАЦИОННОЙ ЗОНЫ (ВОРОНЕЖСКИЙ КРИСТАЛЛИЧЕСКИЙ МАССИВ)

Р. А. Терентьев, К. А. Савко, Н. С. Базиков

Воронежский государственный университет

Поступила в редакцию 15 сентября 2014 г.

Аннотация: в статье рассмотрены петрография, минералогия, геохимия, условия кристаллизации и тектоническая позиция габбродиорит–анортозитовых и монцогранитоидных массивов Лосевской структурноформационной зоны (ЛСФЗ) Воронежского кристаллического массива (ВКМ). Условия кристаллизации их расплавов: 2–4 кбар (7–14 км), температуры ликвидус/солидус: >1000/710 °C и ~ 900/670 °C. Родоначальный расплав обогащен Ва, Sr, Zr, LREE. На основании полученных минералого-петрографических и геохимических данных породы массивов отнесены к анортозитовой серии (массивный тип анортозитов) и ассоциирующим с ними гранитоидам повышенной калиевости A-типа. Гранитоиды A-типа и анортозитов) и ассоциирующим канорогенной внутриплитной или постколлизионной обстановок в эволюции коры ЛСФЗ ВКМ. Ключевые слова: Воронежский кристаллический массив, палеопротерозой, габбродиориты–анортозиты, монцограниты, геохимия.

GEOCHEMISTRY AND CRYSTALLIZATION CONDITIONS OF GABBRODIORITE-ANORTHOSITE AND MONZOGRANITE INTRUSIONS IN THE LOSEVO SUTURE ZONE (VORONEZH CRYSTALLINE MASSIF)

Abstract: petrography, mineralogy, geochemistry, and crystallization conditions of gabbrodiorite-anorthosite and monzogranite massifs are described in the Losevo suture zone (Voronezh Crystalline massif). The melts crystallization conditions are 2-4 kbar (7–14 km), >1000/710 °C u ~900/670 °C (liquidus/solidus). Initial melt are enriched Ba, Sr, Zr, LREE. Based on mineralogy and geochemistry data the intrusions rocks belong to anorthosite series (massive anortosite) and associated alkali enriched A-type granites. The A-granite and anorthosite intrusions reflect postcollisional or intraplating settings in the crust evolution of the Losevo suture zone.

Key words: Voronezh Crystalline Massif, Paleoproterozoic, gabbrodiorite-anorthosite, monzogranite, geochemistry.

Введение

Происхождению гранитоидов и связанных с ними пород уделяется много внимания в современной геологической литературе. В многочисленных публикациях последних лет гранитоиды установлены в различных тектонических обстановках: островодужных, коллизионных, постколлизионных, внутриплитных (океанических и континентальных). Наибольшее распространение гранитоиды и связанные сними породы получили в коллизионных орогенах [1, 2], где в процессе их эволюции могут генерироваться магмы различных геохимических типов.

К одной из таких структур относится Восточно-Сарматский ороген [3, 4], сложенный палеопротерозойскими образованиями в пределах восточной части Воронежского кристаллического массива (ВКМ, рис. 1). Орогенез в палеопротерозое происходил в зоне сочленения Сарматского и Волго-Уральского сегментов Восточно-Европейской платформы. Шовная зона представлена здесь Лосевским террейном, в пределах которого выделено всего два плутонических комплекса – рождественский и усманский (Схема стратиграфии и магматизма докембрия ВКМ). Рождественский комплекс сложен метаморфизованными габброидами 2120±11–2158±43 млн лет [5], которые комагматичны метатолеитам стрелицкой толщи лосевской серии. Крупные (до 540 км2) интрузивы усманского мигматит-трондьемит-гранодиоритового комплекса прорывают как вмещающие метатерригенные и метавулканогенные породы лосевской серии, так и малые тела рождественского комплекса. Трондьемиты и гранодиориты усманского комплекса отнесены к коллизионным гранитоидам с изотопным возрастом 2047±11–2066±28 млн лет [6, 7].

В последнее время в Лосевском террейне, кроме перечисленых выше комплексов, выделяются активноокраинные интрузивы известково-щелочной габбродиорит-тоналит-трондьемитовой серии [8] и толеитовые метагаббро-диабазы [5], постколлизионные монцограниты [9]. Обнаружение новых плутонических образований свидетельствует о более сложном строении Лосевского террейна, чем считалось ранее.

Рис. 1. Схема структурно-тектонического районирования докембрийского фундамента Воронежского кристаллического массива (по В.Ю. Скрябину, с дополнениями): *1* – образования Лосевского (а) и Донского (б) террейнов, *2* – палеопротерозойские породы Воронцовского террейна, *3* – архейские образования Курского террейна, *4* – синклинорные структуры, выполненные палеопротерозойскими породами, *5* – изогипсы абсолютных отметок поверхности докембрийского фундамента.

В этой статье представлены результаты изучения двух массивов изверженных пород, расположенных в пределах палеопротерозойской Лосевской структурно-формационной зоны (ЛСФЗ) ВКМ:

Репнинский габбродиорит–анортозитовый;

• Рамонский монцогранитоидный.

Такой важный индикатор тектонической природы ЛСФЗ как анортозитовые серии и ассоциирующие с ними породы для восточной части ВКМ описаны впервые.

Задачами представленного исследования являются:

(1) получить геохимические данные для выявления геохимических типов диоритов и анортозитов Репнинского и монцогранитов Рамонского массивов ЛСФЗ ВКМ и дальнейших тектонических реконструкций;

(2) оценить условия кристаллизации массивов.

Фактический материал и методы исследования

Местоположение скважин, керн которых использован для петрографических, геохимических исследований, показано на рис. 2. Осуществлено петрографическое описание с подсчетом количественно-минерального состава 19 шлифов, геохимическим исследованиям подвергнуты 14 образцов по интрузивным породам. Определения петрогенных оксидов (в мас. %), редких, рассеянных элементов (в г/т) осуществлено комплексом методов Отделе в научнопроизводственных аналитических работ ИМГРЭ, г. Москва. Концентрации SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅ определялись рентгенофлуоресцентным методом на приборе Axios Advansed. Концентрации FeO и потерь при прокаливании (ППП) определялись методом классической мокрой химии. Показатель точности (при вероятности P=0,95) для всех аналитов не превышал $0,15 \pm \Delta$ мас.%.

Концентрации редких, рассеянных элементов определялись методом ICP-MS на приборе Elan 6100 DRC в стандартном режиме. Вскрытие образцов осуществлялось по методике кислотного разложения в микроволновой печи из навесок проб массой 50-100 мг. Методика обеспечивает полное разложение большинства магматических, метаморфических и осадочных пород, включая содержащиеся в них трудно разлагающиеся минералы (циркон, монацит и др.). В качестве стандартного образца использовался внутрилабораторный аттестованный образец горной породы, разложенный по той же методике, что и реальные образцы. Пределы обнаружения элементов составляли от 1-5 мг/т для тяжелых и средних по массе элементов (U, Th, REE и др.) с возрастанием до 20-50 мг/т для легких элементов (Ba, Rb и др.). Показатель точности (при вероятности Р=0,95) для всех элементов составил от 0,24 до 0,50 $\pm \Delta$ г/т.

Для сравнительной характеристики использованы геохимические данные по массивам усманского комплекса, Девицкого массива и группы макарьевских интрузий ЛСФЗ [5, 8, 9].

Локальные анализы минералов (213 шт.) выполнены на электронном микроскопе Jeol 6380LW с системой количественного энергодисперсионного анализа

Рис. 2. Геолого-геофизическая схема строения докембрийского фундамента района исследований: 1 – терригенные отложения воронежской свиты с метаконгломератами в основании; 2 – подгоренская толща лосевской серии с преобладанием метавулканогенных пород среднего состава; 3 – стрелицкая толща лосевской серии: амфиболиты, биотит-амфиболовые сланцы; 4 – нерасчлененные породы (метаграувакки, гнейсы) Лосевского террейна (PR₁), гнейсы Донского террейна и ассоциирующие с ними гранитоиды (AR₂:PR₁); 5 – монцограниты; 6 – трондьемиты и лейкогранодиориты, 7 – тоналиты и гранодиориты, 8 – диориты, кварцевые диориты и монцодиориты, 9 – габбродиориты и габброиды, 10 – кварцевые габбродиориты, диориты (а) и анортозиты–лейкодиориты (б) Репнинского массива, 11 – монцограниты, кварцевые монцониты Рамонского массива, 12 – тектонические нарушения: главные (а) и второстепенные (б), 13 – аномалии гравитационного поля (Δ g, мГал): отрицательные (а), нулевые (б) и положительные (в), 14 – положение и номер скважин.

«Іпса» (ВГУ). Условия анализа: ускоряющее напряжение 20 кв, ток зонда 1,2 mA, время набора спектра 90 сек, диаметр пучка 1–3 мкм. ZAF коррекция при расчете содержания окислов и оценка точности проводились с помощью комплекта программ математического обеспечения системы. Точность анализа систематически контролировалась по эталонным образцам природных и синтетических минералов.

Геологическая позиция

Репнинский габбродиорит–анортозитовый массив расположен в 23,5 км севернее г. Воронежа, а Рамонский кварцмонцонит–монцогранитный массив вблизи г. Рамонь (см. рис. 2). Репнинский массив выделяется в магнитном и гравитационном полях положительными аномалиями, а Рамонский характеризуется фоновыми значениями геофизических полей. Оба интрузива (размером 2,5×5 и 1,5×2,5 км) изометричной формы прорывают аповулканогенные амфиболиты и метаграувакки нижней (стрелицкой) толщи лосевской серии, что подтверждается находками их ксенолитов. Амфиболиты стрелицкой толщи лосевской серии интерпретируются как толеиты задуговых бассейнов [5].

Исследуемые объекты вскрыты единичными скважинами (см. рис. 2). По характеру магнитного поля предполагается, что Репнинский массив имеет зональное строение – в центре лейкократовые породы (биотитовые лейкодиориты, андезиновые анортозиты), а в краевой части мезократовые породы (кварцевые биотит-роговообманковые габбродиориты и диориты) с повышенным содержанием магнетита. Рамонский массив, скорее всего, монопородный (биотитовые клинопироксен-роговообманковосодержащие монцограниты). Контакты с вмещающими породами скважинами не вскрыты.

Диориты Репнинского массива прорваны дайками риолит-порфиров (рис. 3), мощностью до 0,3 м. Фенокристаллы в них представлены кварцем, плагиоклазом и калиевым полевым шпатом, основная масса фельзитовая. Наличие вкрапленников калиевого полевого шпата и слабая степень метаморфизма отличает дайковые породы от метаплагиориолитов и метаплагиодацитов обеих толщ лосевской серии (подгоренская и стрелицкая толщи).

Петрография и минералогия

Репнинский массив (скв. 7749, 7750, рис. 4). Анортозиты-лейкодиориты состоят из плагиоклаза, биотита, небольшого количества кварца и калиевого полевого шпата, второстепенные минералы представлены роговой обманкой (табл. 1) и Fe-Ti-оксидами (преобладает ильменит), акцессории – сфеном, апатитом, цирконом, баритом. Структура гипидиоморфнозернистая, порфировидная. Содержание плагиоклаза варьирует от 62 % в лейкогаббродиоритах до 76 % в анортозитах. По соотношению лейкократовой части на классификационной диаграмме QAPF (рис. 5) образцы попадают в поля диоритов и анортозитов. Исходя

Рис. 3. Фотографии керна скважин, вскрывших Репнинский и Рамонский массивы.

Рис. 4. Фотографии пород: (*a*) – лейкодиорит–анортозит (скв. 7749, глуб. 265,0 м); (*б*) – роговообманковый кумулат (скв. 7750, глуб. 262,0 м); (*в*) – кварцевый диорит (скв. 7750, глуб. 250,0 м); (*г*) – монцогранит (скв. 7753, глуб. 303,0 м); (*д*) – Fe-Ti-оксиды в лейкодиорите–анортозите (скв. 7749, глуб. 275,0 м); (*е*) – Fe-Ti-оксиды в кварцевом диорите (скв. 7750, глуб. 250,0 м).

•	-	(
	ed	
	8	ľ
	H	
	5	
۱	0	Ľ.
	62	
t	-	1

53	
10	
Maccueoe	
Рамонского	
11	
епнинского	
-	
podou	
cocmae	
атьный	
tannw-o	
енно	
ecm	
Количест	

	E.							-	-	-	_	_		_	-		Ê.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Акцес- сорни и рудные	3,9±1,3	3,7±2,3	3,9±1,3	3,8±0,8	6,8±2,5	8,1±1,4	$2,8\pm 1,0$	5,3±2,2	2,1±1,0	3,7±2,3	3,7±1,1	0,9 ±0,3	$1,0\pm 0,2$	1,6 ±0,4	
$N_{\rm H}$ Constant $\Gamma_{\rm TY}$ Hantenonatte P1 $N_{\rm PI}$ Cpx Bt Hbl Qtz 1 7750 250.0 Binutri-poronooбstaticonshif sequesteri buopum 62.1±8.2 35 0.8 13.5±5.5 4.5±1.1 2 7750 250.0 Rinutri-poronooбstaticonshif sequesteri buopum 62.1±8.2 60 13.5±5.5 4.5±1.1 3 7750 250.0 Poronooбstaticonshif sequesteri buopum 63.4±6.1 - 13.4±2.7 11.7±4.3 5.1±1.3 4 7750 262.0 Interrit-poronooбstaticonshif sequesteri buopum 63.4±6.1 - 13.4±2.7 11.7±4.3 5.1±1.3 4 7750 262.0 Interrit-poronoofstaticonshif sequesteri buopum 63.4±6.1 - 13.4±2.7 11.7±4.3 5.1±1.3 5 7750 262.0 Interrit-poronoofstaticonsolativenpressol 60.4±5.3 4.2±1.3 6.5±1.3 4.2±1.3 6 7750 252.0 Interrit-poronoofstaticonsolativenpressol 36.0±4.5 4.5±1.4 7.1±3.2		Fsp	1,3±1,1	3,0±1,7	0,1	0,2 ±0,1	1,5±1,9	+	4,1 ±0,8	2,9±0,7	4,1 ±0,9	4,5±1,9	3,2±1,7	27,7±6,8	27,8±3,4	22,4±6,1	
No. Tary- turn Tary- forms, main Tary- forms, main Hart Mannetomentie P1 Ne P1 Cpx Bt Hb1 1 7750 250,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 62,148,2 35 0,8 13,442,7 11,744,3 2 7750 270,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 63,446,1 - 13,142,77 11,744,3 3 7750 202,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 63,446,1 - 8,843,2 39,849,4 4 7750 202,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 63,446,1 - 6,842,2 39,849,4 5 7750 202,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 42,949,0 - 6,842,2 39,849,4 71,41,3 6 7750 202,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 42,949,0 - 6,842,2 39,849,4 71,44,3 7 7749 202,0 Bitoritr-porobooGNatistosatif <i>seapuesuit</i> 42,949,0 - 6,842,3 35,346,2 35,346,2		Qtz	4,5±1,1	5,1 ±1,3	4,2±1,3	6,5± 0,3	5,4±1,2	3,6±0,5	2,9±0,9	1,9±0,7	3,2±1,4	3,8±1,6	5,9±1,8	15,5±1,4	18,8±4,3	21,2±1,3	
№ П/П Глу. Налисиювание Р1 № Р1 Срх Вt П/П 7730 250.0 Бнолит-роговообманковый кварцевый 6.2,1±8,2 35 0,8 13,5±3,3 2 7750 250.0 Бнолит-роговообманковый кварцевый 6.3,4±6,1 - 13,1±2,7 3 7750 250.0 Бнолит-роговообманковый кварцевый 6.3,4±6,1 - 13,1±2,7 3 7750 262.0 Бнолит-роговообманковый кварцевый 6.3,4±6,1 - 8,8±3,2 4 7750 262.0 Бнолит-роговообманковый кварцевый 4.2,9±9,0 - 8,8±3,2 5 7750 262.0 Бнолит-роговообманковый кварцевый 4.2,9±9,0 - 8,8±3,2 6 7750 262.0 Бнолит-роговобманковый кварцевый 4.2,9±9,0 - 8,8±3,2 7 7750 252.9 Внолит-кинопнопроскений онории 4.2,9±9,0 - 8,8±3,2 6 7750 252.9 Бнолит-воровобличи 1,3,3±5,4 - 2,8±3,8		Hbl	13,8±5,5	11,7±4,3	28,6±5,3	39,8 ±9,4	35,3±6,2	72,1±3,2	1,8	2,7±1,0	1,3	0,4	3,5±2,2	3,4±2,3	1,3±0,8	4,1±2,5	
№ IVIT CKBERKEHINE CKBERKEHINE Γ.T.Y. GHIRA, M HAIANCENDBHIR KORDHEIG PI Na PI CpX 1 7750 250,0 БНОТПТ-рОГОВООбЛАНКОВЫЙ КОВДЧЕСКИЙ ОМОРШИ 62,1±8,2 35 0,8 2 7750 250,0 (1,25 MA) 600 TITT POLOBOOбMAIRCOBAЙ КОВДЧЕСКИЙ 62,1±8,2 35 0,8 3 7750 252,0 БНОТИТ-РОГОВООбМАНКОВАЙ КОВДЧЕСКИЙ 63,4±6,1 - - 4 7750 262,0 БНОТИТ-РОГОВООбМАНКОВАЙ КОВДЧЕСКИЙ 63,4±6,1 - - 5 7750 262,0 БНОТИТ-РОГОВООбМАНКОВАЙ КОВДЧЕСКИЙ 63,4±6,1 - - 6 7750 262,0 БНОТИТ-РОГОВООбМАНКОВАЙ КОВДЧЕСКИЙ 63,4±6,1 - - 7 7750 252,3 БНОТИТ-РОГОВООбМАНКОВИЧЕСКИЙ 63,4±6,1 45 9,2±3,9 6 7750 252,3 БНОТИТ-БИЛОЧИРОКОВОЙОРИИИ (1,20 MA) 73,9±4,6 - - 7 7749 255,0 БНОТИТОВЫСКИ КОВОЧЕСКИЙО (1,00 MA) 73,3±5,4 - - </td <th></th> <td>Bt</td> <td>13,5±3,3</td> <td>13,1±2,7</td> <td>8,8±3,2</td> <td>6,8±2,2</td> <td>5,8±3,8</td> <td>4,5±1,4</td> <td>15,1±4,2</td> <td>25,3±4,5</td> <td>13,2±4,0</td> <td>13,0±3,3</td> <td>17,3±5,1</td> <td>15,1±2,2</td> <td>12,6±3,2</td> <td>13,5±2,8</td> <td></td>		Bt	13,5±3,3	13,1±2,7	8,8±3,2	6,8±2,2	5,8 ±3,8	4,5±1,4	15,1±4,2	25,3±4,5	13,2±4,0	13,0±3,3	17,3±5,1	15,1±2,2	12,6±3,2	13,5±2,8	
№ IVIT CKRERKHER Γ.13y- 61148M Наниснование PI № PI IVIT 60 17550 250,0 Биолит-роговообманковый <i>коврчевый диорит</i> 62,1±8,2 35 2 7750 250,0 Виолит-роговообманковый <i>коврчевый диорит</i> 63,4±6,1 56 3 7750 250,0 Роговообманковьй <i>коврчевый диорит</i> 63,4±6,1 56 4 7750 262,0 [1,17 мм) 63,4±6,1 54,5±6,3 56 4 7750 262,0 [1,17 мм) 54,5±6,3 56 56 5 7750 262,0 Биолит-роговообманковый <i>коврчевый диорит</i> 54,5±6,3 56 6 7750 262,0 Плитроговобманковый <i>коврчевый коврчевый диорит</i> 54,5±6,3 56 7 779 252,3 Виолит-сликовобробиорит (1,20 мм) 54,5±6,3 56 6 7750 252,0 Биолит-сликовоброфир (1,03 мм) 71,8±3,0 54,5±6,3 7 7749 77,44,9 77,44,9 77,44,9 77,44,9 77,24,16		Cpx	0,8	L	ī	1	9,2±3,9	Ē	1	I	Ē	Ľ	I	Ē	1,3	I	нералы
Nê Глу- ЛИП Глу- (размер зерна, мм) РІ 1 7750 250,0 (1,25 мм) 62,1148,2 2 7750 250,0 (1,25 мм) 62,1148,2 3 7750 250,0 (1,25 мм) 62,1148,2 4 7750 250,0 (1,17 мм) 63,416,1 3 7750 262,0 Биотит-роговообманковый коарцевый доорит 63,416,1 4 7750 262,0 Биотит-силношроксет-роговообманковый коарцевый 63,416,1 6 7750 252,8 Биотит-силношрокетовобланковый коарцевый 42,949,0 7 7449 265,0 Биотит-силношрокетовобланковый 42,94,5 7 7449 255,9 Биотит-силношрокетовобланковый 73,345,4 8 7749 255,0 Биотит-киноперокетовобланковый 73,345,4 7 7449 275,0 Биотит-киноперокетовобланковий 73,345,4 8 7749 265,0 Биотит-кинопероковобланковий 74,74,9 10 7749 295,0 <		Nê PI	35 60				45	60			30				20		phytic MP
№ Глу- Нанменование ПГП 7750 250,0 Биотит-роговообманковый кварцеемй диорит 1 7750 250,0 Биотит-роговообманковый кварцеемй диорит 2 7750 250,0 (1,25 мм) 3 7750 250,0 (1,17 мм) 3 7750 262,0 (1,17 мм) 4 7750 262,0 Биотит-роговообманковый кварцеемй 5 7750 262,0 Биотит-роговообманковый кварцеемй 6 7750 252,8 Биотит-роговообманковый кварцеемй 7 7149 252,9 Биотит-роговообманковый кварцеемй 8 7749 252,9 Биотит-роговобманковый кварцеемй 7 7149 255,0 Биотит-макообиорит (1,03 мм) 7 7749 255,0 Биотитовый кварцевый лейкообиорит (1,03 мм) 10 7749 255,0 Биотитовый кварцевый лейкообиорит (1,33 мм) 11 7749 259,0 Биотитовый кварцевый лейкообиорит (1,33 мм) 12 7753 З0,0 Биотитовый лейкообиори		Ы	62,1±8,2	63,4 ±6,1	54,5 ±6,3	42,9±9,0	36,0±4,5	11,8 ±3,0	73,3±5,4	61,9±5,7	76,1 ±6,2	74,7±4,9	66,6±5,7	37,2±4,8	37,3±4,1	37,2±6,1	CA IIO HHM BIO
№ п/п п/п Глу- бнна, м 1 7750 250,0 2 7750 250,0 3 7750 270,0 4 7750 262,0 5 7750 262,0 4 7750 262,0 5 7750 262,0 6 7750 262,0 7 7749 265,0 8 7749 255,0 9 7749 255,0 10 7749 275,0 11 7749 290,0 12 7753 298,0 13 7753 308,0 14 7753 308,0		Нанменование (размер зерна, мм)	Бнотит-роговообманковый кварцевий диорит (1,25 мм)	Роговообманково-бнотнтовый кварцевый <i>диорит</i> (1,75 мм)	Биотит-роговообманковый кварцевый диорит (1,17 мм)	Бнотит-роговообманковый кварцевый метагаббродиорит (1,20 мм)	Биотит-клинопироксен-роговообманковый кварцевый мелагаббродиорит (0,93 мм)	Плагиогорнблендит (1,05 мм)	Бнотнтовый лейкодиорит (1,33 мм)	Бнотнтовый лейкодиорит (1,03 мм)	Биотитовый анортозит-лейкодиорит (1,47 мм)	Бнотнтовый анортозит-лейкодиорит (1,36 мм)	Бнотнтовый кварцевый <i>лейкоо̀иорит кварцевый</i> (1,34 мм)	Бнотнтовый кварцевый монцонит– монцогранит (2,42 н 0,55 мм)	Биотитовый монцогранит (1,33 и 0,30 мм)	Бнотнтовый <i>монцогранит</i> (1,00 н 0,30 мм)	породообразующих минералов включены развивающие
№ № П/П 7750 1 7750 2 7750 3 7750 4 7750 4 7750 5 7750 6 7750 7 7750 8 7749 9 7749 10 7749 11 7749 12 7753 12 7753 13 7753 14 7753 13 7753 14 7753 15 7753 14 7753		Глу- бнна, м	250,0	270,0	262,0	262,0	252,8 1	252,9	265,0 1	275,0 1	279,0 1	290,0	295,0	298,0	303,0 1	308,0 1	подсчеты в
Ме П/П 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Скважнна	7750	7750	7750	7750	7750	7750	7749	7749	7749	7749	7749	7753	7753	7753	в :этнечание: в
	l	№ п/п	1	6	3	4	2	9	2	8	6	10	11	12	13	14	du

Рис. 5. Модальный минеральный состав пород Репнинского и Рамонского массивов на фрагменте диаграммы QAP [10]. Q – кварц, А – щелочные полевые шпаты, Р – плагиоклаз.

из химического состава (кремнезем 57,4–59,0 %), состава плагиоклаза – андезин-олигоклаз, низких содержаний темноцветных минералов (13–27 %) образцы отнесены к лейкодиоритам и андезиновым анортозитам. Плагиоклаз характеризуется отсутствиием видимой зональности, идиоморфизмом, образует фенокристаллы. Роговая обманка слагает шлировидные агретаты, к которым приурочены как чешуйки биотита, так и Fe-Ti-оксиды. Кварц и калиевый полевой шпат всегда находятся в интерстициях между зернами плагиоклаза.

В краевой части массива, которая на карте показана как габбродиориты и диориты, представлено два типа пород – кварцевые диориты и кварцевые мелагаббродиориты. Наиболее распространенными здесь являются среднезернистые кварцевые диориты с порфировидной структурой. Кроме того, в кварцевых диоритах обнаружены крупные ксенолиты (десятки сантиметров в диаметре) кварцевых мелагаббродиоритов до плагиогорнблендитов (см. табл. 1), обогащенных магнетитом. Наиболее распространенные кварцевые диориты на 60-65 % состоят из плагиоклаза, кварца и резко подчиненного количества калиевого полевого шпата и на 25-40 % из мафических минералов. Кварц встречается в интерстициях между зернами плагиоклазов и мафических минералов, калиевый полевой шпат - обрастает отдельные зерна плагиоклаза. Плагиоклаз субидиоморфный, образует фенокристаллы. Наиболее распространенными темноцветными минералами являются роговая обманка и биотит. Редко встречаются крупные зерна клинопироксена, обрастающие каймами роговой обманки. Присутствует постоянная примесь магнетита (3-4 об. %). Из акцессорных минералов установлены ильменит, апатит, циркон. Ксенолиты кварцевых мелагаббродиоритов от вмещающих их диоритов отличаются обогащенностью идиоморфной роговой обманкой (кумулаты). К меланократовым участкам приурочены агрегаты магнетита и ильменита до 15 об. %.

Рамонский массив (скв. 7753). Монцогранитоиды состоят из плагиоклаза, биотита, кварца и калиевого полевого шпата, второстепенные минералы представлены роговой обманкой и клинопироксеном, акцессории – сфеном, апатитом, цирконом. Структура гипидиоморфнозернистая, порфировидная и милонитовая в основной массе пород - за счет равития тонкозернистых гранулированных агрегатов кварца и альбита. Содержание плагиоклаза 35-40 об. %, калиевого полевого шпата 25-30 об. %, темноцветных силикатов около 20 об. %. По соотношению лейкократовой части на классификационной диаграмме QAPF (см. рис. 5) образцы попадают на границу между полями монцогранитов и кварцевых монцонитов. Плагиоклаз характеризуется оптической зональностью, идиоморфизмом, образует фенокристаллы, которые часто замещаются калиевым полевым шпатом, где плагиоклаз остается в виде реликтов. Преобладающим темноцветным минералом является биотит. Составы проанализированных минералов приведены в табл. 2-6.

В мелагаббродиоритах зональный плагиоклаз имеет состав от An₆₃₋₆₆ в центральных до An₃₁₋₃₈ в краевых частях зерен, в кварцевых диоритах – от Ап₃₁₋₄₁ до An₁₇₋₂₃ в измененных участках. В анортозитахлейкодиоритах плагиоклазы соотвествуют олигоклазу-андезину (Ап₂₆₋₃₀). В монцогранитоидах Рамонского массива плагиоклазы имеют наиболее кислый состав от An₁₆₋₂₅ до An₀₋₇ в альбитизированных участках. Калиевый полевой шпат во всех образцах отвечает санидину, который содержит барий от 0,5 до 3 мас. %. Редко встречается анортоклаз в виде тонких ламеллевидных включений в санидине или плагиоклазе. Биотиты во всех образцах характеризуются умеренной магнезиальностью (X_{Mg} = 0,45-0,61) и, за некоторым исключением, классифицируются как железистые разновидности (рис. 6). В половине анализов биотитов присутствует Ва до 1,36 мас. %. Амфиболы из пород обоих массивов представлены магнезиальными роговыми обманками, которые в монцогранитоидах Рамонского массива отличаются пониженной магнезиальностью (X_{Mg} = 0,49–0,51) от роговых обманок из пород Репнинского массива ($X_{Mg} = 0,64-0,78$). Клинопироксены из наиболее меланократовых пород Репнинского массива, по составу отвечают салиту, а редкие кристаллы клинопироксена в монцогранитоидах Рамонского – авгиту (рис. 6). Рудные минералы в анортозитах-лейкодиоритах представлены титаномагнетитом, обогащенным марганцем ильменитом и реже магнетитом, в кварцевых диоритах и мелагаббродиоритах - магнетитом и микровключениями марганцовистого ильменита, в монцогранитоидах - пиритом.

Геохимия

Репнинский массив. Диориты Репнинского массива характеризуются низкими содержаниями кремнезема

Таблица 2

Скважина	7749	7749	7749	7749	7749	7749	7750	7750	7750	7750	7750	7750
Глубина, м	279,0	279,0	279,0	279,0	279,0	279,0	252,8	252,8	252,8	252,8	252,8	252,8
SiO ₂	63,72	61,37	60,12	63,77	59,62	62,53	58,43	56,77	58,83	60,73	60,24	61,16
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Al ₂ O ₃	18,07	22,95	24,19	18,08	24,01	18,57	24,95	23,98	24,64	22,56	23,01	20,49
FeO	0,35	0,32	0,00	0,35	0,48	0,00	0,00	0,24	0,00	1,47	1,53	0,00
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,00	0,00	0,00	0,16	0,58
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,24	0,00	0,65
CaO	0,24	5,82	6,52	0,24	6,11	0,00	7,97	10,27	7,35	4,17	3,66	4,40
Na ₂ O	1,02	9,21	8,41	1,02	8,98	0,74	7,38	7,88	7,94	9,55	7,98	4,53
K ₂ O	14,19	0,25	0,00	14,20	0,37	14,46	0,35	0,21	0,00	1,50	2,53	5,80
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,22	0,00	0,00	0,00	0,26	0,00	0,00	0,93
V ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,26	0,00	0,00	0,00
BaO	2,24	0,00	0,00	2,24	0,00	3,08	0,00	0,00	0,56	0,00	0,00	1,46
Сумма	99,82	99,92	99,24	99,90	99,79	99,38	99,25	99,34	99,83	100,22	99,33	100,01
An	0,01	0,26	0,30	0,00	0,27	0,00	0,37	0,41	0,34	0,18	0,17	0,23
Ab	0,10	0,73	0,70	0,08	0,71	0,07	0,61	0,58	0,66	0,74	0,68	0,42
Or	0,89	0,01	0,00	0,92	0,02	0,93	0,02	0,01	0,00	0,08	0,14	0,35
T°C (2 kbar)		736	757		716					706	747	
T°C (4 kbar)		747	768		722					719	760	

Выборочные микрозондовые анализы плагиоклазов и калиевых полевых шпатов из пород Репнинского и Рамонского массивов ЛСФЗ

Продолжение табл. 2

Скважина	7750	7750	7750	7750	7750	7750	7753	7753	7753	7753	7753	7753
Глубина, м	252,8	250,0	250,0	250,0	250,0	250,0	303,0	303,0	303,0	303,0	303,0	303,0
SiO ₂	62,73	58,69	51,14	63,95	56,39	58,40	62,36	64,94	63,99	61,81	61,49	84,53
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,78	0,00
Al_2O_3	19,23	25,29	24,91	17,89	29,42	25,59	17,38	17,88	18,27	22,13	21,09	8,90
FeO	0,00	0,46	1,34	0,23	0,64	0,00	0,00	0,41	0,00	0,00	0,00	0,00
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	0,00	0,00	2,39	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	0,01	7,74	15,04	0,00	3,56	6,98	0,00	0,00	0,00	5,68	2,89	0,61
Na ₂ O	1,31	7,56	3,51	0,57	4,77	8,50	1,19	0,57	0,00	9,48	10,86	4,71
K ₂ O	13,99	0,39	1,06	15,34	4,59	0,10	15,53	15,04	15,89	0,00	1,58	0,00
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,53	0,00	0,00	0,00	0,00	0,00
V ₂ O ₅	0,00	0,00	0,00	0,40	0,26	0,00	0,73	0,00	0,00	0,00	0,00	0,00
BaO	2,95	0,00	0,00	1,45	0,49	0,00	1,54	1,72	0,96	0,00	0,00	0,00
Сумма	100,21	100,13	99,39	99,83	100,13	99,57	99,25	100,56	99,11	99,10	98,68	98,76
An	0,00	0,35	0,66	0,00	0,20	0,31	0,00	0,00	0,00	0,25	0,12	0,07
Ab	0,12	0,63	0,28	0,05	0,49	0,68	0,10	0,05	0,00	0,75	0,80	0,93
Or	0,88	0,02	0,06	0,95	0,31	0,01	0,90	0,95	1,00	0,00	0,08	0,00
T°C (2 kbar)					548	514				512	449	573
T°C (4 kbar)					554	519				517	453	579

Примечание: Т°С – температура кристаллизации пород при заданном давлении по данным двуполевошпатового геотермометра по [11].

Таблица 3

Скважина	7749	7749	7749	7750	7750	7750	7750	7753	7753
Глубина, м	279,0	279,0	279,0	252,8	252,8	250,0	250,0	303,0	303,0
SiO ₂	36,98	38,16	38,42	36,66	37,11	36,44	36,91	37,65	39,13
TiO ₂	3,48	3,29	2,78	4,13	4,05	3,80	4,62	2,21	2,65
Al ₂ O ₃	13,78	14,11	15,20	14,27	13,27	14,14	14,46	13,88	12,89
Cr ₂ O ₃	0,00	0,00	0,00	0,20	0,00	0,00	0,60	0,65	0,00
FeO	18,05	16,80	15,58	18,98	18,02	19,58	17,13	20,93	20,05
MnO	0,00	0,00	0,26	0,38	0,45	0,54	0,76	0,00	0,00
MgO	13,03	13,14	13,61	14,09	13,16	12,22	11,78	11,79	9,43
CaO	0,00	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K ₂ O	9,13	9,33	9,48	7,62	8,73	8,33	9,16	9,77	9,34
V ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,82
BaO	1,36	0,76	1,08	0,61	1,21	1,06	0,00	0,00	1,31
Сумма	95,82	95,76	96,41	96,95	96,00	96,13	95,42	96,88	95,62
Si	2,91	2,98	2,96	2,78	2,89	2,87	2,91	2,92	3,16
Ti	0,21	0,19	0,16	0,24	0,24	0,22	0,27	0,13	0,16
Al	1,28	1,30	1,38	1,28	1,22	1,31	1,34	1,27	1,23
al,4	1,09	1,02	1,04	1,22	1,11	1,13	1,09	1,08	0,84
al,6	0,19	0,28	0,35	0,06	0,11	0,18	0,25	0,19	0,39
Fe'''	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe"	1,19	1,10	1,00	1,20	1,17	1,29	1,13	1,36	1,35
Mn	0,00	0,00	0,02	0,02	0,03	0,04	0,05	0,00	0,00
Mg	1,53	1,53	1,56	1,59	1,53	1,43	1,38	1,36	1,14
Ca	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K	0,90	0,89	0,91	0,89	0,92	0,84	0,92	0,97	0,96
X(Mg)	0,56	0,58	0,61	0,56	0,56	0,52	0,54	0,50	0,46
T°C (Hbl+Bt)			750	775			800		625

Выборочные микрозондовые анализы биотитов из пород Репнинского и Рамонского массивов ЛСФЗ

Примечание: Т°С (Hbl+Bt) – температура кристаллизации пород по данным афибол-биотитового геотермометра по [12].

Таблица 4

1	-					1						
Скважина	7749	7749	7749	7750	7750	7750	7750	7750	7750	7753	7753	7753
Глубина, м	279,0	279,0	279,0	252,8	252,8	252,8	250,0	250,0	250,0	303,0	303,0	303,0
1	2	3	4	5	6	7	8	9	10	11	12	13
SiO ₂	47,13	46,29	46,99	48,49	46,40	45,29	45,81	45,55	46,62	46,42	44,94	46,00
TiO ₂	1,17	1,78	1,38	0,86	0,67	1,78	0,81	1,18	1,68	1,43	1,19	1,23
Al_2O_3	6,99	6,67	6,61	6,64	7,15	7,87	6,88	7,12	6,93	6,87	6,08	6,27
FeO	15,12	15,32	15,20	14,49	15,94	14,78	14,03	14,13	13,79	18,62	20,01	19,78
MnO	0,69	0,80	0,75	0,53	0,57	0,00	0,37	0,59	0,36	0,55	0,50	0,88
MgO	13,26	13,02	13,79	14,28	12,93	13,39	13,16	11,95	14,07	10,41	10,60	10,09
CaO	12,14	11,58	11,41	11,65	11,55	12,49	11,73	11,56	11,63	12,07	10,80	11,03
Na ₂ O	1,33	1,69	1,41	0,84	1,23	2,33	1,33	1,49	1,54	1,29	2,28	1,29
K ₂ O	0,71	0,85	0,64	0,71	0,69	0,55	0,00	0,00	0,00	0,71	0,35	0,89

Выборочные микрозондовые анализы амфиболов из пород Репнинского и Рамонского массивов ЛСФЗ

										11904	,	
1	2	3	4	5	6	7	8	9	10	11	12	13
Cr_2O_3	0,00	0,00	0,00	0,00	0,00	0,00	0,78	0,73	0,86	0,00	0,00	0,00
V_2O_5	0,33	0,00	0,00	0,00	0,30	0,00	0,30	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,00	0,00	0,00	0,84	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Сумма	98,87	97,99	98,18	98,50	98,26	98,49	95,20	94,30	97,48	98,37	96,75	97,46
Si	6,87	6,81	6,81	6,94	6,83	6,68	6,86	6,93	6,77	6,93	6,80	6,91
Ti	0,13	0,20	0,15	0,09	0,07	0,20	0,09	0,13	0,18	0,16	0,14	0,14
Al	1,20	1,16	1,13	1,12	1,24	1,37	1,21	1,28	1,19	1,21	1,08	1,11
Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,09	0,09	0,10	0,00	0,00	0,00
Fe'''	0,51	0,54	0,89	0,87	0,84	0,17	0,63	0,31	0,75	0,25	0,81	0,71
Fe"	1,33	1,35	0,95	0,86	1,11	1,65	1,12	1,48	0,92	2,07	1,72	1,77
Mn	0,09	0,10	0,09	0,06	0,07	0,00	0,05	0,08	0,04	0,07	0,06	0,11
Mg	2,88	2,85	2,98	3,05	2,83	2,94	2,94	2,71	3,04	2,31	2,39	2,26
Ca	1,89	1,82	1,77	1,79	1,82	1,97	1,88	1,88	1,81	1,93	1,75	1,77
Na	0,38	0,48	0,40	0,23	0,35	0,66	0,39	0,44	0,43	0,37	0,67	0,38
K	0,13	0,16	0,12	0,13	0,13	0,10	0,00	0,00	0,00	0,14	0,07	0,17
X(Mg)	0,68	0,68	0,76	0,78	0,72	0,64	0,72	0,65	0,77	0,51	0,49	0,51
Ti	0,13	0,20	0,15	0,09	0,07	0,20	0,09	0,14	0,19	0,16	0,14	0,14
(Ca+Na)b	1,96	1,90	1,86	1,91	1,93	1,99	1,97	1,97	1,93	1,97	1,80	1,90
(Na+K)a	0,02	0,08	0,14	0,15	0,11	0,76	0,34	0,37	0,35	0,47	0,73	0,44
Nab	0,09	0,10	0,09	0,06	0,07	0,01	0,05	0,07	0,09	0,04	0,02	0,11
XAb	0,70	0,71	0,69	0,58	0,52	0,79	0,57	0,66	0,66	0,72	0,77	0,75
XAn	0,30	0,27	0,30	0,41	0,46	0,18	0,47	0,33	0,32	0,25	0,23	0,23
T°C	728	701	705	740	805	690	760	688	746	681	618	704
P(kbar)	2,12	2,31	2,16	1,64	0,85	3,34	1,70	2,99	1,86	2,69	2,42	2,05

Продолжение табл. 4

Примечание: Т°С и P(kbar) – РТ-условия кристаллизации пород по данным афибол-плагиоклазового геотермобарометра по [13], ХАb и ХАп – составы плагиоклазов использованные для расчетов.

Таблица 5

Выборочные микрозондовые анализы клинопироксенов из пород Репнинского и Рамонского массивов ЛСФЗ

Скв.	7750	7750	7750	7750	7750	7750	7750	7753	7753	7753	7753	7753
Глуб., м	252,8	252,8	252,8	250,0	250,0	250,0	250,0	303,0	303,0	303,0	303,0	303,0
1	2	3	4	5	6	7	8	9	10	11	12	13
SiO ₂	52,40	53,97	51,58	52,43	52,94	52,27	52,33	50,75	50,88	53,74	51,22	50,47
TiO ₂	0,24	0,00	0,00	0,38	0,27	0,41	0,00	0,00	0,52	0,00	0,00	0,57
Al ₂ O ₃	0,75	0,29	0,97	0,59	0,50	0,45	0,27	3,16	3,62	2,19	1,53	1,58
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,48	0,00	0,69
FeO	8,49	8,24	9,23	7,86	7,34	8,64	7,54	16,18	13,34	11,88	12,38	12,17
MnO	0,72	0,47	0,59	0,71	0,76	0,76	0,38	0,00	0,00	0,48	0,79	0,58
MgO	13,51	13,43	13,66	15,00	14,64	14,16	14,67	12,25	12,75	14,22	13,19	12,68
CaO	23,67	24,20	22,92	23,16	23,59	22,84	24,06	16,99	18,33	15,78	19,82	21,03
Na ₂ O	0,00	0,31	0,56	0,00	0,42	0,34	0,00	0,00	0,00	0,84	0,56	0,63
V ₂ O ₅	0,25	0,00	0,26	0,00	0,00	0,00	0,00	0,55	0,00	0,00	0,00	0,00
Сумма	100,03	100,91	99,77	100,12	100,46	99,87	99,25	99,88	99,44	99,62	99,49	100,39

Продолжение табл. 5

										I '		
1	2	3	4	5	6	7	8	9	10	11	12	13
Si	1,97	2,00	1,93	1,95	1,95	1,95	1,96	1,94	1,93	2,01	1,93	1,89
Ti	0,01	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,02
Al	0,03	0,01	0,04	0,03	0,02	0,02	0,01	0,14	0,16	0,10	0,07	0,07
AlVI	0,00	0,01	-0,03	-0,03	-0,02	-0,03	-0,03	0,09	0,09	0,00	0,00	-0,04
Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,02
Fe'''	0,02	0,02	0,14	0,06	0,09	0,08	0,07	0,00	0,00	0,00	0,11	0,13
Fe"	0,24	0,24	0,15	0,19	0,14	0,19	0,16	0,52	0,42	0,37	0,28	0,25
Mn	0,02	0,01	0,02	0,02	0,02	0,02	0,01	0,00	0,00	0,02	0,03	0,02
Mg	0,76	0,74	0,76	0,83	0,80	0,79	0,82	0,70	0,72	0,79	0,74	0,71
Ca	0,95	0,96	0,92	0,92	0,93	0,91	0,96	0,70	0,75	0,63	0,80	0,85
Na	0,00	0,02	0,04	0,00	0,03	0,02	0,00	0,00	0,00	0,06	0,04	0,05
X(Mg)	0,74	0,75	0,82	0,80	0,83	0,79	0,82	0,57	0,63	0,67	0,71	0,73
En	38,30	37,89	38,69	41,60	41,00	39,97	40,52	36,53	38,16	44,13	38,37	36,62
Fs	13,48	13,03	14,65	12,22	11,51	13,67	11,68	27,05	22,39	20,66	20,19	19,70
Wo	48,23	49,08	46,66	46,18	47,49	46,35	47,80	36,42	39,46	35,21	41,44	43,68
T(Cp	x+Bt)	900		1050				675	725	750	800	

Примечание: Т°С (Ср	ox+Bt) – температура кристалл	изации пород по данным	и клинопироксен-биотитового г	еотермометра по
[12].				

Таблица 6

Выборочные микрозондовые	анализы магнетитов и ильменитов из пород	Репнинского массива ЛСФЗ
	real real real real real real real real	

Скв.	7749	7749	7749	7749	7749	7750	7750	7750	7750	7750	7750	7750	7750
Глуб., м	279,0	279,0	279,0	279,0	279,0	252,8	252,8	252,8	252,8	250,0	250,0	250,0	250,0
SiO ₂	0,31	0,31	1,59	0,00	0,00	4,23	1,07	0,00	2,01	0,00	0,00	0,00	0,00
TiO ₂	31,16	0,00	35,39	60,55	50,28	47,18	51,22	0,91	1,22	52,96	0,00	50,73	0,00
Cr ₂ O ₃	0,00	0,18	0,00	0,00	0,00	0,00	0,00	0,00	0,85	0,00	0,00	0,00	0,70
FeO	62,44	93,76	60,91	38,39	40,60	28,97	33,11	93,03	90,76	38,19	98,92	36,10	95,82
MnO	4,36	0,00	0,00	0,42	9,12	11,74	13,76	0,00	0,00	8,48	0,00	11,67	0,00
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,75	0,00	0,00	1,29
CaO	0,00	0,00	0,27	0,00	0,22	3,67	1,20	0,00	0,51	0,00	0,00	0,00	0,00
Na ₂ O	0,00	0,00	0,60	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
V ₂ O ₅	0,48	0,00	0,00	0,00	0,00	1,83	0,00	0,00	0,00	0,00	0,66	1,62	1,25
Сумма	98,75	94,25	98,76	99,36	100,22	97,62	100,36	93,94	95,35	100,38	99,58	100,12	99,06

(SiO₂ = 54,5–57,5 мас. %), высокими – кальция (4,47– 6,25 мас. % CaO), глинозема (17,6–20,5 мас. %) и пониженными магния (1,63–3,37 мас. % MgO). Они относятся к низкощелочным и субщелочным породам (K_2O + Na₂O = 5,5–8,0) с преобладанием натрия (K_2O/Na_2O = 0,37–0,50) и умеренной железистостью ($X_{Fe} \approx 0,6$) и глиноземистостью (A/CNK около 1) (табл. 7, рис. 7, 8). Диориты обеднены Rb (42–66 ppm), Cs (0,8–1,2 ppm), Nb (5,6–8,6 ppm), резко обогащены Sr (943–1201 ppm), Ba (до 4267 ppm) и высокозарядными элементами – Zr (219–812 ppm), Y (до 32 ppm) (табл. 7). По сравнению с гранитоидами усманского комплекса и мезократовыми породами группы макарьевских интрузий диориты Репнинского массива обогащены Al, Ba, Sr, Zr, REE с сильным их фракционированием [(La/Yb)n = 9–18] и резким Еимаксимумом в анортозитах–лейкодиоритах (Eu/Eu* = 1,5-1,8), что свидетельствует об их принадлежности анортозитовой серии (табл. 7, рис. 7, 8).

Рамонский массив. Монцогранитоиды Рамонского массива по сравнению с Репнинским содержат больше кремнезема (64,1–64,3 мас.% SiO₂), имеют близкие значения суммы щелочей (около 8 мас. % Na₂O + K₂O), но с более высокой калиевостью (K₂O/Na₂O = 0,92–1,14) (табл. 7). Они характеризуются умеренной железистостью (X_{Fe} \approx 0,55) и глиноземистостью (A/CNK \approx 1). Кроме того, отмечаются пониженные содержания фосфора (P₂O₅ = 0,2 мас. %) и титана

Рис. 6. Классификация пироксенов по [14] (а) и биотитов по [15] (б) из пород Рамонского и Репнинского массивов.

таолица /

Химические составы (мас.%) и концентрации редких и рассеянных элементов	(ppm)
пород Репнинского и Рамонского массивов ЛСФЗ	

Скважина	7749	7749	7749	7749	7749	7750	7750	7750	7750	7750	7753	7753	7753
Глубина, м	295,0	275,0	265,0	279,0	290,0	252,9	252,8	250,0	270,0	262,0	298,0	308,0	303,0
Породы	Лeì	ікодиорі	ИТЫ	Анорт андези	озиты іновые	Плагиогој и мелага рт	рнблендит ббродио- ит	Диори	ты квар	цевые	Монц	огранит	оиды
1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	57,00	57,50	56,60	57,30	56,90	45,67	50,20	54,90	55,40	54,50	64,30	64,10	64,30
TiO ₂	0,97	0,86	1,00	0,97	1,00	1,65	1,00	0,92	0,86	0,86	0,59	0,60	0,56
Al ₂ O ₃	20,20	19,90	20,50	20,40	19,90	9,16	12,57	18,70	18,60	17,60	15,90	16,00	16,00
Fe ₂ O ₃ (общ)	6,20	5,33	6,12	5,73	6,28	20,59	15,10	8,88	8,24	9,47	4,85	4,81	4,53
MnO	0,09	0,07	0,08	0,08	0,09	0,36	0,28	0,11	0,10	0,13	0,07	0,07	0,06
MgO	1,83	1,63	2,01	1,85	1,89	9,29	6,35	3,10	2,80	3,37	1,76	1,70	1,63
CaO	4,64	4,47	4,74	4,86	4,58	10,06	10,04	6,34	6,25	6,73	3,07	3,20	2,99
Na ₂ O	5,46	5,46	5,51	5,59	5,43	1,88	3,31	3,83	4,07	3,91	3,80	4,00	3,85
K ₂ O	2,26	2,34	2,25	2,13	2,28	0,44	0,84	1,89	2,02	1,45	4,26	3,67	4,38
P ₂ O ₅	0,27	0,21	0,25	0,26	0,26	0,36	0,14	0,31	0,28	0,34	0,17	0,19	0,19
Total	99,37	99,02	99,68	99,74	99,05	100,11	100,18	99,73	99,25	99,05	99,49	99,26	99,24
FeO	3,59	4,10	4,03	3,32	3,96			5,32	4,94	5,24	4,04	3,77	3,43
ППП	0,86	1,70	1,07	0,94	0,89	0,66	0,35	1,34	1,18	1,27	1,16	1,34	1,14
Na ₂ O+K ₂ O	7,84	8,02	7,87	7,81	7,85	2,33	4,16	5,81	6,21	5,48	8,20	7,83	8,39
K ₂ O/Na ₂ O	0,41	0,43	0,41	0,38	0,42	0,23	0,25	0,49	0,50	0,37	1,12	0,92	1,14
A/CNK	1,02	1,01	1,02	1,00	1,01	0,42	0,51	0,94	0,92	0,87	0,97	0,98	0,97
Be	1,29	1,46	1,41	1,14	1,59			1,11	1,22	1,27	1,89	2,27	1,85
Sc	16,5	19,6	23,4	10,1	20,8			4,95	5,93	16,5	10,5	17,5	10,8
Р	1568	1324	1588	1398	1629			1513	1407	1757	1091	1132	993
Ti	6589	5947	7128	6202	7192			5210	4944	5186	4097	4242	3595
V	75,9	59,4	78,9	72	83,5			136	128	154	76,4	73,7	62,2
Cr	18,2	15,2	18,9	13,3	18,4			40	33,7	42,2	50	42,3	35,6
Со	10,5	7,02	12,9	8,48	11			20,9	17,5	21,6	11,3	10,1	8,98
Ni	10,3	9,73	13,4	7,68	13,8			17,6	17,7	16,5	20,6	29,2	12,2
Cu	28,6	1,29	<1,0	25,4	17,1			33,5	33,2	20,2	42,7	22,6	21,3
Zn	87,3	69,7	85,3	77,1	100			89,5	79,4	89,4	64,3	54,6	45,9

Продолжение табл. 7

	-	-		-	-	_	-						
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ga	23	21,3	23	21,9	25,1			23,1	21,8	22,6	19,9	18,4	16,6
Rb	60,8	58	59,1	54,2	66,5			59,1	63,5	42	181	166	158
Sr	1201	1145	1194	1171	1186			1040	990	943	579	570	528
Y	11,7	11,4	9,52	11,8	13,4			22,3	18,1	32	17,1	14,3	13,7
Zr	678	581	649	647	812			250	219	295	316	286	249
Nb	6,16	5,64	5,61	6	6,58			8,56	7,34	9,72	11,7	11,8	9,13
Мо	3,19	2,9	20,2	3,22	3,62			5,5	2,74	2,97	6,1	5,15	5,15
Sn	1,31	1,19	1,12	1,13	1,26			1,38	1,42	1,6	1,8	1,81	1,74
Cs	0,95	1,17	1,1	0,882	1,03			1,1	1,21	0,94	4	4,85	4,67
Ba	3429	4267	3373	3200	3214			1105	1141	795	900	835	954
La	31,1	33,1	28,1	32,2	31,5			27,2	27,3	35	30,6	33,9	31,5
Ce	61,8	67,7	54,5	64,8	64,2			67,9	61,1	87,8	63,2	68,8	64,1
Pr	7,45	8,3	6,43	7,75	7,73			9,34	7,93	12,2	7,12	7,79	7,21
Nd	30	32,7	25,7	30,7	30,8			38,8	33,3	53,1	26,5	28,4	26,8
Sm	5,24	5,49	4,27	5,17	5,17			7,21	6,41	10,6	4,75	4,91	4,64
Eu	2,39	2,62	2,28	2,47	2,39			1,73	1,72	2,2	1,16	1,45	1,26
Gd	3,97	4,35	3,38	3,9	4,09			5,35	4,85	8,27	3,79	3,93	3,67
Tb	0,505	0,539	0,409	0,494	0,507			0,736	0,656	1,13	0,537	0,541	0,523
Dy	2,59	2,77	2,14	2,53	2,62			4,14	3,6	6,23	3,03	3,01	2,94
Но	0,514	0,523	0,404	0,522	0,517			0,803	0,705	1,22	0,629	0,616	0,592
Er	1,42	1,49	1,14	1,43	1,45			2,12	1,81	3,18	1,72	1,76	1,7
Tm	0,215	0,225	0,174	0,214	0,224			0,31	0,26	0,462	0,268	0,272	0,265
Yb	1,38	1,39	1,06	1,33	1,39			1,79	1,47	2,72	1,7	1,76	1,61
Lu	0,219	0,23	0,191	0,213	0,225			0,256	0,215	0,382	0,261	0,276	0,241
Hf	14,3	12,9	13,4	13,7	15,5			4,76	4,44	6,01	7,36	7,83	6,54
Та	0,401	0,501	0,345	0,376	0,415			0,417	0,438	0,556	1,01	0,943	0,772
W	1,67	0,949	1,29	0,551	0,485			0,668	0,472	0,614	1,65	0,712	0,913
Th	2,32	3,52	2,31	2,13	2,71			2,22	2,28	2,5	5,56	8,48	7,91
U	0,859	1,2	1,12	0,697	1,03			0,851	0,803	1,15	3,27	3,32	2,64

Рис. 7. Положение химических составов пород Репнинского и мамонского массивов в сравнении с гранитоидами усманского комплекса и габбродиорит-трондьемитовой серии группы макарьевских массивов на диаграмме Na₂O+K₂O–SiO₂. Классификационные поля по [16].

Рис. 8. Хондрит-нормализованное распределение редкоземельных элементов в породах Репнинского и Рамонского массивов. Хондрит С1 по [17].

Рис. 9. Нормализованное к примитивной мантии распределение элементов в породах Репнинского и Рамонского массивов. Примитивная мантия по [17], геохимические данные по усманскому, девицкому комплексам и группе макарьевских массивов по [5, 8, 9].

(TiO₂ = 0,60 мас. %) (табл. 7, рис. 7, 8). Монцогранитоиды Рамонского массива обеднены литофильными элементами (Rb, Cs) и обогащены Ва (835–954 ppm), в меньшей степени Sr (528–579 ppm), Zr (249–316 ppm), Y (13–17 ppm) и REE по сравнению с усманскими гранитоидами и макарьевскими диоритоидами (табл. 7, рис. 7, 9).

Обсуждение результатов и выводы

Типизация пород (формационная принадлежность)

На основании полученных петрографических данных породы Репнинского массива отнесены к габбродиорит-кварцдиорит-лейкодиоритовой (анортозитовой) серии. Сходство структурных (порфировидные, фенокристаллы – плагиоклаз), минералогических (бариевые калишпаты и биотиты, марганцовистые ильмениты, однотипные роговые обманки) и геохимических (повышенные Ba, Sr, Zr, дифференцированное распределение РЗЭ) особенностей позволяет считать их дериватами единой магматической системы. Состав лейкократовых пород с идиоморфным андезином и положительными аномалиями Еи относительно хондрита свидетельствует о широком развитии, так называемых, андезиновых анортозитов в составе Репнинского массива. Меланократовые породы - мелагаббродиориты, установлены в виде крупных ксенолитов, что наряду с кумулятивной структурой свидетельствует об их кристаллизации на самом раннем этапе.

Анортозитовые серии пород уникальны для геологической летописи Земли и привлекают внимание ученых на протяжении полутора веков. Известные анортозитовые тела подразделяются по возрасту на архейские, протерозойские, фанерозойские [18]. Широко употребима более дробная классификация анортозитов по возрасту, структурным особенностям и ассоциации с другими породами [19]: 1) архейские мегакристаллические анортозиты, 2) анортозиты расслоенных мафитовых инрузий, 3) протерозойские анортозиты, так называемого, массивного типа, 4) анортозиты океанических обстановок, 5) анортозитовые включения в изверженных породах и 6) внеземные анортозиты.

Впервые анортозитсодержащая формация в пределах ВКМ выделена при описании Ольховского кольцевого массива [20]. В последствии формационная принадлежность пород ольховского комплекса была уточнена, и анортозиты как семейство исключены из состава Ольховского массива [21, 22]. Таким образом, в восточной части ВКМ анортозитовая серия пород установлена впервые. С учетом возраста вмецающих пород и структурных особенностей эта серия соотвествует протерозойским анортозитам массивного типа. С данным типом анортозитов тесно ассоциируют гранитоиды повышенной калиевости [23], что позволяет предположить пространственно-временную связь монцогранитоидов Рамонского и Репнинского габбродиорит–анортозитового массивов.

Условия кристаллизации пород

Литостатическое давление при кристаллизации пород оценивалось по содержаниям Al в роговой обманке [24, 25], получены близкие величины для пород обоих массивов – 2–4 кбар (см. табл. 4). Температуры кристаллизации по данным амфибол-плагиоклазового геотермометра [13] изменяются от 742±22 °C в мелагаббродиоритовых ксенолитах и 743±15 °C в кварцевых диоритах до 711±17 °C в анортозитах-лейкодиоритах Репнинского массива. Монцогранитоиды Рамонского массива кристаллизовались по данным амфибол-плагиоклазового геотермометра при температуре 674±46 °С. Полученые оценки температур были проконтролированы другими методами, например плагиоклаз-калишпатовым геотермометром [11]: при давлении 2 кбар - 734±13 °С, при давлении 4 кбар -745±14 °С (см. табл. 2) в анортозитах-лейкодиоритах и кварцевых диоритах. Более низкие температурные оценки 506-511±20 °C в мелагаббродиоритах и монцогранитоидах объясняются постмагматической перекристаллизацией и замещением плагиоклаза калиевым полевым шпатом. Вычисленные графическим путем по диаграмме «изотермы распределения Мg и Fe между Hbl и Bt (амфибол-биотитовый термометр)» [12] температуры закономерно изменяются (см. табл. 3, 5) от 800 °C в мелагаббродиоритах до 625 °C в монцогранитоидах. Клинопироксен-биотитовый и клинопироксен-амфиболовый термоментры [12] дают температуры от 750-900 °С (монцогранитоиды) до 1000 °С (мелагаббродиориты).

Выше изложенное позволяет заключить, что оба рассмотренных массива кристаллизовались на глубинах до 7-14 км (давление в среднем около 3 кбар). Расчеты температур соотвествуют порядку кристаллизации минералов, согласно их морфологическим особенностям. В анортозитовой серии Репнинского массива первый кристализуется клинопироксен-салит (температуры расплава порядка 1000 °С), затем роговая обманка + Fe-Ti-оксиды или плагиоклаз, биотит и калиевый полевой шпат (температуры солидуса не менее 710 °С). В Рамонском монцогранитоидном массиве первым кристаллизуется авгит (температуры расплава порядка 900 °C), затем роговая обманка + плагиоклаз, биотит, калиевый полевой шпат (температуры солидуса около 670 °C). Обогащенность родоначальных расплавов Репнинского массива Ва, Sr подтверждается наличием бария в породообразующих силикатах (биотит и калиевый полевой шпат).

Тектоническая позиция

Состав породных ассоциаций Репнинского массива (андезиновые анортозиты-лейкодиориты обогащенные легкими РЗЭ с положительными аномалиями Еи и мелагаббродиориты, обогащенные магнетитом), с одной стороны, характерен для анортозитовых серий, а с другой стороны, высокие содержания Ва, Sr, установлены в специфических высоко-Ва-Sr гранитоидах, которые выделяются в самостоятельный тип, отличающийся от I-, S-, А-типов гранитов [26]. И те и другие: и массивные анортозиты, и высоко-Ba-Sr гранитоиды образуются во внутриплитных анорогенных обстановках [18, 23, 27, 28, 29]. Гранитоиды, обогащенные калием, чаще всего внедряются позже анортозитов [23] также в анорогенной обстановке. Высокие содержания Zr (219-812 ppm) или суммы Zr+Ce+Nb+Y (> 300 ppm, рис. 10a, б) по [30], Y/Nb > 1,5 (тип гранитов А2 по [32]) в породах Рамонского и Репнинского массивов являются признаками гранитоидов А-типа. Разные соотношения Sr-Rb-Ba

Рис. 10. Составы пород Репнинского и Рамонского массивов на дискриминационных диаграммах (*a*) и (*б*) по [30], (в) по [31].

(рис. 10в) в изученных массивах и в S-, А-гранитах Воронцовского террейна [4] свидетельствуют о зависимости состава тех и других от состава субстрата. Эти геохимические особенности могут указывать на постколлизионную обстановку формирования рассмотренных массивов.

Отсутствие признаков наложенного метаморфизма на породные ассоциации Репнинского и Рамонского массивов предполагает, что они являются более молодыми, чем известково-щелочные макарьевские интрузивы или коллизионные трондьемиты-гранодиориты усманского комплекса. Поэтому на данном этапе исследований мы можем заключить, что рассмотренные объекты являются посттектоническими, сформировавшимися либо в анорогенной, либо в постколлизионной обстановке. В последнем случае они будут близки по возрасту с постколлизионными монцогранитами Девицкого массива.

Выводы

1. Описаны Репнинский габбродиорит-анортозитовый и Рамонский монцогранитоидный палеопротерозойские массивы, контрастно отличающиеся от других интрузивов Лосевской структурно-формационной зоны.

2. На основании полученных минералогопетрографических и геохимических данных породы массивов отнесены к анортозитовой серии (массивный тип анортозитов) и ассоциирующим с ними гранитоидам повышенной калиевости А-типа.

3. Условия кристаллизации пород Репнинского и Рамонского массивов: 2-4 кбар (7-14 км), температу-

ры ликвидус/солидус: >1000/710 °C и ~900/670 °C, соотвественно.

4. Гранитоиды А-типа и анортозиты являются маркерами анорогенной внутриплитной или постколлизионной обстановок в эволюции коры Лосевской шовной зоны BKM.

ЛИТЕРАТУРА

1. *Bonin, B.* A-type granites and related rocks: Evolution of a concept, problems and prospects / B. Bonin // Lithos. – 2007. – V. 97. – P. 1–29.

2. *Harris, N.B.W.* Geochemical characteristics of collision zone magmatism / N.B.W. Harris, J.A. Pearce, A.G. Tindle, Coward M.P., Reis A.C. (eds.) // Collision Tectonics Spec. Public. Geol. Soc. London. – 1986. – V. 19. – P. 67–81.

3. Щипанский, А.А. Геодинамика восточной окраины Сарматии в палеопротерозое / А.А. Щипанский, А.В. Самсонов, А.Ю. Петрова [и др.] // Геотектоника. – 2007. – № 1. – С. 43–70.

4. Савко, К.А. Палеопротерозойские граниты А- и Sтипа востока Воронежского кристаллического массива: геохронология, петрогенезис и тектоническая обстановка формированния / К.А. Савко, А.В. Самсонов, А.Н. Ларионов, Ю.О. Ларионова, Н.С. Базиков // Петрология. – 2014. – Т. 22. – № 3. – С. 235–264.

5. *Терентьев, Р.А.* Раннепротерозойские толщи и магматические комплексы Лосевской шовной зоны Воронежского кристаллического массива: геологическая позиция, вещественный состав, геохимия, палеогеодинамика / Р.А. Терентьев // Стратиграфия. Геол. корреляция. 2014. – Т. 22. – № 2. – С. 7–31.

6. Скрябин, В.Ю. Трондьемит-гранодиоритовый интрузивный магматизм Лосевской структурно-формационной зоны Воронежского кристаллического массива / В.Ю. Скрябин, Р.А. Терентьев // Докл. РАН. – 2014. – Т. 458. – № 5. С.578–581.

7. Skryabin, V. Deep structure and evolution of Pre-Cambrian suture structures (from drilling data of Voronezh parametric borehole) [Электронный ресурс] / V. Skryabin, A. Kremenetskiy, R. Terentiev // International Geological Congress Oslo, 2008 – (SDD-ROM-01: Scientific drilling).

8. *Терентьев*, *Р.А.* Габбродиорит–тоналит–трондьемитовая и монцодиорит–кварцдиоритовая ассоциации макарьевских интрузивов (Воронежский кристаллический массив) / Р.А. Терентьев // Вестник Воронеж. гос. ун-та. Сер.: Геология. – 2014. – № 1. – С. 62–72.

9. *Терентьев, Р.А.* Проявление син- и постколлизионных гранитов Лосевской шовной зоны (Воронежский кристаллический массив) / Р.А. Терентьев // Вестник Воронеж. гос. ун-та. Сер.: Геология. – 2013. – № 2. – С. 70–85.

10. *Streckeisen, A.* To each plutonic rock its proper name / A. Streckeisen // Earth Sci. Rev. – 1976. – V. 12. – P. 1–33.

11. *Putirka, K.* Thermometers and Barometers for Volcanic Systems / K. Putirka, F. Tepley (eds.) // Minerals, Inclusions and Volcanic Processes. Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am. – 2008. – V. 69. – P. 61–120.

12. Перчук, Л.Л. Фазовое соотвествие в минеральных системах / Л.Л. Перчук, И.Д. Рябчиков. – М.: Недра, 1976. – 287 с.

13. *Holland, T.* Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry / T. Holland, J. Blundy // Contrib. Mineral. Petrol. – 1994. – V. 116. – P. 433–447.

14. *Poldervaart, A.* Pyroxenes in the crystallization of basaltic magma / A. Poldervaart, H.H. Hess // J. Geol. – 1951. – V. 59(5). – P. 472–489.

15. Foster, M.D. Interpretation of the Composition of Trioctahedral Micas / M.D. Foster // U.S.G.S. Prof. Paper. – 1960. – V. 354B. – P. 1–49.

16. *Middlemost, E.A.K.* Naming materials in the magma/igneous rock system / E.A.K. Middlemost // Earth Sci. Rev. – 1994. – V. 37. – P. 215–224.

17. Sun, S.- S. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Processes / S.- S. Sun and W.F. McDonough // J. Geol. Soc. London, Special Publications. – 1989. – V. 42. – P. 313–345.

18. Morse, S.A. A partisan review of Proterozoic anorthosites / S.A. Morse // Am. Mineral. – 1992. – V. 67. – P. 1087– 1100.

19. *Ashwal, L.D.* Anorthosites / L.D. Ashwal // Series on "Minerals and Rocks". Springer-Verlag, New York, Berlin, Heidelberg. – 1993. – V. 21. – 422 p.

20. Бочаров, В.Л. Габбронорит-анортозит-гранитная

Воронежский государственный университет

Терентьев Р.А., директор учебно-научно-производственного центра "Поисковая геохимия", к.г.-м.н. E-mail: terentiev@geol.vsu.ru Тел. 8 (473) 222-73-63

Савко К.А., д.г.-м.н., профессор, заведующий кафедрой полезных ископаемых и недропользования E-mail: ksavko@geol.vsu.ru Тел.: 8-915-544-21-64

Базиков Н.С., к.г.-м.н., преподаватель кафедры полезных ископаемых и недропользования

E-mail: nickolasss@yandex.ru Тел.: 8-903-420-08-97

формация Воронежского кристаллического массива / В.Л. Бочаров, С.М. Фролов, В.В. Багдасарова // Изв. АН СССР. Сер. геол. – 1988. – № 4. – С. 20–26.

21. Рыборак, М.В. О минеральном составе и номенклатуре основных пород Ольховской кольцевой интрузии / М.В. Рыборак // Вестник Воронеж. гос. ун-та. Сер. : Геол. – 1996. – № 2. – С. 48–51.

22. Савко, К.А. Вещественный состав и возраст мезократовых пород Ольховского интрузива Воронежского кристаллического массива / К.А. Савко, Р.А. Терентьев, А.Н. Ларионов // Известия ВУЗов. Геология и разведка. – 2014. – № 5. – С. 71–75.

23. *Maji*, *A.K.* An overview on geochemistry of Proterozoic massif-type anorthosites and associated rocks / A.K. Maji, A. Patra, P. Ghosh // J. Earth Syst. Sci. – 2010. – V. 119(6). – P. 861–878.

24. *Hammarstrom, J.M.* Aluminum in hornblende: An empirical igneous geobarometer / J.M. Hammarstrom, E. Zen // Am. Mineral. – 1986. – V. 71. – P. 1297–1313.

25. *Hollister, L.S.* Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calcalkaline plutons / L.S. Hollister, G.C. Grissom, E.K. Peters, H.H. Stowell, V.B. Sisson // Am. Mineral. – 1987. – V. 72. – P. 231–239.

26. *Tarney, J.* Trace element geochemistry of orogenic igneous rocks and crustal growth models / J. Tarney, C.E. Jones // J. Geol. Soc. London. – 1994. – V. 151. – P. 855–868.

27. *Dubinina, E.O.* Isotopic (Sr, Nd, O) Systematics of the High Sr–Ba Late Miocene Granitoid Intrusions from the Caucasian Mineral Waters Region / E.O. Dubinina, A.A. Nosova, A.S. Avdeenko, L.Ya. Aranovich // Petrology. – 2010. – V. 18(3). – P. 211–238.

28. *Duchesne, J.C.* The crustal tongue melting model and the origin of massive anorthosites / J.C. Duchesne, J.P. Liégois, J.V. Auwera, J. Longhi // Terra Nova. – 1999. – V. 11. – P. 100–105.

29. *Wiebe, R.A.* Proterozoic anorthosite complexes / R.A. Wiebe // Condie K.C. (ed.) Proterozoic crustal evolution. Elsevier. – 1992. – P. 215–261.

30. *Whalen, J.B.* A-type granites: geochemical characteristics, discrimination and petrogenesis / J.B. Whalen, K.L. Currie, B.W. Chappell // Contrib. Miner. Petrol. – 1987. – V. 95. – P. 407–419.

31. *El Bouseily, A.M.* The relation between Rb, Ba and Sr in granitic rocks / A.M. El Bouseily, A.A. El Sokkary // Chemical Geology. – 1975. – V. 16. – P. 207–219.

32. *Eby*, *G.N.* Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications / G.N. Eby // Geology. – 1992. – V. 20(7). – P. 641–644.

Voronezh State University

Terentiev R.A., The Director of the Educational- Research-Production Center "Search Geochemistry", Candidate of Geological and Mineralogical Sciences

E-mail: terentiev@geol.vsu.ru Tel. 8 (473) 222-73-63

Savko K.A., Doctor of Geological and Mineralogical Sciences, Professor, Head of the Mineral Resource Department E-mail: ksavko@geol.vsu.ru Tel.: 8-915-544-21-64

Bazikov N.S., Candidate of Geological and Mineralogical Sciences, Lecturer of the Mineral Resource Department E-mail: nickolasss@yandex.ru Tel.: 8-903-420-08-97